Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 198: 106526, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38734152

RESUMEN

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease with a complex origin, thought to involve a combination of genetic, biological and environmental factors. Insulin dysfunction has emerged as a potential factor contributing to AD pathogenesis, particularly in individuals with diabetes, and among those with insulin deficiency or undergoing insulin therapy. The intraperitoneal administration of streptozotocin (STZ) is widely used in rodent models to explore the impact of insulin deficiency on AD pathology, although prior research predominantly focused on young animals, with no comparative analysis across different age groups. Our study aimed to fill this gap by analyzing the impact of insulin dysfunction in 7 and 23 months 3xTg-AD mice, that exhibit both amyloid and tau pathologies. Our objective was to elucidate the age-specific consequences of insulin deficiency on AD pathology. STZ administration led to insulin deficiency in the younger mice, resulting in an increase in cortical amyloid-ß (Aß) and tau aggregation, while tau phosphorylation was not significantly affected. Conversely, older mice displayed an unexpected resilience to the peripheral metabolic impact of STZ, while exhibiting an increase in both tau phosphorylation and aggregation without significantly affecting amyloid pathology. These changes were paralleled with alterations in signaling pathways involving tau kinases and phosphatases. Several markers of blood-brain barrier (BBB) integrity declined with age in 3xTg-AD mice, which might have facilitated a direct neurotoxic effect of STZ in older mice. Overall, our research confirms the influence of insulin signaling dysfunction on AD pathology, but also advises careful interpretation of data related to STZ-induced effects in older animals.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones Transgénicos , Estreptozocina , Proteínas tau , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Proteínas tau/metabolismo , Ratones , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Insulina/metabolismo , Envejecimiento/metabolismo , Masculino , Factores de Edad , Fosforilación , Encéfalo/metabolismo , Encéfalo/patología
2.
Phytother Res ; 38(4): 1735-1744, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37661763

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease. Senile plaques and intracellular neurofibrillary tangles are pathological hallmarks of AD. Recent studies have described the improved cognitive and neuroprotective functions of acteoside (AS). This study aimed to investigate whether the improved cognition of AS was mediated by Aß degradation and tau phosphorylation in APP/PS1 mice. The open field, Y maze, and novel object recognition tests were used to assess cognitive behavioral changes. We evaluated the levels of Aß40 and Aß42 in serum, cortex, and hippocampus, and Aß-related scavenging enzymes, phosphorylated GSK3ß and hyperphosphorylated tau in the cortex and hippocampus of APP/PS1 mice by western blotting. Our results revealed that AS treatment ameliorated anxious behaviors, spatial learning, and memory impairment in APP/PS1 mice and significantly reduced Aß deposition in their serum, cortex, and hippocampus. AS significantly increased Aß degradation, inhibited the hyperphosphorylation of tau, and significantly decreased the activity of GSK3ß, which is involved in tau phosphorylation. Altogether, these findings indicated that the beneficial effects of AS on AD-associated anxious behaviors and cognitive impairments could be attributed to promoting Aß degradation and inhibiting tau hyperphosphorylation, which might be partly mediated by GSK3ß.


Asunto(s)
Enfermedad de Alzheimer , Glucósidos , Polifenoles , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Ratones Transgénicos , Proteínas tau/metabolismo
3.
Alzheimers Dement ; 20(2): 819-836, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37791598

RESUMEN

INTRODUCTION: We discovered that the APOE3 Christchurch (APOE3Ch) variant may provide resistance to Alzheimer's disease (AD). This resistance may be due to reduced pathological interactions between ApoE3Ch and heparan sulfate proteoglycans (HSPGs). METHODS: We developed and characterized the binding, structure, and preclinical efficacy of novel antibodies targeting human ApoE-HSPG interactions. RESULTS: We found that one of these antibodies, called 7C11, preferentially bound ApoE4, a major risk factor for sporadic AD, and disrupts heparin-ApoE4 interactions. We also determined the crystal structure of a Fab fragment of 7C11 and used computer modeling to predict how it would bind to ApoE. When we tested 7C11 in mouse models, we found that it reduced recombinant ApoE-induced tau pathology in the retina of MAPT*P301S mice and curbed pTau S396 phosphorylation in brains of systemically treated APOE4 knock-in mice. Targeting ApoE-HSPG interactions using 7C11 antibody may be a promising approach to developing new therapies for AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Ratones , Humanos , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Fosforilación , Apolipoproteínas E/metabolismo , Enfermedad de Alzheimer/patología , Factores Inmunológicos , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo
4.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473895

RESUMEN

Current treatments for Alzheimer's disease (AD) focus on slowing memory and cognitive decline, but none offer curative outcomes. This study aims to explore and curate the common properties of active, drug-like molecules that modulate glycogen synthase kinase 3ß (GSK-3ß), a well-documented kinase with increased activity in tau hyperphosphorylation and neurofibrillary tangles-hallmarks of AD pathology. Leveraging quantitative structure-activity relationship (QSAR) data from the PubChem and ChEMBL databases, we employed seven machine learning models: logistic regression (LogR), k-nearest neighbors (KNN), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGB), neural networks (NNs), and ensemble majority voting. Our goal was to correctly predict active and inactive compounds that inhibit GSK-3ß activity and identify their key properties. Among the six individual models, the NN demonstrated the highest performance with a 79% AUC-ROC on unbalanced external validation data, while the SVM model was superior in accurately classifying the compounds. The SVM and RF models surpassed NN in terms of Kappa values, and the ensemble majority voting model demonstrated slightly better accuracy to the NN on the external validation data. Feature importance analysis revealed that hydrogen bonds, phenol groups, and specific electronic characteristics are important features of molecular descriptors that positively correlate with active GSK-3ß inhibition. Conversely, structural features like imidazole rings, sulfides, and methoxy groups showed a negative correlation. Our study highlights the significance of structural, electronic, and physicochemical descriptors in screening active candidates against GSK-3ß. These predictive features could prove useful in therapeutic strategies to understand the important properties of GSK-3ß candidate inhibitors that may potentially benefit non-amyloid-based AD treatments targeting neurofibrillary tangles.


Asunto(s)
Enfermedad de Alzheimer , Ovillos Neurofibrilares , Humanos , Ovillos Neurofibrilares/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteínas tau/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/patología , Amiloide , Proteínas Amiloidogénicas/uso terapéutico , Fosforilación
5.
Curr Issues Mol Biol ; 45(9): 6941-6957, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37754222

RESUMEN

Tauopathy is a neurodegenerative condition associated with oligomeric tau formation through abnormal phosphorylation. We previously showed that tauopathy is involved in death of retinal ganglion cells (RGCs) after optic nerve crush (ONC). It has been proposed that glycogen synthase kinase 3ß (GSK3ß) is involved in the hyperphosphorylation of tau in Alzheimer's disease. To determine the roles of GSK3ß in tauopathy-related death of RGCs, lithium chloride (LiCl), a GSK3ß inhibitor, was injected intravitreally just after ONC. The neuroprotective effects of LiCl were determined by counting Tuj-1-stained RGCs on day 7. Changes of phosphorylated (ser 396) tau in the retina were determined by Simple Western analysis (WES) on day 3. Retinal GSK3ß levels were determined by immunohistochemistry (IHC) and an ELISA. There was a 1.9- and 2.1-fold increase in the levels of phosphorylated tau monomers and dimers on day 3 after ONC. LiCl significantly suppressed the increase in the levels of phosphorylated tau induced by ONC. GSK3ß was mainly present in somas of RGCs, and ELISA showed that retinal levels increased to 2.0-fold on day 7. IHC showed that the GSK3ß expression increased over time and remained in RGCs that were poorly stained by Tuj-1. The GSK3ß and tau expression was colocalized in RGCs. The number of RGCs decreased from 1881 ± 188 (sham control) to 1150 ± 192 cells/mm2 on day 7, and LiCl preserved the levels at 1548 ± 173 cells/mm2. Accordingly, GSK3ß may be a promising target for some optic nerve injuries.

6.
Eur J Neurosci ; 58(4): 3132-3149, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37501373

RESUMEN

Cerebrospinal fluid (CSF) phosphorylated tau231 (P-tau231) is associated with neuropathological outcomes of Alzheimer's disease (AD). The invasive access of cerebrospinal fluid has greatly stimulated interest in the identification of blood-based P-tau231, and the recent advent of single-molecule array assay for the quantification of plasma P-tau231 may provide a turning point to evaluate the usefulness of P-tau231 as an AD-related biomarker. Yet, in the plasma P-tau231 literature, findings with regard to its diagnostic utility have been inconsistent, and thus, we aimed to statistically investigate the potential of plasma P-tau231 in the context of AD via meta-analysis. Publications on plasma P-tau231 were systematically retrieved from PubMed, EMBASE, the Cochrane library and Web of Science databases. A total of 10 studies covering 2007 participants were included, and we conducted random-effect or fixed-effect meta-analysis, sensitivity analysis and publication bias analysis using the STATA SE 14.0 software. According to our quantitative integration, plasma P-tau231 increased from cognitively unimpaired (CU) populations to mild cognitive impairment to AD and showed significant changes in pairwise comparisons of AD, mild cognitive impairment and CU. Plasma P-tau231 level was significantly higher in CU controls with positive amyloid-ß (Aß) status compared with Aß-negative CU group. Additionally, the excellent diagnostic accuracy of plasma P-tau231 for asymptomatic Aß pathology was verified by the pooled value of area under the receiver operating characteristic curves (standard mean difference [95% confidence interval]: .75 [.69, .81], P < 0.00001). Overall, the increased plasma P-tau231 concentrations were found in relation to the early development and progression of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico , Biomarcadores
7.
Biochem Biophys Res Commun ; 640: 88-96, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36502636

RESUMEN

To elucidate the potential molecular mechanisms of ZBTB20-AS1 on ZBTB20 and GSK-3ß/Tau signaling pathway in the pathogenesis of Alzheimer's disease (AD), SH-SY5Y cells were obtained for in vitro experiments and AD models were constructed using ß-Amyloid 1-42. CCK8 assay was implemented for determining cell viability. Flow cytometry was used for cell apoptosis detection. Dual-luciferase reporter and RNA-RNA pull down assay was employed for elucidating molecular interactions. Immunohistochemistry, RT-qPCR and western blotting were performed for measuring gene expression. The results showed that expression of LncRNA ZBTB20-AS1 was significantly upregulated, while ZBTB20 was downregulated in SH-SY5Y-AD cells. ZBTB20 was the target gene of LncRNA ZBTB20-AS1. Overexpression of ZBTB20 or knockdown of LncRNA ZBTB20-AS1 inhibited SH-SY5Y-AD cells apoptosis and suppressed GSK3ß/Tau pathway, and knockdown of ZBTB20-AS1 increased cell viability and decreased apoptosis. In conclusion, overexpression of ZBTB20-AS1 inhibited ZBTB20 expression and promoted GSK-3ß expression and Tau phosphorylation, contributing to the development of AD.


Asunto(s)
Enfermedad de Alzheimer , Glucógeno Sintasa Quinasa 3 beta , MicroARNs , Proteínas del Tejido Nervioso , ARN Largo no Codificante , Proteínas tau , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apoptosis , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , MicroARNs/genética , Proteínas del Tejido Nervioso/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción , Proteínas tau/metabolismo
8.
J Neuroinflammation ; 20(1): 165, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452321

RESUMEN

Alzheimer's Disease (AD) contributes to most cases of dementia. Its prominent neuropathological features are the extracellular neuritic plaques and intercellular neurofibrillary tangles composed of aggregated ß-amyloid (Aß) and hyperphosphorylated tau protein, respectively. In the past few decades, disease-modifying therapy targeting Aß has been the focus of AD drug development. Even though it is encouraging that two of these drugs have recently received accelerated US Food and Drug Administration approval for AD treatment, their efficacy or long-term safety is controversial. Tau has received increasing attention as a potential therapeutic target, since evidence indicates that tau pathology is more associated with cognitive dysfunction. Moreover, inflammation, especially neuroinflammation, accompanies AD pathological processes and is also linked to cognitive deficits. Accumulating evidence indicates that inflammation has a complex and tight interplay with tau pathology. Here, we review recent evidence on the interaction between tau pathology, focusing on tau post-translational modification and dissemination, and neuroinflammatory responses, including glial cell activation and inflammatory signaling pathways. Then, we summarize the latest clinical trials targeting tau and neuroinflammation. Sustained and increased inflammatory responses in glial cells and neurons are pivotal cellular drivers and regulators of the exacerbation of tau pathology, which further contributes to its worsening by aggravating inflammatory responses. Unraveling the precise mechanisms underlying the relationship between tau pathology and neuroinflammation will provide new insights into the discovery and clinical translation of therapeutic targets for AD and other tau-related diseases (tauopathies). Targeting multiple pathologies and precision therapy strategies will be the crucial direction for developing drugs for AD and other tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Enfermedades Neuroinflamatorias , Tauopatías/patología , Péptidos beta-Amiloides , Inflamación/complicaciones
9.
Acta Neuropathol ; 145(1): 29-48, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36357715

RESUMEN

Epitranscriptomic regulation adds a layer of post-transcriptional control to brain function during development and adulthood. The identification of RNA-modifying enzymes has opened the possibility of investigating the role epitranscriptomic changes play in the disease process. NOP2/Sun RNA methyltransferase 2 (NSun2) is one of the few known brain-enriched methyltransferases able to methylate mammalian non-coding RNAs. NSun2 loss of function due to autosomal-recessive mutations has been associated with neurological abnormalities in humans. Here, we show NSun2 is expressed in adult human neurons in the hippocampal formation and prefrontal cortex. Strikingly, we unravel decreased NSun2 protein expression and an increased ratio of pTau/NSun2 in the brains of patients with Alzheimer's disease (AD) as demonstrated by Western blotting and immunostaining, respectively. In a well-established Drosophila melanogaster model of tau-induced toxicity, reduction of NSun2 exacerbated tau toxicity, while overexpression of NSun2 partially abrogated the toxic effects. Conditional ablation of NSun2 in the mouse brain promoted a decrease in the miR-125b m6A levels and tau hyperphosphorylation. Utilizing human induced pluripotent stem cell (iPSC)-derived neuronal cultures, we confirmed NSun2 deficiency results in tau hyperphosphorylation. We also found that neuronal NSun2 levels decrease in response to amyloid-beta oligomers (AßO). Notably, AßO-induced tau phosphorylation and cell toxicity in human neurons could be rescued by overexpression of NSun2. Altogether, these results indicate that neuronal NSun2 deficiency promotes dysregulation of miR-125b and tau phosphorylation in AD and highlights a novel avenue for therapeutic targeting.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , MicroARNs , Ratones , Animales , Humanos , Adulto , Metiltransferasas/genética , Fosforilación/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , MicroARNs/genética , Proteínas tau/metabolismo , Mamíferos/metabolismo
10.
Cell Mol Neurobiol ; 43(1): 177-191, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35038057

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Several findings suggest that correcting the dysregulated signaling pathways may offer a potential therapeutic approach in this disease. Extracellular signal-regulated kinase 1/2 (ERK1/2), a member of the mitogen-activated protein kinase family, plays a major role in regulation of cell proliferation, autophagy process, and protein synthesis. The available literature suggests dysregulated ERK1/2 in AD patients with potential implications in the multifaceted underlying pathologies of AD, including amyloid-ß plaque formation, tau phosphorylation, and neuroinflammation. In this regard, in the current review, we aim to summarize the reports on the potential roles of ERK1/2 in AD pathophysiology.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas tau/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Péptidos beta-Amiloides/metabolismo
11.
Cell Mol Neurobiol ; 43(7): 3497-3510, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37171549

RESUMEN

The microtubule-associated protein Tau is highly enriched in axons of brain neurons where it regulates axonal outgrowth, plasticity, and transport. Efficient axonal Tau sorting is critical since somatodendritic Tau missorting is a major hallmark of Alzheimer's disease and other tauopathies. However, the molecular mechanisms of axonal Tau sorting are still not fully understood. In this study, we aimed to unravel to which extent anterograde protein transport contributes to axonal Tau sorting. We developed a laser-based axotomy approach with single-cell resolution and combined it with spinning disk confocal microscopy enabling multi live-cell monitoring. We cultivated human iPSC-derived cortical neurons and mouse primary forebrain neurons in specialized chambers allowing reliable post-fixation identification and Tau analysis. Using this approach, we achieved high post-axotomy survival rates and observed axonal regrowth in a subset of neurons. When we assessed somatic missorting and phosphorylation levels of endogenous human or murine Tau at different time points after axotomy, we surprisingly did not observe somatic Tau accumulation or hyperphosphorylation, regardless of their regrowing activity, consistent for both models. These results indicate that impairment of anterograde transit of Tau protein and acute axonal damage may not play a role for the development of somatic Tau pathology. In sum, we developed a laser-based axotomy model suitable for studying the impact of different Tau sorting mechanisms in a highly controllable and reproducible setting, and we provide evidence that acute axon loss does not induce somatic Tau accumulation and AT8 Tau phosphorylation. UV laser-induced axotomy of human iPSC-derived and mouse primary neurons results in decreased somatic levels of endogenous Tau and AT8 Tau phosphorylation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Proteínas tau , Humanos , Ratones , Animales , Proteínas tau/metabolismo , Fosforilación , Axotomía , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Axones/metabolismo
12.
Brain ; 145(2): 729-743, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-34424282

RESUMEN

Alzheimer's disease comprises amyloid-ß and hyperphosphorylated Tau accumulation, imbalanced neuronal activity, aberrant oscillatory rhythms and cognitive deficits. Non-demented with Alzheimer's disease neuropathology defines a novel clinical entity with amyloid-ß and Tau pathologies but preserved cognition. The mechanisms underlying such neuroprotection remain undetermined and animal models of non-demented with Alzheimer's disease neuropathology are currently unavailable. We demonstrate that J20/VLW mice (accumulating amyloid-ß and hyperphosphorylated Tau) exhibit preserved hippocampal rhythmic activity and cognition, as opposed to J20 and VLW animals, which show significant alterations. Furthermore, we show that the overexpression of mutant human Tau in coexistence with amyloid-ß accumulation renders a particular hyperphosphorylated Tau signature in hippocampal interneurons. The GABAergic septohippocampal pathway, responsible for hippocampal rhythmic activity, is preserved in J20/VLW mice, in contrast to single mutants. Our data highlight J20/VLW mice as a suitable animal model in which to explore the mechanisms driving cognitive preservation in non-demented with Alzheimer's disease neuropathology. Moreover, they suggest that a differential Tau phosphorylation pattern in hippocampal interneurons prevents the loss of GABAergic septohippocampal innervation and alterations in local field potentials, thereby avoiding cognitive deficits.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuropatología , Proteínas tau/genética , Proteínas tau/metabolismo
13.
Nutr Neurosci ; 26(12): 1243-1257, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36370050

RESUMEN

The seed embryo of Nelumbo nucifera Gaertn. is a famous traditional Chinese medicine and food which is considered conducive to the prevention of Alzheimer's disease (AD). In this study, the effect and mechanism of TASENN (total alkaloids from the seed embryo of Nelumbo nucifera Gaertn.) on AD mice and amyloid-ß (Aß) injured PC12 cells were evaluated. HPLC-UV analysis showed that the extracted TASENN (purity = 95.6%) mainly contains Liensinine, Isoliensinine, and Neferine (purity was 23.01, 28.02, and 44.57%, respectively). In vivo, oral treatment with TASENN (50 mg/kg/day for 28 days) improved the learning and memory functions of APP/PS1 transgenic mice, ameliorated the histopathological changes of cortical and hippocampal neurons, and inhibited neuronal apoptosis. We found that TASENN reduced the phosphorylation of Tau and the formation of neurofibrillary tangles (NFTs) in APP/PS1 mouse brain. Moreover, TASENN down-regulated the expression of APP and BACE1, ameliorated Aß deposition, and inhibited microglial proliferation and aggregation. The elevated protein expression of CaM and p-CaMKII in APP/PS1 mouse brain was also reduced by TASENN. In vitro, TASENN inhibited the apoptosis of PC12 cells injured by Aß25-35 and increased the cell viability. Aß25-35-induced increase of cytosolic free Ca2+ level and high expression of CaM, p-CaMKII, and p-Tau were decreased by TASENN. Our findings indicate that TASENN has a potential therapeutic effect on AD mice and a protective effect on PC12 cells. The anti-AD activity of TASENN may be closely related to its negative regulation of the CaM pathway.


Asunto(s)
Alcaloides , Enfermedad de Alzheimer , Disfunción Cognitiva , Nelumbo , Ratones , Animales , Ratas , Nelumbo/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/uso terapéutico , Células PC12 , Ácido Aspártico Endopeptidasas/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Alcaloides/uso terapéutico , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética
14.
Proc Natl Acad Sci U S A ; 117(8): 4418-4427, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32051249

RESUMEN

In Alzheimer's disease (AD), human Tau is phosphorylated at S199 (hTau-S199-P) by the protein kinase glycogen synthase kinase 3ß (GSK3ß). HTau-S199-P mislocalizes to dendritic spines, which induces synaptic dysfunction at the early stage of AD. The AKT kinase, once phosphorylated, inhibits GSK3ß by phosphorylating it at S9. In AD patients, the abundance of phosphorylated AKT with active GSK3ß implies that phosphorylated AKT was unable to inactivate GSK3ß. However, the underlying mechanism of the inability of phosphorylated AKT to phosphorylate GSK3ß remains unknown. Here, we show that total AKT and phosphorylated AKT was sulfhydrated at C77 due to the induction of intracellular hydrogen sulfide (H2S). The increase in intracellular H2S levels resulted from the induction of the proinflammatory cytokine, IL-1ß, which is a pathological hallmark of AD. Sulfhydrated AKT does not interact with GSK3ß, and therefore does not phosphorylate GSK3ß. Thus, active GSK3ß phosphorylates Tau aberrantly. In a transgenic knockin mouse (AKT-KI+/+) that lacked sulfhydrated AKT, the interaction between AKT or phospho-AKT with GSK3ß was restored, and GSK3ß became phosphorylated. In AKT-KI+/+ mice, expressing the pathogenic human Tau mutant (hTau-P301L), the hTau S199 phosphorylation was ameliorated as GSK3ß phosphorylation was regained. This event leads to a decrease in dendritic spine loss by reducing dendritic localization of hTau-S199-P, which improves cognitive dysfunctions. Sulfhydration of AKT was detected in the postmortem brains from AD patients; thus, it represents a posttranslational modification of AKT, which primarily contributes to synaptic dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Sulfuro de Hidrógeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Secuencias de Aminoácidos , Animales , Encéfalo/metabolismo , Femenino , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Transgénicos , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas tau/genética
15.
Int J Neurosci ; 133(12): 1394-1398, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35603448

RESUMEN

PURPOSE/AIM OF THE STUDY: Accumulation of hyperphosphorylated tau is a key pathological finding of Alzheimer's disease. Recently, acetylation of tau is emerging as another key pathogenic modification, especially regarding the acetylation of tau at K280 of the hexapeptide 275VQIINK280, a critical sequence in driving tau aggregation. However, the relationship between these two key post-translational modifications is not well known. In this study, effect of acetylation of tau at K280 on tau phosphorylation profile was investigated. MATERIALS AND METHODS: The human neuroblastoma cell line, SH-SY5Y, was transfected with p300 acetyltransferase and tau to induce acetylation of tau. Phosphorylation profile after acetylation was evaluated on western blot. K280A-mutant tau was transfected to investigate the effect of acetylation of tau at K280 on tau phosphorylation profile. RESULTS: Overexpression of p300 acetyltransferase in tau-transfected SH-SY5Y human neuroblastoma cells increased acetylation of tau. Meanwhile, tau and its phosphorylation also increased at various sites such as S199/202, S202/T205, T231, and S422, but not at S396. However, blocking acetylation only at K280 with K280A-mutant tau reversed the increased phosphorylation of tau at S202/T205, T231, and S422, but not at S199/202 or S396. CONCLUSION: Here we identified tau phosphorylation profile in the context of p300-induced acetylation and K280A-mutant tau, demonstrating that tau acetylation affects phosphorylation differently by residues and that acetylation at K280 is a determinant of phosphorylation at some residues in the context of pathologic acetyltransferase activity. Yet, our results suggest there is a complex interplay yet to be explored between tau acetylation with tau phosphorylation.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Fosforilación , Proteínas tau/metabolismo , Acetilación , Procesamiento Proteico-Postraduccional , Enfermedad de Alzheimer/metabolismo
16.
Int J Neurosci ; 133(2): 194-200, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33736564

RESUMEN

Purpose:Tau hyperphosphorylation is a modification frequently observed after brain ischemia which has been related to the aggregation of this protein, with subsequent cytoskeletal damage, and cellular toxicity. The present study tests the hypothesis of using glucosamine, an agent that increases protein O-GlcNAcylation, to decrease the levels of phosphorylation in Tau during ischemia-reperfusion.Material and methods: Transient focal ischemia was artificially induced in male Wistar rats by occlusion of the middle cerebral artery (MCAO) with an intraluminal monofilament. A single dose of intraperitoneal glucosamine of 200 mg/kg diluted in normal saline (SSN) was administered 60 min before ischemia. Histological brain sections were processed using indirect immunofluorescence with primary antibodies (anti-O-GlcNAc and anti pTau-ser 396). The Image J software was used to calculate the immunofluorescence signal intensity.Results: The phosphorylation of Tau at the serine residue 396 had a significant decrease with the administration of glucosamine during ischemia-reperfusion compared with the administration of placebo.Conclusions: These results show that glucosamine can reduce the phosphorylation levels of Tau in rodents subjected to ischemia and cerebral reperfusion, which implies a neuroprotective role of glucosamine.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Animales , Masculino , Glucosamina/farmacología , Proteínas tau/metabolismo , Fosforilación , Ratas Wistar , Isquemia Encefálica/tratamiento farmacológico , Isquemia , Reperfusión , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Fármacos Neuroprotectores/farmacología
17.
Alzheimers Dement ; 19(7): 2874-2887, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36633254

RESUMEN

INTRODUCTION: Tau phosphorylation at T217 is a promising Alzheimer's disease (AD) biomarker, but its functional consequences were unknown. METHODS: Human brain and cultured mouse neurons were analyzed by immunoblotting and immunofluorescence for total tau, taupT217 , taupT181 , taupT231 , and taupS396/pS404 . Direct stochastic optical reconstruction microscopy (dSTORM) super resolution microscopy was used to localize taupT217 in cultured neurons. Enhanced green fluorescent protein (EGFP)-tau was expressed in fibroblasts as wild type and T217E pseudo-phosphorylated tau, and fluorescence recovery after photobleaching (FRAP) reported tau turnover rates on microtubules. RESULTS: In the brain, taupT217 appears in neurons at Braak stages I and II, becomes more prevalent later, and co-localizes partially with other phospho-tau epitopes. In cultured neurons, taupT217 is increased by extracellular tau oligomers (xcTauOs) and is associated with developing post-synaptic sites. FRAP recovery was fastest for EGFP-tauT217E . CONCLUSION: TaupT217 increases in the brain as AD progresses and is induced by xcTauOs. Post-synaptic taupT217 suggests a role for T217 phosphorylation in synapse impairment. T217 phosphorylation reduces tau's affinity for microtubules. HIGHLIGHTS: Validation of anti-tau phosphorylated at threonine-217 (taupT217 ) specificity is essential due to epitope redundancy. taupT217 increases as Alzheimer's disease progresses and is found throughout diseased neurons. taupT217 is associated with developing post-synaptic sites in cultured neurons. Extracellular oligomers of tau, but not amyloid beta, increase intracellular taupT217 . T217E pseudo-phosphorylation reduces tau's affinity for microtubules.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Treonina/metabolismo , Neuronas/metabolismo , Fosforilación
18.
Alzheimers Dement ; 19(9): 4110-4126, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37249148

RESUMEN

INTRODUCTION: Blood phosphorylated tau at threonine 217 (tau-PT217) is a newly established biomarker for Alzheimer's disease and postoperative delirium in patients. However, the mechanisms and consequences of acute changes in blood tau-PT217 remain largely unknown. METHODS: We investigated the effects of anesthesia/surgery on blood tau-PT217 in aged mice, and evaluated the associated changes in B cell populations, neuronal excitability in anterior cingulate cortex, and delirium-like behavior using positron emission tomography imaging, nanoneedle technology, flow cytometry, electrophysiology, and behavioral tests. RESULTS: Anesthesia/surgery induced acute increases in blood tau-PT217 via enhanced generation in the lungs and release from B cells. Tau-PT217 might cross the blood-brain barrier, increasing neuronal excitability and inducing delirium-like behavior. B cell transfer and WS635, a mitochondrial function enhancer, mitigated the anesthesia/surgery-induced changes. DISCUSSION: Acute increases in blood tau-PT217 may contribute to brain dysfunction and postoperative delirium. Targeting B cells or mitochondrial function may have therapeutic potential for preventing or treating these conditions.


Asunto(s)
Enfermedad de Alzheimer , Anestesia , Delirio del Despertar , Ratones , Animales , Proteínas tau/metabolismo , Fosforilación
19.
J Clin Biochem Nutr ; 73(1): 24-33, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37534088

RESUMEN

Reactive oxygen species are considered a cause of neuronal cell death in Alzheimer's disease (AD). Abnormal tau phosphorylation is a proven pathological hallmark of AD. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neuronal survival. In this study, we hypothesized that oxidative stress increases the phosphorylation of Ser262 of tau protein through activation of MARKs, which is the main reason for the development of AD. We investigated the relationship between tau hyperphosphorylation on Ser262 and MARKs in N1E-115 cells subjected to oxidative stress by exposure to a low concentration of hydrogen peroxide. This work builds on the observation that hyperphosphorylation of tau is significantly increased by oxidative stress. MARKs activation correlated with tau hyperphosphorylation at Ser262, a site that is essential to maintain microtubule stability and is the initial phosphorylation site in AD. These results indicated that MARKs inhibitors might serve a role as therapeutic tools for the treatment of AD.

20.
Saudi Pharm J ; 31(9): 101729, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37638222

RESUMEN

This review highlights the potential role of cyclooxygenase-2 enzyme (COX-2) in the pathogenesis of Alzheimer's disease (AD) and the potential therapeutic use of non-steroidal anti-inflammatory drugs (NSAIDs) in the management of AD. In addition to COX-2 enzymes role in inflammation, the formation of amyloid plaques and neurofibrillary tangles in the brain, the review emphasizes that COXs-2 have a crucial role in normal synaptic activity and plasticity, and have a relationship with acetylcholine, tau protein, and beta-amyloid (Aß) which are the main causes of Alzheimer's disease. Furthermore, the review points out that COX-2 enzymes have a relationship with kinase enzymes, including Cyclin Dependent Kinase 5 (CDK5) and Glycogen Synthase Kinase 3ß (GSK3ß), which are known to play a role in tau phosphorylation and are strongly associated with Alzheimer's disease. Therefore, the use of drugs like NSAIDs may be a hopeful approach for managing AD. However, results from studies examining the effectiveness of NSAIDs in treating AD have been mixed and further research is needed to fully understand the mechanisms by which COX-2 and NSAIDs may be involved in the development and progression of AD and to identify new therapeutic strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA