Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Brain ; 146(10): 4217-4232, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37143315

RESUMEN

Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from neurologically unaffected (two females, three males; ages 50-70 years) and myotonic dystrophy type 1 (one female, three males; ages 50-70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55 years) and non-myotonic dystrophy patients (three females, four males; ages 26-51 years), and western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.


Asunto(s)
Distrofia Miotónica , Humanos , Femenino , Ratones , Animales , Distrofia Miotónica/genética , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo , ARN/genética , Ratones Noqueados , Expansión de Repetición de Trinucleótido
2.
Am J Hum Genet ; 107(3): 445-460, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32750315

RESUMEN

Tandem repeats are proposed to contribute to human-specific traits, and more than 40 tandem repeat expansions are known to cause neurological disease. Here, we characterize a human-specific 69 bp variable number tandem repeat (VNTR) in the last intron of WDR7, which exhibits striking variability in both copy number and nucleotide composition, as revealed by long-read sequencing. In addition, greater repeat copy number is significantly enriched in three independent cohorts of individuals with sporadic amyotrophic lateral sclerosis (ALS). Each unit of the repeat forms a stem-loop structure with the potential to produce microRNAs, and the repeat RNA can aggregate when expressed in cells. We leveraged its remarkable sequence variability to align the repeat in 288 samples and uncover its mechanism of expansion. We found that the repeat expands in the 3'-5' direction, in groups of repeat units divisible by two. The expansion patterns we observed were consistent with duplication events, and a replication error called template switching. We also observed that the VNTR is expanded in both Denisovan and Neanderthal genomes but is fixed at one copy or fewer in non-human primates. Evaluating the repeat in 1000 Genomes Project samples reveals that some repeat segments are solely present or absent in certain geographic populations. The large size of the repeat unit in this VNTR, along with our multiplexed sequencing strategy, provides an unprecedented opportunity to study mechanisms of repeat expansion, and a framework for evaluating the roles of VNTRs in human evolution and disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Esclerosis Amiotrófica Lateral/genética , Evolución Molecular , Secuencias Repetidas en Tándem/genética , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/patología , Expansión de las Repeticiones de ADN/genética , Femenino , Regulación de la Expresión Génica/genética , Humanos , Masculino , Repeticiones de Minisatélite/genética , Fenotipo , Especificidad de la Especie
3.
Proc Natl Acad Sci U S A ; 116(46): 23243-23253, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659027

RESUMEN

Short tandem repeats (STRs) and variable number tandem repeats (VNTRs) are important sources of natural and disease-causing variation, yet they have been problematic to resolve in reference genomes and genotype with short-read technology. We created a framework to model the evolution and instability of STRs and VNTRs in apes. We phased and assembled 3 ape genomes (chimpanzee, gorilla, and orangutan) using long-read and 10x Genomics linked-read sequence data for 21,442 human tandem repeats discovered in 6 haplotype-resolved assemblies of Yoruban, Chinese, and Puerto Rican origin. We define a set of 1,584 STRs/VNTRs expanded specifically in humans, including large tandem repeats affecting coding and noncoding portions of genes (e.g., MUC3A, CACNA1C). We show that short interspersed nuclear element-VNTR-Alu (SVA) retrotransposition is the main mechanism for distributing GC-rich human-specific tandem repeat expansions throughout the genome but with a bias against genes. In contrast, we observe that VNTRs not originating from retrotransposons have a propensity to cluster near genes, especially in the subtelomere. Using tissue-specific expression from human and chimpanzee brains, we identify genes where transcript isoform usage differs significantly, likely caused by cryptic splicing variation within VNTRs. Using single-cell expression from cerebral organoids, we observe a strong effect for genes associated with transcription profiles analogous to intermediate progenitor cells. Finally, we compare the sequence composition of some of the largest human-specific repeat expansions and identify 52 STRs/VNTRs with at least 40 uninterrupted pure tracts as candidates for genetically unstable regions associated with disease.


Asunto(s)
Evolución Molecular , Genoma Humano , Primates/genética , Secuencias Repetidas en Tándem , Animales , Enfermedad/genética , Variación Estructural del Genoma , Humanos , Empalme del ARN
4.
Hum Mutat ; 40(7): 952-961, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30900359

RESUMEN

While many studies have led to the identification of rare sequence variants linked with susceptibility to autism and schizophrenia, the contribution of rare epigenetic variations (epivariations) in these disorders remains largely unexplored. Previously we presented evidence that epivariations occur relatively frequently in the human genome, and likely contribute to a subset of congenital and neurodevelopmental disorders through the disruption of dosage-sensitive genes. Here we extend this approach, studying methylation profiles from 297 samples with autism and 767 cases with schizophrenia, identifying 84 and 268 rare epivariations in these two cohorts, respectively, that were absent from 4,860 population controls. We observed multiple features associated with these epivariations that support their pathogenic relevance, including (a) a significant enrichment for epivariations in schizophrenic individuals at genes previously linked with schizophrenia, (b) increased brain expression of genes associated with epivariations found in autism cases compared with controls, (c) in autism families, a significant excess of epivariations found specifically in affected versus unaffected sibs, (d) Gene Ontology terms linked with epivariations found in autism, including "D1 dopamine receptor binding." Our study provides additional evidence that rare epivariations likely contribute to the mutational spectra underlying neurodevelopmental disorders.


Asunto(s)
Trastorno Autístico/genética , Metilación de ADN , Esquizofrenia/genética , Estudios de Casos y Controles , Epigénesis Genética , Femenino , Ontología de Genes , Predisposición Genética a la Enfermedad , Humanos , Masculino
5.
Mol Neurobiol ; 60(12): 7185-7195, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37540313

RESUMEN

Expansions of short tandem repeats (STRs) have been found to be present in more than 50 diseases and have a close connection with neurodegenerative diseases. Transcriptional silencing and R-LOOP formation, RNA-mediated sequestration of RNA-binding proteins (RBPs), gain-of-function (GOF) proteins containing expanded repeats, and repeat-associated non-AUG (RAN) translation of toxic repeat peptides are some potential molecular mechanisms underlying STR expansion disorders. R-LOOP, a byproduct of transcription, is a three-stranded nucleic acid structure with abnormal accumulation that participates in the pathogenesis of STR expansion disorders by inducing DNA damage and genome instability. R-LOOPs can engender a series of DNA damage, such as DNA double-strand breaks (DSBs), single-strand breaks (SSBs), DNA recombination, or mutations in the DNA replication, transcription, or repair processes. In this review, we provide an in-depth discussion of recent advancements in R-LOOP and systematically elaborate on its genetic destabilizing effects in several neurodegenerative diseases. These molecular mechanisms will provide novel targets for drug design and therapeutic upgrading of these devastating diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/genética , Estructuras R-Loop , Roturas del ADN de Doble Cadena , Repeticiones de Microsatélite , ADN
6.
Res Sq ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37645891

RESUMEN

Tandem repeat expansions are enriched in autism spectrum disorder, including CTG expansion in the DMPK gene that underlines myotonic muscular dystrophy type 1. Although the clinical connection of autism to myotonic dystrophy is corroborated, the molecular links remained unknown. Here, we show a mechanistic path of autism via repeat expansion in myotonic dystrophy. We found that inhibition of muscleblind-like (MBNL) splicing factors by expanded CUG RNAs alerts the splicing of autism-risk genes during brain development especially a class of autism-relevant microexons. To provide in vivo evidence that the CTG expansion and MBNL inhibition axis leads to the presentation of autistic traits, we demonstrate that CTG expansion and MBNL-null mouse models recapitulate autism-relevant mis-splicing profiles and demonstrate social deficits. Our findings indicate that DMPK CTG expansion-associated autism arises from developmental mis-splicing. Understanding this pathomechanistic connection provides an opportunity for greater in-depth investigations of mechanistic threads in autism.

7.
Genetics ; 221(1)2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35274698

RESUMEN

Megasatellites are large tandem repeats found in all fungal genomes but especially abundant in the opportunistic pathogen Candida glabrata. They are encoded in genes involved in cell-cell interactions, either between yeasts or between yeast and human cells. In the present work, we have been using an iterative genetic system to delete several Candida glabrata megasatellite-containing genes and found that 2 of them were positively involved in adhesion to epithelial cells, whereas 3 genes negatively controlled adhesion. Two of the latter, CAGL0B05061g or CAGL0A04851g, were also negative regulators of yeast-to-yeast adhesion, making them central players in controlling Candida glabrata adherence properties. Using a series of synthetic Saccharomyces cerevisiae strains in which the FLO1 megasatellite was replaced by other tandem repeats of similar length but different sequences, we showed that the capacity of a strain to flocculate in liquid culture was unrelated to its capacity to adhere to epithelial cells or to invade agar. Finally, to understand how megasatellites were initially created and subsequently expanded, an experimental evolution system was set up, in which modified yeast strains containing different megasatellite seeds were grown in bioreactors for more than 200 generations and selected for their ability to sediment at the bottom of the culture tube. Several flocculation-positive mutants were isolated. Functionally relevant mutations included general transcription factors as well as a 230-kbp segmental duplication.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Candida glabrata/genética , Floculación , Genoma Fúngico , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Front Genet ; 10: 426, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134132

RESUMEN

The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for the identification of structural variants, sequencing repetitive regions, phasing of alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the prevailing NGS approaches. LRS has so far mainly been used to investigate genetic disorders with previously known or strongly suspected disease loci. While these targeted approaches already show the potential of LRS, it remains to be seen whether LRS technologies can soon enable true whole genome sequencing routinely. Ultimately, this could allow the de novo assembly of individual whole genomes used as a generic test for genetic disorders. In this article, we summarize the current LRS-based research on human genetic disorders and discuss the potential of these technologies to facilitate the next major advancements in medical genetics.

9.
Neuroscience ; 251: 66-74, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-22633949

RESUMEN

Huntington's disease (HD) is an autosomal dominant tandem repeat expansion disorder involving cognitive, psychiatric and motor symptoms. The expanded trinucleotide (CAG) repeat leads to an extended polyglutamine tract in the huntingtin protein and a subsequent cascade of molecular and cellular pathogenesis. One of the key features of neuropathology, which has been shown to precede the eventual loss of neurons in the cerebral cortex, striatum and other areas, are changes to synapses, including the dendritic protrusions known as spines. In this review we will focus on synapse and spine pathology in HD, including molecular and experience-dependent aspects of pathogenesis. Dendritic spine pathology has been found in both the human HD brain at post mortem as well as various transgenic and knock-in animal models. These changes may help explain the symptoms in HD, and synaptopathy within the cerebral cortex may be particularly important in mediating the psychiatric and cognitive manifestations of this disease. The earliest stages of synaptic dysfunction in HD, as assayed in various mouse models, appears to involve changes in synaptic proteins and associated physiological abnormalities such as synaptic plasticity deficits. In mouse models, synaptic and cortical plasticity deficits have been directly correlated with the onset of cognitive deficits, implying a causal link. Furthermore, following the discovery that environmental enrichment can delay onset of affective, cognitive and motor deficits in HD transgenic mice, specific synaptic molecules shown to be dysregulated by the polyglutamine-induced toxicity were also found to be beneficially modulated by environmental stimulation. This identifies potential molecular targets for future therapeutic developments to treat this devastating disease.


Asunto(s)
Encéfalo/patología , Espinas Dendríticas/patología , Enfermedad de Huntington/patología , Proteínas de la Membrana/metabolismo , Plasticidad Neuronal , Sinapsis/patología , Animales , Cognición , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/psicología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA