Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39000857

RESUMEN

Tactile texture sensors are designed to evaluate the sensations felt when a human touches an object. Prior studies have demonstrated the necessity for these sensors to have compliant ridges on their surfaces that mimic human fingerprints. These features enable the simulation of contact phenomena, especially friction and vibration, between human fingertips and objects, enhancing the tactile sensation evaluation. However, the ridges on tactile sensors are susceptible to abrasion damage from repeated use. To date, the healing function of abraded ridges has not been proposed, and its effectiveness needs to be demonstrated. In this study, we investigated whether the signal detection capabilities of a sensor with abraded epidermal ridges could be restored by healing the ridges using polyvinyl chloride plastisol as the sensor material. We developed a prototype tactile sensor with an embedded strain gauge, which was used to repeatedly scan roughness specimens. After more than 1000 measurements, we observed significant deterioration in the sensor's output signal level. The ridges were then reshaped using a mold with a heating function, allowing the sensor to partially regain its original signal levels. This method shows potential for extending the operational lifespan of tactile texture sensors with compliant ridges.


Asunto(s)
Dermatoglifia , Tacto , Humanos , Tacto/fisiología , Dedos/fisiología , Propiedades de Superficie , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación
2.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732914

RESUMEN

Flexible sensors have gained popularity in recent years. This study proposes a novel structure of a resistive four-channel tactile sensor capable of distinguishing the magnitude and direction of normal forces acting on its sensing surface. The sensor uses EcoflexTM00-30 as the substrate and EGaIn alloy as the conductive filler, featuring four mutually perpendicular and curved channels to enhance the sensor's dynamic responsiveness. Experiments and simulations show that the sensor has a large dynamic range (31.25-100 mΩ), high precision (deviation of repeated pressing below 0.1%), linearity (R2 above 0.97), fast response/recovery time (0.2 s/0.15 s), and robust stability (with fluctuations below 0.9%). This work uses an underactuated robotic hand equipped with a four-channel tactile sensor to grasp various objects. The sensor data collected effectively predicts the shapes of the objects grasped. Furthermore, the four-channel tactile sensor proposed in this work may be employed in smart wearables, medical diagnostics, and other industries.

3.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732948

RESUMEN

This paper comprehensively reviews sensors and sensing devices developed or/and proposed so far utilizing two smart materials: electrorheological fluids (ERFs) and magnetorheological materials (MRMs) whose rheological characteristics such as stiffness and damping can be controlled by external stimuli; an electrical voltage for ERFs and a magnetic field for MRMs, respectively. In this review article, the MRMs are classified into magnetorheological fluids (MRF), magnetorheological elastomers (MRE) and magnetorheological plastomers (MRP). To easily understand the history of sensing research using these two smart materials, the order of this review article is organized in a chronological manner of ERF sensors, MRF sensors, MRE sensors and MRP sensors. Among many sensors fabricated from each smart material, one or two sensors or sensing devices are adopted to discuss the sensing configuration, working principle and specifications such as accuracy and sensitivity. Some sensors adopted in this article include force sensors, tactile devices, strain sensors, wearable bending sensors, magnetometers, display devices and flux measurement sensors. After briefly describing what has been reviewed in a conclusion, several challenging future works, which should be undertaken for the practical applications of sensors or/and sensing devices, are discussed in terms of response time and new technologies integrating with artificial intelligence neural networks in which several parameters affecting the sensor signals can be precisely and optimally tuned. It is sure that this review article is very helpful to potential readers who are interested in creative sensors using not only the proposed smart materials but also different types of smart materials such as shape memory alloys and active polymers.

4.
Sensors (Basel) ; 24(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39066001

RESUMEN

Tactile sensing has become indispensable for contact-rich dynamic robotic manipulation tasks. It provides robots with a better understanding of the physical environment, which is a vital supplement to robotic vision perception. Compared with other existing tactile sensors, vision-based tactile sensors (VBTSs) stand out for augmenting the tactile perception capabilities of robotic systems, owing to superior spatial resolution and cost-effectiveness. Despite their advantages, VBTS production faces challenges due to the lack of standardised manufacturing techniques and heavy reliance on manual labour. This limitation impedes scalability and widespread adoption. This paper introduces a rapid monolithic manufacturing technique and evaluates its performance quantitatively. We further develop and assess C-Sight, a novel VBTS sensor manufactured using this technique, focusing on its tactile reconstruction capabilities. Experimental results demonstrate that the monolithic manufacturing technique enhances VBTS production efficiency significantly. Also, the fabricated C-Sight sensor exhibits its reliable tactile perception and reconstruction capabilities, proofing the validity and feasibility of the monolithic manufacturing method.

5.
Surg Innov ; : 15533506241264382, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906119

RESUMEN

BACKGROUND: Surgical reconstruction is a crucial stage in various surgeries, including pancreaticoduodenectomy, as it can significantly affect the surgical results. The objective was to design a suture force feedback (SFF) device that can precisely measure the suture force during surgical closures. Afterward, the device was used to train junior surgeons in surgical closure techniques. METHODS: The SFF was used to capture the suture force data of experienced surgeons. This data was utilized to train and assess junior surgeons. The SFF device had 2 tactile-based force sensors that measured the applied force. Whenever the applied force was not within the optimal force range, the device provided feedback to the surgeon. A workshop was conducted to train junior surgeons in surgical closure techniques to improve their suturing skills. RESULTS: Thirty-seven junior surgeons were enrolled in this training, of whom only 24 completed the 30-day training program. The pre-assessment results revealed that the force exerted by junior surgeons during suture knot-tying was uneven compared with that of the experienced surgeons, with a significant difference in the force exerted per knot throw (P = 0.005. Before the training program, junior surgeons applied a force of 3.89 ± 0.43 N, which was more than twice the force applied by experienced surgeons (1.75 ± 0.12 N). However, after completing the 30-day training program, their force improved to 2.35 ± 0.13 N. CONCLUSIONS: The SFF device was shown to be an encouraging training tool for improving the surgical closure dexterity and technique of the participating junior surgeons.

6.
Somatosens Mot Res ; : 1-13, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36751096

RESUMEN

This study assesses human identification of vibrotactile patterns by using real-time discrete event-driven feedback. Previously acquired force and bend sensor data from a robotic hand were used to predict movement-type (stationary, flexion, contact, extension, release) and object-type (no object, hard object, soft object) states by using decision tree (DT) algorithms implemented in a field-programmable gate array (FPGA). Six able-bodied humans performed a 2- and 3-step sequential pattern recognition task in which state transitions were signaled as vibrotactile feedback. The stimuli were generated according to predicted classes represented by two frequencies (F1: 80 Hz, F2: 180 Hz) and two magnitudes (M1: low, M2: high) calibrated psychophysically for each participant; and they were applied by two actuators (Haptuators) placed on upper arms. A soft/hard object was mapped to F1/F2; and manipulating it with low/high force was assigned to M1/M2 in the left actuator. On the other hand, flexion/extension movement was mapped to F1/F2 in the right actuator, with movement in air as M1 and during object manipulation as M2. DT algorithm performed better for the object-type (97%) than the movement-type (88%) classification in real time. Participants could recognize feedback associated with 14 discrete-event sequences with low-to-medium accuracy. The performance was higher (76 ± 9% recall, 76 ± 17% precision, 78 ± 4% accuracy) for recognizing any one event in the sequences. The results show that FPGA implementation of classification for discrete event-driven vibrotactile feedback can be feasible in haptic devices with additional cues in the physical context.

7.
Sensors (Basel) ; 23(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37631829

RESUMEN

Soft tactile sensors based on piezoresistive materials have large-area sensing applications. However, their accuracy is often affected by hysteresis which poses a significant challenge during operation. This paper introduces a novel approach that employs a backpropagation (BP) neural network to address the hysteresis nonlinearity in conductive fiber-based tactile sensors. To assess the effectiveness of the proposed method, four sensor units were designed. These sensor units underwent force sequences to collect corresponding output resistance. A backpropagation network was trained using these sequences, thereby correcting the resistance values. The training process exhibited excellent convergence, effectively adjusting the network's parameters to minimize the error between predicted and actual resistance values. As a result, the trained BP network accurately predicted the output resistances. Several validation experiments were conducted to highlight the primary contribution of this research. The proposed method reduced the maximum hysteresis error from 24.2% of the sensor's full-scale output to 13.5%. This improvement established the approach as a promising solution for enhancing the accuracy of soft tactile sensors based on piezoresistive materials. By effectively mitigating hysteresis nonlinearity, the capabilities of soft tactile sensors in various applications can be enhanced. These sensors become more reliable and more efficient tools for the measurement and control of force, particularly in the fields of soft robotics and wearable technology. Consequently, their widespread applications extend to robotics, medical devices, consumer electronics, and gaming. Though the complete elimination of hysteresis in tactile sensors may not be feasible, the proposed method effectively modifies the hysteresis nonlinearity, leading to improved sensor output accuracy.

8.
Sensors (Basel) ; 23(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37112240

RESUMEN

The most commonly used reaction time tests within the athlete community require appropriate testing conditions and equipment, most frequently laboratory ones, which are not suitable for testing athletes in their natural environment and do not fully represent athletes' natural capabilities and the influence of the surrounding environment. Therefore, this study's goal is to compare the simple reaction times (SRTs) of cyclists during tests in laboratory conditions and in natural cycling surroundings. The young cyclists (55 participants) took part in the study. The SRT was measured in a quiet laboratory room with the use of the special device. During riding and standing with a bike outdoors, the necessary signal was captured and transmitted by a folic tactile sensor (FTS) and an extra intermediary circuit (both invented by our team member) connected to a muscle activity measurement system (Noraxon DTS Desktop, Scottsdale, AZ, USA). The results showed that external conditions significantly affect the SRT, with it being the longest when riding and the shortest if measured in an isolated laboratory room, but without an effect of gender. Typically, men have a shorter reaction time, but our result supports other observations, where people with an active lifestyle show no sex differentiation in SRT. The proposed FTS with an intermediary circuit allowed us to measure SRT with the use of non-dedicated equipment and avoid buying a new one for a single specific use.


Asunto(s)
Ciclismo , Ambiente , Masculino , Humanos , Tiempo de Reacción/fisiología , Motivación
9.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36850470

RESUMEN

Human-Machine Interface (HMI) plays a key role in the interaction between people and machines, which allows people to easily and intuitively control the machine and immersively experience the virtual world of the meta-universe by virtual reality/augmented reality (VR/AR) technology. Currently, wearable skin-integrated tactile and force sensors are widely used in immersive human-machine interactions due to their ultra-thin, ultra-soft, conformal characteristics. In this paper, the recent progress of tactile and force sensors used in HMI are reviewed, including piezoresistive, capacitive, piezoelectric, triboelectric, and other sensors. Then, this paper discusses how to improve the performance of tactile and force sensors for HMI. Next, this paper summarizes the HMI for dexterous robotic manipulation and VR/AR applications. Finally, this paper summarizes and proposes the future development trend of HMI.


Asunto(s)
Realidad Aumentada , Robótica , Realidad Virtual , Humanos , Piel , Tecnología
10.
Sensors (Basel) ; 23(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36904864

RESUMEN

Tactile sensing is important for robots to perceive the world as it captures the physical surface properties of the object with which it is in contact and is robust to illumination and colour variances. However, due to the limited sensing area and the resistance of their fixed surface when they are applied with relative motions to the object, current tactile sensors have to tap the tactile sensor on the target object a great number of times when assessing a large surface, i.e., pressing, lifting up, and shifting to another region. This process is ineffective and time-consuming. It is also undesirable to drag such sensors as this often damages the sensitive membrane of the sensor or the object. To address these problems, we propose a roller-based optical tactile sensor named TouchRoller, which can roll around its centre axis. It maintains being in contact with the assessed surface throughout the entire motion, allowing for efficient and continuous measurement. Extensive experiments showed that the TouchRoller sensor can cover a textured surface of 8 cm × 11 cm in a short time of 10 s, much more effectively than a flat optical tactile sensor (in 196 s). The reconstructed map of the texture from the collected tactile images has a high Structural Similarity Index (SSIM) of 0.31 on average when compared with the visual texture. In addition, the contacts on the sensor can be localised with a low localisation error, 2.63 mm in the centre regions and 7.66 mm on average. The proposed sensor will enable the fast assessment of large surfaces with high-resolution tactile sensing and the effective collection of tactile images.

11.
Sensors (Basel) ; 23(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37050511

RESUMEN

In this study, we propose the direct diagnosis of thyroid cancer using a small probe. The probe can easily check the abnormalities of existing thyroid tissue without relying on experts, which reduces the cost of examining thyroid tissue and enables the initial self-examination of thyroid cancer with high accuracy. A multi-layer silicon-structured probe module is used to photograph light scattered by elastic changes in thyroid tissue under pressure to obtain a tactile image of the thyroid gland. In the thyroid tissue under pressure, light scatters to the outside depending on the presence of malignant and positive properties. A simple and easy-to-use tactile-sensation imaging system is developed by documenting the characteristics of the organization of tissues by using non-invasive technology for analyzing tactile images and judging the properties of abnormal tissues.


Asunto(s)
Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/diagnóstico por imagen , Tacto , Diagnóstico por Imagen
12.
Sensors (Basel) ; 23(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37837110

RESUMEN

In this paper, we propose a novel tactile sensor with a "fingerprint" design, named due to its spiral shape and dimensions of 3.80 mm × 3.80 mm. The sensor is duplicated in a four-by-four array containing 16 tactile sensors to form a "SkinCell" pad of approximately 45 mm by 29 mm. The SkinCell was fabricated using a custom-built microfabrication platform called the NeXus which contains additive deposition tools and several robotic systems. We used the NeXus' six-degrees-of-freedom robotic platform with two different inkjet printers to deposit a conductive silver ink sensor electrode as well as the organic piezoresistive polymer PEDOT:PSS-Poly (3,4-ethylene dioxythiophene)-poly(styrene sulfonate) of our tactile sensor. Printing deposition profiles of 100-micron- and 250-micron-thick layers were measured using microscopy. The resulting structure was sintered in an oven and laminated. The lamination consisted of two different sensor sheets placed back-to-back to create a half-Wheatstone-bridge configuration, doubling the sensitivity and accomplishing temperature compensation. The resulting sensor array was then sandwiched between two layers of silicone elastomer that had protrusions and inner cavities to concentrate stresses and strains and increase the detection resolution. Furthermore, the tactile sensor was characterized under static and dynamic force loading. Over 180,000 cycles of indentation were conducted to establish its durability and repeatability. The results demonstrate that the SkinCell has an average spatial resolution of 0.827 mm, an average sensitivity of 0.328 mΩ/Ω/N, expressed as the change in resistance per force in Newtons, an average sensitivity of 1.795 µV/N at a loading pressure of 2.365 PSI, and a dynamic response time constant of 63 ms which make it suitable for both large area skins and fingertip human-robot interaction applications.

13.
Sensors (Basel) ; 23(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139753

RESUMEN

Although the vibration of rackets and the location of the sweet spot for players when hitting the ball is crucial, manufacturers do not specify this behavior precisely. This article analyses padel rackets, provides a solution to determine the sweet spot position (SSP), quantifies its behavior, and determines the level of vibration transmitted along the racket handle. The proposed methods serve to locate the SSP without quantifying it. This article demonstrates the development of equipment capable of analyzing the vibration behavior of padel rackets. To do so, it employs a robot that moves along the surface of the padel racket, striking it along its central line. Accelerometers are placed on a movable cradle where rackets are positioned and adjusted. A method for analyzing accelerometer signals to quantify vibration severity is proposed. The SSP and vibration behavior along the central line are determined and quantified. As a result of the study, 225 padel rackets are analyzed and compared. SSP is independent of the padel racket shape, balance, weight, moment of inertia, and padel racket shape (tear, diamond, or round) and is not located at the same position as the center of percussion.

14.
Sensors (Basel) ; 23(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36772688

RESUMEN

In this study, a 0-3 piezoelectric composite based on lead zirconate-titanate (PZT)/polyvinyl-butyral (PVB) was fabricated and characterized for its potential application in tactile sensing. The 0-3 composite was developed to incorporate the advantages of both ceramic and polymer. The paste of 0-3 PZT-PVB composite was printed using a conventional screen-printing technique on alumina and mylar substrates. The thickness of the prepared composite was approximately 80 µm. After printing the top electrode of the silver paste, 10 kV/mm of DC field was applied at 25 °C, 120 °C, and 150 °C for 10 min to align the electric dipoles in the composite. The piezoelectric charge coefficient of d33 and the piezoelectric voltage coefficient of g33 were improved by increasing the temperature of the poling process. The maximum values of d33 and g33 were 14.3 pC/N and 44.2 mV·m/N, respectively, at 150 °C. The sensor's sensitivity to the impact force was measured by a ball drop test. The sensors showed a linear behavior in the output voltage with increasing impact force. The sensitivity of the sensor on the alumina and mylar substrates was 1.368 V/N and 0.815 V/N, respectively. The rising time of the sensor to the finger touch was 43 ms on the alumina substrate and 35 ms on the mylar substrate. Consequently, the high sensitivity and fast response time of the sensor make the 0-3 PZT-PVB composite a good candidate for tactile sensors.

15.
Nanotechnology ; 33(41)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35793643

RESUMEN

Tactile sensors have been widely used in the areas of health monitoring and intelligent human-machine interface. Flexible tactile sensors based on nanofiber mats made by electrospinning can meet the requirements of comfortability and breathability for wearing the body very well. Here, we developed a flexible and self-powered tactile sensor that was sandwich assembled by electrospun organic electrodes and a piezoelectric layer. The metal-free organic electrodes of thermal plastic polyurethane (PU) nanofibers decorated with multi-walled carbon nanotubes were fabricated by electrospinning followed by ultrasonication treatment. The electrospun polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) mat was utilized as the piezoelectric layer, and it was found that the piezoelectric performance of PVDF-TrFE nanofiber mat added with barium titanate (BaTiO3) nanoparticles was enhanced about 187% than that of the pure PVDF-TrFE nanofiber mat. For practical application, the as-prepared piezoelectric tactile sensor exhibited an approximative linear relationship between the external force and the electrical output. Then the array of fabricated sensors was attached to the fingertips of a glove to grab a cup of water for tactile sensing, and the mass of water can be directly estimated according to the outputs of the sensor array. Attributed to the integrated merits of good flexibility, enhanced piezoelectric performance, light weight, and efficient gas permeability, the developed tactile sensor could be widely used as wearable devices for robot execution end or prosthesis for tactile feedback.


Asunto(s)
Nanofibras , Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Humanos , Poliuretanos , Agua
16.
Sensors (Basel) ; 23(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36617029

RESUMEN

Tactile sensors for robotic applications enhance the performance of robotic end-effectors as they ca n provide tactile information to operate various tasks. In particular, tactile sensors can measure multi-axial force and detect slip can aid the end-effectors in grasping diverse objects in an unstructured environment. We propose BaroTac, which measures three-axial forces and detects slip with a barometric pressure sensor chip (BPSC) for robotic applications. A BPSC is an off-the-shelf commercial sensor that is inexpensive, easy to customize, robust, and simple to use. While a single BPSC-based tactile sensor can measure pressure, an array of BPSC-based tactile sensors can measure multi-axial force through the reactivity of each sensor and detect slip by observing high frequency due to slip vibration. We first experiment with defining the fundamental characteristics of a single-cell BPSC-based sensor to set the design parameters of our proposed sensor. Thereafter, we suggest the sensing method of BaroTac: calibration matrix for three-axis force measurement and discrete wavelet transform (DWT) for slip detection. Subsequently, we validate the three-axis force measuring ability and slip detectability of the fabricated multi-cell BPSC-based tactile sensor. The sensor measures three-axis force with low error (0.14, 0.18, and 0.3% in the X-, Y- and Z-axis, respectively) and discriminates slip in the high-frequency range (75-150 Hz). We finally show the practical applicability of BaroTac by installing them on the commercial robotic gripper and controlling the gripper to grasp common objects based on our sensor feedback.


Asunto(s)
Robótica , Tacto , Vibración , Calibración , Fuerza de la Mano
17.
Sensors (Basel) ; 22(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36146129

RESUMEN

Here, a static tactile sensing scheme based on a piezoelectric nanofiber membrane, prepared via the electrospinning method, is presented. When the nanofiber membrane is kept under a constant vibration, an external contact onto the membrane will attenuate its vibration. By monitoring this change in the oscillation amplitude due to the physical contact via the piezoelectrically coupled voltage from the nanofiber membrane, the strength and duration of the static contact can be determined. The proof-of-concept experiment demonstrated here shows that the realization of a static tactile sensor is possible by implementing the piezoelectric nanofiber membrane as an effective sensing element.


Asunto(s)
Nanofibras , Percepción del Tacto , Membranas , Tacto , Vibración
18.
Sensors (Basel) ; 22(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35632258

RESUMEN

Tactile information is crucial for recognizing physical interactions, manipulation of an object, and motion planning for a robotic gripper; however, concurrent tactile technologies have certain limitations over directional force sensing. In particular, they are expensive, difficult to fabricate, and mostly unsuitable for underwater use. Here, we present a facile and cost-effective synthesis technique of a flexible multi-directional force sensing system, which is also favorable to be utilized in underwater environments. We made use of four flex sensors within a silicone-made hemispherical shell structure. Each sensor was placed 90° apart and aligned with the curve of the hemispherical shape. If the force is applied on the top of the hemisphere, all the flex sensors would bend uniformly and yield nearly identical readings. When force is applied from a different direction, a set of flex sensors would characterize distinctive output patterns to localize the point of contact as well as the direction and magnitude of the force. The deformation of the fabricated soft sensor due to applied force was simulated numerically and compared with the experimental results. The fabricated sensor was experimentally calibrated and tested for characterization including an underwater demonstration. This study would widen the scope of identification of multi-directional force sensing, especially for underwater soft robotic applications.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Fenómenos Mecánicos , Tacto
19.
Sensors (Basel) ; 22(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35632311

RESUMEN

A commonly cited reason for the high abandonment rate of myoelectric prostheses is a lack of grip force sensory feedback. Researchers have attempted to restore grip force sensory feedback by stimulating the residual limb's skin surface in response to the prosthetic hand's measured grip force. Recent work has focused on restoring natural feedback to the missing digits directly through invasive surgical procedures. However, the functional benefit of utilizing somatotopically matching feedback has not been evaluated. In this paper, we propose an experimental protocol centered on a fragile object grasp and lift task using a sensorized myoelectric prosthesis to evaluate sensory feedback techniques. We formalized a suite of outcome measures related to task success, timing, and strategy. A pilot study (n = 3) evaluating the effect of utilizing a somatotopically accurate feedback stimulation location in able-bodied participants was conducted to evaluate the feasibility of the standardized platform, and to inform future studies on the role of feedback stimulation location in prosthesis use. Large between-participant effect sizes were observed in all outcome measures, indicating that the feedback location likely plays a role in myoelectric prosthesis performance. The success rate decreased, and task timing and task focus metrics increased, when using somatotopically-matched feedback compared to non-somatotopically-matched feedback. These results were used to conduct a power analysis, revealing that a sample size of n = 8 would be sufficient to achieve significance in all outcome measures.


Asunto(s)
Miembros Artificiales , Retroalimentación , Mano , Humanos , Proyectos Piloto , Diseño de Prótesis
20.
Sensors (Basel) ; 22(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35591190

RESUMEN

This paper presents a multi-axis low-cost soft magnetic tactile sensor with a high force range for force feedback in robotic surgical systems. The proposed sensor is designed to fully decouple the output response for normal, shear and angular forces. The proposed sensor is fabricated using rapid prototyping techniques and utilizes Neodymium magnets embedded in an elastomer over Hall sensors such that their displacement produces a voltage change that can be used to calculate the applied force. The initial spacing between the magnets and the Hall sensors is optimized to achieve a large displacement range using finite element method (FEM) simulations. The experimental characterization of the proposed sensor is performed for applied force in normal, shear and 45° angular direction. The force sensitivity of the proposed sensor in normal, shear and angular directions is 16 mV/N, 30 mV/N and 81 mV/N, respectively, with minimum mechanical crosstalk. The force range for the normal, shear and angular direction is obtained as 0-20 N, 0-3.5 N and 0-1.5 N, respectively. The proposed sensor shows a perfectly linear behavior and a low hysteresis error of 8.3%, making it suitable for tactile sensing and biomedical applications. The effect of the material properties of the elastomer on force ranges and sensitivity values of the proposed sensor is also discussed.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Elastómeros , Retroalimentación , Fenómenos Magnéticos , Fenómenos Mecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA