Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(13): e2304253, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37963821

RESUMEN

Due to its tumor homing and long serum half-life, albumin is an ideal drug carrier for chemotherapy. For endogenous albumin hitchhiking with high cargo loading, a trimeric albumin-binding domain (ABD), i.e., ABD-Tri is designed by fusing an ABD with high specificity and affinity for albumin to a self-trimerizing domain (Tri) with an additional cysteine residue. ABD-Tri is highly (40 mg L-1) expressed as soluble and trimeric proteins in Escherichia coli (E. coli). Once mixed together, ABD-Tri rapidly and specifically forms a stable complex with albumin under physiological conditions without obviously changing its receptor- and cell-binding and tumor-homing properties. Maleimide-modified prodrugs are highly effectively conjugated to ABD-Tri to produce homogenous ABD-Tri-prodrugs with triple cargo loading under physiological conditions by thiol-maleimide click chemistry. Unlike the maleimide moiety, which can only mediate time- and concentration-dependent albumin binding, ABD-Tri mediated fast (within several minutes) albumin binding of drugs even at extremely low concentrations (µg mL-1). Compared to maleimide-modified prodrugs, ABD-Tri-prodrugs exhibit better tumor homing and greater in vivo antitumor effect, indicating that conjugation of chemical drug to ABD-Tri outperforms maleimide modification for endogenous albumin hitchhiking. The results demonstrate that ABD-Tri may serve as a novel platform to produce albumin-binding prodrugs with high cargo-loading capacity for tumor-targeted chemotherapy.


Asunto(s)
Neoplasias , Profármacos , Compuestos de Sulfhidrilo , Humanos , Profármacos/química , Albúmina Sérica , Escherichia coli/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Maleimidas/química
2.
J Pept Sci ; 29(11): e3496, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37060350

RESUMEN

Peptide purification by high-performance liquid chromatography (HPLC) is associated with high solvent consumption, relatively large effort and lack of efficient parallelization. As an alternative, many catch-and-release (c&r) purification methods have been developed over the last decades to enable the efficient parallel purification of peptides originating from solid-phase peptide synthesis (SPPS). However, with one exception, none of the c&r systems has been widely established in industry and academia until today. Herein, we present an entirely new chromatography-free purification concept for peptides synthesized on a solid support, termed reactive capping purification (RCP). The RCP method relies on the capping of truncation peptides arising from incomplete coupling of amino acids during SPPS with a reactive tag. The reactive tag contains a masked functionality that, upon liberation during cleavage from the resin, enables straightforward purification of the peptide by incubation with a resin-bound reactive moiety. In this work, two different reactive tags based on masked thiols were developed. Capping with these reactive tags during SPPS led to effective modification of truncated sequences and subsequent removal of the latter by chemoselective reaction with a maleimide-functionalized solid support. By introducing a suitable protecting group strategy, the thiol-based RCP method described here could also be successfully applied to a thiol-containing peptide. Finally, the purification of a 15-meric peptide by the RCP method was demonstrated. The developed method has low solvent consumption, has the potential for efficient parallelization, uses readily available reagents, and is experimentally simple to perform.


Asunto(s)
Aminoácidos , Péptidos , Péptidos/química , Compuestos de Sulfhidrilo
3.
Int J Mol Sci ; 24(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37240396

RESUMEN

The main aim of this study is to synthesize contrast microbubbles (MB) functionalized with engineered protein ligands using a microfluidic device to target breast cancer specific vascular B7-H3 receptor in vivo for diagnostic ultrasound imaging. We used a high-affinity affibody (ABY) selected against human/mouse B7-H3 receptor for engineering targeted MBs (TMBs). We introduced a C-terminal cysteine residue to this ABY ligand for facilitating site-specific conjugation to DSPE-PEG-2K-maleimide (M. Wt = 2.9416 kDa) phospholipid for MB formulation. We optimized the reaction conditions of bioconjugations and applied it for microfluidic based synthesis of TMBs using DSPE-PEG-ABY and DPPC liposomes (5:95 mole %). The binding affinity of TMBs to B7-H3 (MBB7-H3) was tested in vitro in MS1 endothelial cells expressing human B7-H3 (MS1B7-H3) by flow chamber assay, and by ex vivo in the mammary tumors of a transgenic mouse model (FVB/N-Tg (MMTV-PyMT)634Mul/J), expressing murine B7-H3 in the vascular endothelial cells by immunostaining analyses. We successfully optimized the conditions needed for generating TMBs using a microfluidic system. The synthesized MBs showed higher affinity to MS1 cells engineered to express higher level of hB7-H3, and in the endothelial cells of mouse tumor tissue upon injecting TMBs in a live animal. The average number (mean ± SD) of MBB7-H3 binding to MS1B7-H3 cells was estimated to be 354.4 ± 52.3 per field of view (FOV) compared to wild-type control cells (MS1WT; 36.2 ± 7.5/FOV). The non-targeted MBs did not show any selective binding affinity to both the cells (37.7 ± 7.8/FOV for MS1B7-H3 and 28.3 ± 6.7/FOV for MS1WT cells). The fluorescently labeled MBB7-H3 upon systemic injection in vivo co-localized to tumor vessels, expressing B7-H3 receptor, as validated by ex vivo immunofluorescence analyses. We have successfully synthesized a novel MBB7-H3 via microfluidic device, which allows us to produce on demand TMBs for clinical applications. This clinically translatable MBB7-H3 showed significant binding affinity to vascular endothelial cells expressing B7-H3 both in vitro and in vivo, which shows its potential for clinical translation as a molecular ultrasound contrast agent for human applications.


Asunto(s)
Neoplasias de la Mama , Receptores Histamínicos H3 , Ratones , Animales , Humanos , Femenino , Microburbujas , Células Endoteliales/metabolismo , Ultrasonografía/métodos , Ratones Transgénicos , Imagen Molecular/métodos , Medios de Contraste , Neoplasias de la Mama/patología , Dispositivos Laboratorio en un Chip
4.
Macromol Rapid Commun ; 43(9): e2200029, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35322486

RESUMEN

Digital polymers with precisely arranged binary units provide an important option for information storage. This is especially true if the digital polymers are assembled in a device, as it would be of great benefit for data writing and reading in practice. Herein, inspired by the DNA microarray technique, the programmable information storing and reading on a mass spectrometry target plate is proposed. First, an array of 4-bit sequence-coded dithiosuccinimide oligomers is efficiently built through sequential thiol-maleimide Michael couplings with good sequence readability by tandem mass spectrometry (MS/MS). Then, toward engineering microarrays for information storage, a programmed robotic arm is specifically designed for precisely loading sequence-coded oligomers onto the target plate, and a decoding software is developed for efficient readout of the data from MS/MS sequencing. Notably, short sequence-coded oligomer chains can be used to write long strings of information, and extra error-correction codes are not required as usual due to the inherent concomitant fragmentation signals. Not only text but also bitimages can be automatically stored and decoded with excellent accuracy. This work provides a promising platform of digital polymers for programmable information storing and reading.


Asunto(s)
Polímeros , Espectrometría de Masas en Tándem , Polímeros/química , Espectrometría de Masas en Tándem/métodos
5.
Bioorg Chem ; 128: 106061, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35917748

RESUMEN

We synthesized N-acetylglucosamine-terminated hexavalent carbosilane dendrimers and investigated their binding to wheat germ agglutinin (WGA). The glycodendrimers were prepared by the conjugation of 3-mercaptopropyl, 4-mercaptobutyl, or 5­mercaptopentyl glycosides to maleimide-terminated hexavalent carbosilane dendrimers. Titration of WGA with the glycodendrimers yielded quenching of tryptophan fluorescence. All of the glycodendrimers exhibited high affinity with nanomolar dissociation constants (KD values). The best dendrimers were 1a and 1b with KD values of 6.5 ± 1.7 and 5.3 ± 1.7 nM, respectively. The magnitude of fluorescence quenching increased with decrease in the length of the thioalkyl spacer. Maleimide-pendant carbosilane dendrimers provide ready access to multivalent ligands with high-affinity potential.


Asunto(s)
Dendrímeros , Glicósidos , Ligandos , Maleimidas , Compuestos de Sulfhidrilo , Aglutininas del Germen de Trigo
6.
Molecules ; 27(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36014302

RESUMEN

The reaction between L-cysteine (Cys) and 6-maleimidohexanoic acid (Mhx) in an aqueous medium at different levels of pH was analyzed via RP-HPLC, finding the presence of two reaction products throughout the evaluated pH range. By means of solid-phase extraction (SPE), it was possible to separate the products and obtain isolated profiles enriched up to 80%. The products were analyzed individually through mass spectrometry, DAD-HPLC, NMR 1H, 13C, and two-dimensional evidence of isomerization between the hydrogen atoms of the α-amino and the thiol group present in the cysteine. Thus, it was concluded that the products obtained corresponded to a mixture of the isomer Cys-S-Mhx, where the adduct is formed by a thioether bond, and the isomer Cys-NH-Mhx, in which the union is driven by the amino group. We consider that the phenomenon of isomerization is an important finding, since it has not previously been reported for this reaction.


Asunto(s)
Cisteína , Compuestos de Sulfhidrilo , Cromatografía Líquida de Alta Presión , Cisteína/química , Isomerismo , Maleimidas/química , Compuestos de Sulfhidrilo/química
7.
Angew Chem Int Ed Engl ; 61(25): e202203838, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35352863

RESUMEN

The short circulatory half-lives and low tumor accumulation of carboplatin greatly limit the drug's efficacy in vivo. Herein, we address these challenges by using a prodrug strategy and present the rational design of a novel platinum(IV) anticancer prodrug that can hitchhike on erythrocytes. This prodrug, designated as ERY1-PtIV , can bind to erythrocytes efficiently and stably, possessing a circulatory half-life 18.5 times longer than that of carboplatin in mice. This elongated circulatory half-life enables platinum to accumulate at levels 7.7 times higher than with carboplatin, with steady levels in the tumors. As a consequence, the ERY1-PtIV prodrug is proved to exhibit significantly enhanced antitumor activity and reduced side effects compared with carboplatin. Collectively, our novel approach highlights an efficient strategy to utilize intrinsic erythrocytes as auto-binding carriers to enhance the tumor accumulation and subsequent antitumor efficacy of platinum drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Profármacos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carboplatino/farmacología , Línea Celular Tumoral , Cisplatino/uso terapéutico , Eritrocitos , Ratones , Neoplasias/tratamiento farmacológico , Platino (Metal)/uso terapéutico , Profármacos/farmacología , Profármacos/uso terapéutico
8.
Artif Organs ; 41(4): 351-358, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28321886

RESUMEN

The development of a blood substitute is urgent due to blood shortages and potential communicable diseases. A novel method, inside-out PEGylation, has been used here to conjugate a multiarm maleimide-PEG (Mal-PEG) to ß-cross-linked (ßXL-Hb) hemoglobin (Hb) tetramers through the Cys ß93 residues. This method produces a polymer with a single PEG backbone that is surrounded by multiple proteins, rather than coating a single protein with multiple PEG chains. Electrophoresis under denaturing conditions showed a large molecular weight species. Gel filtration chromatography and analytical ultracentrifugation determined the most prevalent species had three ßXL-Hb to one Mal-PEG. Thermal denaturation studies showed that the cross-linked and PEGylated species were more stable than native Hb. Cross-linking under oxy-conditions produced a high oxygen affinity Hb species (P50  = 9.18 Torr), but the oxygen affinity was not significantly altered by PEGylation (P50  = 9.67 Torr). Inside-out PEGylation can be used to produce a hemoglobin-based oxygen carrier and potentially for other multiprotein complexes.


Asunto(s)
Sustitutos Sanguíneos/química , Reactivos de Enlaces Cruzados/química , Composición de Medicamentos/métodos , Hemoglobinas/química , Maleimidas/química , Polietilenglicoles/química , Animales , Sustitutos Sanguíneos/síntesis química , Bovinos , Cromatografía en Gel , Hemoglobinas/síntesis química , Peso Molecular , Oxígeno/metabolismo , Polietilenglicoles/síntesis química , Desnaturalización Proteica , Ultracentrifugación
9.
Angew Chem Int Ed Engl ; 56(44): 13612-13617, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-28872744

RESUMEN

Orthogonal maleimide and thiol deprotections were combined with thiol-maleimide coupling to synthesize discrete oligomers/macromolecules on a gram scale with molecular weights up to 27.4 kDa (128mer, 7.9 g) using an iterative exponential growth strategy with a degree of polymerization (DP) of 2n -1. Using the same chemistry, a "readable" sequence-defined oligomer and a discrete cyclic topology were also created. Furthermore, uniform dendrons were fabricated using sequential growth (DP=2n -1) or double exponential dendrimer growth approaches (DP=22n -1) with significantly accelerated growth rates. A versatile, efficient, and metal-free method for construction of discrete oligomers with tailored structures and a high growth rate would greatly facilitate research into the structure-property relationships of sophisticated polymeric materials.

10.
Macromol Rapid Commun ; 37(19): 1618-1622, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27461078

RESUMEN

Chitosan conjugated with maleimide (CS-Mal) as a potential precursor for bioconjugation and the example of the application in in situ injectable adhesive gel is proposed. The homogeneous reaction in water/dimethyl sulfoxide (DMSO) (1:1) followed by dialysis in HCl (10 × 10-3 m) is a good condition to obtain CS-Mal. When SH-PEG-SH is applied as the crosslinker, the gel can be obtained in a few seconds without any by-products at room temperature. The gel formation and properties are controllable by simply varying the concentration and the molecular weight of CS, the Mal substitution degree, and the temperature. The gel is injectable and shows adhesive property for soft tissue. Moreover, the gel shows not only biocompatibility to SAOS2 cells but also antimicrobial activity against both gram-negative and gram-positive bacteria. CS-Mal is useful not only for bioconjugation of CS but also for development of biomaterials.


Asunto(s)
Adhesivos/química , Quitosano/química , Geles/química , Maleimidas/química , Agua/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Estructura Molecular
11.
Macromol Rapid Commun ; 37(13): 1027-32, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27168131

RESUMEN

Thiol-click reactions lead to polymeric materials with a wide range of interesting mechanical, electrical, and optical properties. However, this reaction mechanism typically results in bulk materials with a low glass transition temperature (Tg ) due to rotational flexibility around the thioether linkages found in networks such as thiol-ene, thiol-epoxy, and thiol-acrylate systems. This report explores the thiol-maleimide reaction utilized for the first time as a solvent-free reaction system to synthesize high-Tg thermosetting networks. Through thermomechanical characterization via dynamic mechanical analysis, the homogeneity and Tg s of thiol-maleimide networks are compared to similarly structured thiol-ene and thiol-epoxy networks. While preliminary data show more heterogeneous networks for thiol-maleimide systems, bulk materials exhibit Tg s 80 °C higher than other thiol-click systems explored herein. Finally, hollow tubes are synthesized using each thiol-click reaction mechanism and employed in low- and high-temperature environments, demonstrating the ability to withstand a compressive radial 100 N deformation at 100 °C wherein other thiol-click systems fail mechanically.


Asunto(s)
Química Clic , Maleimidas/química , Polímeros/síntesis química , Compuestos de Sulfhidrilo/química , Temperatura de Transición , Vidrio , Estructura Molecular , Polímeros/química
12.
J Chromatogr A ; 1721: 464861, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38564931

RESUMEN

The covalent attachment of polyoxometalates (POMs) to polymers has been developed as a strategic approach for the advancement of POM-based hybrid materials with versatile applications. In this study, we utilized thiol-maleimide Michael addition to investigate the kinetics and efficacy of the "one-to-one" conjugation between Keggin type POM and polystyrene. We explored the effects of solvent polarity, catalyst, molecular weight of PS and synthetic strategies on the reaction kinetics and efficiency, by means of reverse-phase high-performance liquid chromatography (RP-HPLC). A series of comparative analysis affirmed the superior efficiency of the one-pot method, particularly when facilitated by the addition of a high-polarity solvent and an excess of maleimide. These findings offer valuable insights into the intricate interplay between reaction conditions, kinetics, and selectivity in thiol-maleimide reactions of POMs and polymers. They hold profound implications for advancing the study of POM-based multifunctional materials and the synthesis of complex hybrid molecules.


Asunto(s)
Aniones , Polielectrolitos , Polímeros , Compuestos de Sulfhidrilo , Polímeros/química , Maleimidas/química , Solventes
13.
Polymers (Basel) ; 16(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611189

RESUMEN

Vaccines typically work by eliciting an immune response against larger antigens like polysaccharides or proteins. Small molecules like nicotine, on their own, usually cannot elicit a strong immune response. To overcome this, anti-nicotine vaccines often conjugate nicotine molecules to a carrier protein by carbodiimide crosslinking chemistry to make them polymeric and more immunogenic. The reaction is sensitive to conditions such as pH, temperature, and the concentration of reactants. Scaling up the reaction from laboratory to industrial scales while maintaining consistency and yield can be challenging. Despite various approaches, no licensed anti-nicotine vaccine has been approved so far due to the susboptimal antibody titers. Here, we report a novel approach to conjugate maleimide-modified nicotine hapten with a disulfide bond-reduced carrier protein in an organic solvent. It has two advantages compared with other approaches: (1) The protein was unfolded to make the peptide conformation more flexible and expose more conjugation sites; (2) thiol-maleimide "click" chemistry was utilized to conjugate the disulfide bond-reduced protein and maleimide-modified nicotine due to its availability, fast kinetics, and bio-orthogonality. Various nicotine conjugate vaccines were prepared via this strategy, and their immunology effects were investigated by using MPL and QS-21 as adjuvants. The in vivo study in mice showed that the nicotine-BSA conjugate vaccines induced high anti-nicotine IgG antibody titers, compared with vaccines prepared by using traditional condensation methods, indicating the success of the current strategy for further anti-nicotine or other small-molecule vaccine studies. The enhancement was more significant by using MPL and QS-21 than that of traditional aluminum adjuvants.

14.
Carbohydr Polym ; 337: 122144, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710569

RESUMEN

In vivo, cells interact with the extracellular matrix (ECM), which provides a multitude of biophysical and biochemical signals that modulate cellular behavior. Inspired by this, we explored a new methodology to develop a more physiomimetic polysaccharide-based matrix for 3D cell culture. Maleimide-modified alginate (AlgM) derivatives were successfully synthesized using DMTMM to activate carboxylic groups. Thiol-terminated cell-adhesion peptides were tethered to the hydrogel network to promote integrin binding. Rapid and efficient in situ hydrogel formation was promoted by thiol-Michael addition "click" chemistry via maleimide reaction with thiol-flanked protease-sensitive peptides. Alginate derivatives were further ionically crosslinked by divalent ions present in the medium, which led to greater stability and allowed longer cell culture periods. By tailoring alginate's biofunctionality we improved cell-cell and cell-matrix interactions, providing an ECM-like 3D microenvironment. We were able to systematically and independently vary biochemical and biophysical parameters to elicit specific cell responses, creating custom-made 3D matrices. DMTMM-mediated maleimide incorporation is a promising approach to synthesizing AlgM derivatives that can be leveraged to produce ECM-like matrices for a broad range of applications, from in vitro tissue modeling to tissue regeneration.


Asunto(s)
Alginatos , Química Clic , Matriz Extracelular , Hidrogeles , Maleimidas , Compuestos de Sulfhidrilo , Humanos , Alginatos/química , Adhesión Celular/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Hidrogeles/química , Hidrogeles/síntesis química , Maleimidas/química , Compuestos de Sulfhidrilo/química
15.
Eur J Pharm Sci ; 188: 106472, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37220816

RESUMEN

A systemic delivery of therapeutics frequently results in sub-optimal exposure of the targeted locus and undesired side effects. To address these challenges, a platform for local delivery of diverse therapeutics by remotely controlled magnetic micro-robots was introduced. The approach involves micro-formulation of active molecules using hydrogels that exhibit wide range of loading capabilities and predictable release kinetics. This work introduces two specific hydrogels based on thiol-maleimide and PEG-PLA-diacrylate chemistries that afford high, reliable and reproducible loading and release of several model molecules including doxorubicin, 25-mer poly-dT oligonucleotide and a 5.4 kBp GFP DNA plasmid. The described formulations are suitable for micro-dosing using both conventional or remote delivery devices.


Asunto(s)
Oligonucleótidos , Polietilenglicoles , Hidrogeles , Doxorrubicina , ADN
16.
Macromol Biosci ; 23(9): e2200411, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37167630

RESUMEN

Considering the need for versatile surface coatings that can display multiple bioactive signals and chemistries, the use of more novel surface modification methods is starting to emerge. Thiol-mediated conjugation of biomolecules is shown to be quite advantageous for such purposes due to the reactivity and chemoselectivity of thiol functional groups. Herein, the immobilization of poly(ethylene glycol) (PEG) and antimicrobial peptides (AMPs) to silica colloidal particles based on thiol-mediated conjugation techniques, along with an assessment of the antimicrobial potential of the functionalized particles against Pseudomonas aeruginosa and Staphylococcus aureus is investigated. Immobilization of PEG to thiolated Si particles is performed by either a two-step thiol-ene "photo-click" reaction or a "one-pot" thiol-maleimide type conjugation using terminal acrylate or maleimide functional groups, respectively. It is demonstrated that both immobilization methods result in a significant reduction in the number of viable bacterial cells compared to unmodified samples after the designated incubation periods with the PEG-AMP-modified colloidal suspensions. These findings provide a promising outlook for the fabrication of multifunctional surfaces based upon the tethering of PEG and AMPs to colloidal particles through thiol-mediated biocompatible chemistry, which has potential for use as implant coatings or as antibacterial formulations that can be incorporated into wound dressings to prevent or control bacterial infections.


Asunto(s)
Péptidos Antimicrobianos , Polietilenglicoles , Polietilenglicoles/química , Compuestos de Sulfhidrilo/química , Antibacterianos/farmacología , Maleimidas
17.
Pharmaceutics ; 15(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36678876

RESUMEN

Oligonucleotide conjugates are versatile scaffolds that can be applied in DNA-based screening platforms and ligand display or as therapeutics. Several different chemical approaches are available for functionalizing oligonucleotides, which are often carried out on the 5' or 3' end. Modifying oligonucleotides in the middle of the sequence opens the possibility to ligate the conjugates and create DNA strands bearing multiple different ligands. Our goal was to establish a complete workflow that can be applied for such purposes from monomer synthesis to templated ligation. To achieve this, a monomer is required with an orthogonal functional group that can be incorporated internally into the oligonucleotide sequence. This is followed by conjugation with different molecules and ligation with the help of a complementary template. Here, we show the synthesis and the application of a thiol-modified thymidine nucleoside phosphoramidite to prepare ligatable oligonucleotide conjugates. The conjugations were performed both in solution and on solid phase, resulting in conjugates that can be assembled into multivalent oligonucleotides decorated with tissue-targeting peptides using templated ligation.

18.
Int J Pharm ; 635: 122713, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36764414

RESUMEN

Nano-sized materials have been widely explored in the biomedicine field, especially due to their ability to encapsulate drugs intended to be delivered to cancer cells. However, systemically administered nanomaterials face several barriers that can hinder their tumor-homing capacity. In this way, researchers are now focusing their efforts in developing technologies that can deliver the nanoparticles directly into the tumor tissue. Particularly, hydrogels assembled using Thiol-Maleimide Michael type additions are emerging for this purpose due to their capacity to incorporate high nanoparticles' doses in a compact 3D structure as well as good chemical selectivity, biocompatibility, and straightforward preparation. Nevertheless, such hydrogels have been mostly prepared using synthetic polymers, which is not ideal due to their poor biodegradability. In this work, a novel natural polymer-based Thiol-Maleimide hydrogel was produced for application in breast cancer chemo-photothermal therapy. To obtain natural polymers compatible with this crosslinking chemistry, Hyaluronic acid was endowed with Thiol groups and deacetylated Chitosan was grafted with Maleimide groups. Parallelly, Doxorubicin loaded Dopamine-reduced graphene oxide (DOX/DOPA-rGO) was prepared for attaining Near Infrared (NIR) light responsive chemo-photothermal nanoagents. By simply mixing Hyaluronic Acid-Thiol, deacetylated Chitosan-Maleimide and DOX/DOPA-rGO, Thiol-Maleimide crosslinked hydrogels incorporating this nanomaterial could be assembled (DOX/DOPA-rGO@TMgel). When breast cancer cells were incubated with DOPA-rGO@TMgel and exposed to NIR light (photothermal therapy), their viability was reduced to about 59 %. On the other hand, DOX/DOPA-rGO@TMgel (chemotherapy) reduced cancer cells' viability to 50 %. In stark contrast, the combined action of DOX/DOPA-rGO@TMgel and NIR light decreased breast cancer cells' viability to just 21 %, highlighting its chemo-photothermal potential.


Asunto(s)
Neoplasias de la Mama , Quitosano , Grafito , Hipertermia Inducida , Nanoestructuras , Humanos , Femenino , Grafito/química , Terapia Fototérmica , Hidrogeles/química , Compuestos de Sulfhidrilo , Ácido Hialurónico/química , Doxorrubicina , Neoplasias de la Mama/tratamiento farmacológico , Polímeros/química , Maleimidas , Dihidroxifenilalanina , Fototerapia , Línea Celular Tumoral
19.
Acta Biomater ; 137: 186-198, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634508

RESUMEN

MSI-78A (Pexiganan A) is one of the few antimicrobial peptides (AMPs) able to kill Helicobacter pylori, a pathogenic bacterium that colonizes the gastric mucosa of half of the world's population. Antibiotics fail in 20-40% of H. pylori-infected patients, reinforcing the need for alternative treatments. Herein, a bioengineered approach was developed. MSI-78A with a C-terminal cysteine was grafted onto chitosan microspheres (AMP-ChMic) by thiol-maleimide (Michael-addition) chemistry using a long heterobifunctional spacer (NHS-PEG113-MAL). Microspheres with ∼4 µm diameter (near H. pylori length) and stable at low pH were produced by spray drying using a chitosan solution with an incomplete genipin crosslinking. A 3 × 10-5 µg AMP/microsphere grafting was estimated/confirmed by UV/Vis and FTIR spectroscopies. AMP-ChMic were bactericidal against H. pylori J99 (highly pathogenic human strain) at lower concentrations than the free peptide (∼277 µg grafted MSI-78A-SH/mL vs 512 µg free MSI-78A-SH/mL), even after pre-incubation in simulated gastric conditions with pepsin. AMP-ChMic killed H. pylori by membrane destabilization and cytoplasm release in a ratio of ∼10 bacteria/microsphere. This can be attributed to H. pylori attraction to chitosan, facilitating the interaction of grafted AMP with bacterium membrane. Overall, it was demonstrated that the peptide-microsphere conjugation chemistry did not compromise the MSI-78A antimicrobial activity, instead it boosted its bactericidal performance against H. pylori. STATEMENT OF SIGNIFICANCE: Half of the world's population is infected with Helicobacter pylori, a gastric bacterium that is responsible for 90% of non-cardia gastric cancers. Therefore, H. pylori eradication is now advocated in all infected individuals. However, available antibiotic therapies fail in up to 40% patients. Antimicrobial peptides (AMPs) are appealing alternatives to antibiotics, but their high susceptibility in vivo limits their clinical translation. AMP immobilization onto biomaterials surface will overcome this problem. Herein, we demonstrate that immobilization of MSI-78A (one of the few AMPs with activity against H. pylori) onto chitosan microspheres (AMP-ChMic) enhances its anti-H. pylori activity even at acidic pH (gastric settings). These results highlight the strong potential of AMP-ChMic as an antibiotic alternative for H. pylori eradication.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos/farmacología , Quitosano , Helicobacter pylori , Antibacterianos/farmacología , Quitosano/farmacología , Infecciones por Helicobacter , Helicobacter pylori/efectos de los fármacos , Humanos , Microesferas
20.
Nanomaterials (Basel) ; 12(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35159922

RESUMEN

Hybrid nanomaterials possess the properties of both organic and inorganic components and find applications in various fields of research and technology. In this study, aerosol photopolymerization is used in combination with thiol-ene chemistry to produce silver poly(thio-ether) hybrid nanospheres. In aerosol photopolymerization, a spray solution of monomers is atomized, forming a droplet aerosol, which then polymerizes, producing spherical polymer nanoparticles. To produce silver poly(thio-ether) hybrids, silver nanoparticles were introduced to the spray solution. Diverse methods of stabilization were used to produce stable dispersions of silver nanoparticles to prevent their agglomeration before the photopolymerization process. Successfully stabilized silver nanoparticle dispersion in the spray solution subsequently formed nanocomposites with non-agglomerated silver nanoparticles inside the polymer matrix. Nanocomposite particles were analyzed via scanning and transmission electron microscopy to study the degree of agglomeration of silver nanoparticles and their location inside the polymer spheres. The nanoparticle hybrids were then introduced onto various biofunctionalization reactions. A two-step bioconjugation process was developed involving the hybrid nanoparticles: (1) conjugation of (biotin)-maleimide to thiol-groups on the polymer network of the hybrids, and (2) biotin-streptavidin binding. The biofunctionalization with gold-nanoparticle-conjugates was carried out to confirm the reactivity of -SH groups on each conjugation step. Fluorescence-labeled biomolecules were conjugated to the spherical nanoparticle hybrids (applying the two-step bioconjugation process) verified by Fluorescence Spectroscopy and Fluorescence Microscopy. The presented research offers an effective method of synthesis of smart systems that can further be used in biosensors and various other biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA