Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Immunol ; 70: 101817, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37572552

RESUMEN

The secondary lymphoid organs (SLOs) undergo structural changes with age, which correlates with diminishing immune responses against infectious disease. A growing body of research suggests that the aged tissue microenvironment can contribute to decreased immune function, independent of intrinsic changes to hematopoietic cells with age. Stromal cells impart structural integrity, facilitate fluid transport, and provide chemokine and cytokine signals that are essential for immune homeostasis. Mechanisms that drive SLO development have been described, but their roles in SLO maintenance with advanced age are unknown. Disorganization of the fibroblasts of the T cell and B cell zones may reduce the maintenance of naïve lymphocytes and delay immune activation. Reduced lymphatic transport efficiency with age can also delay the onset of the adaptive immune response. This review focuses on recent studies that describe age-associated changes to the stroma of the lymph nodes and spleen. We also review recent investigations into stromal cell biology, which include high-dimensional analysis of the stromal cell transcriptome and viscoelastic testing of lymph node mechanical properties, as they constitute an important framework for understanding aging of the lymphoid tissues.


Asunto(s)
Ganglios Linfáticos , Tejido Linfoide , Humanos , Anciano , Linfocitos B , Inmunidad Adaptativa , Envejecimiento
2.
J Biol Chem ; 300(6): 107328, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679332

RESUMEN

Management of chronic obesity-associated metabolic disorders is a key challenge for biomedical researchers. During chronic obesity, visceral adipose tissue (VAT) undergoes substantial transformation characterized by a unique lipid-rich hypoxic AT microenvironment which plays a crucial role in VAT dysfunction, leading to insulin resistance (IR) and type 2 diabetes. Here, we demonstrate that obese AT microenvironment triggers the release of miR-210-3p microRNA-loaded extracellular vesicles from adipose tissue macrophages, which disseminate miR-210-3p to neighboring adipocytes, skeletal muscle cells, and hepatocytes through paracrine and endocrine actions, thereby influencing insulin sensitivity. Moreover, EVs collected from Dicer-silenced miR-210-3p-overexpressed bone marrow-derived macrophages induce glucose intolerance and IR in lean mice. Mechanistically, miR-210-3p interacts with the 3'-UTR of GLUT4 mRNA and silences its expression, compromising cellular glucose uptake and insulin sensitivity. Therapeutic inhibition of miR-210-3p in VAT notably rescues high-fat diet-fed mice from obesity-induced systemic glucose intolerance. Thus, targeting adipose tissue macrophage-specific miR-210-3p during obesity could be a promising strategy for managing IR and type 2 diabetes.


Asunto(s)
Transportador de Glucosa de Tipo 4 , Resistencia a la Insulina , Macrófagos , MicroARNs , Obesidad , MicroARNs/genética , MicroARNs/metabolismo , Animales , Obesidad/metabolismo , Obesidad/genética , Obesidad/patología , Macrófagos/metabolismo , Ratones , Transportador de Glucosa de Tipo 4/metabolismo , Transportador de Glucosa de Tipo 4/genética , Masculino , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Humanos , Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/patología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología
3.
Am J Physiol Cell Physiol ; 326(5): C1308-C1319, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497112

RESUMEN

Integrin receptors for the extracellular matrix activate intracellular signaling pathways that are critical for tissue development, homeostasis, and regeneration/repair, and their loss or dysregulation contributes to many developmental defects and tissue pathologies. This review will focus on tissue remodeling roles for integrin α3ß1, a receptor for laminins found in the basement membranes (BMs) that underlie epithelial cell layers. As a paradigm, we will discuss literature that supports a role for α3ß1 in promoting ability of epidermal keratinocytes to modify their tissue microenvironment during skin development, wound healing, or tumorigenesis. Preclinical and clinical studies have shown that this role depends largely on ability of α3ß1 to govern the keratinocyte's repertoire of secreted proteins, or the "secretome," including 1) matrix proteins and proteases involved in matrix remodeling and 2) paracrine-acting growth factors/cytokines that stimulate other cells with important tissue remodeling functions (e.g., endothelial cells, fibroblasts, inflammatory cells). Moreover, α3ß1 signaling controls gene expression that helps epithelial cells carry out these functions, including genes that encode secreted matrix proteins, proteases, growth factors, or cytokines. We will review what is known about α3ß1-dependent gene regulation through both transcription and posttranscriptional mRNA stability. Regarding the latter, we will discuss examples of α3ß1-dependent alternative splicing (AS) or alternative polyadenylation (APA) that prevents inclusion of cis-acting mRNA sequences that would otherwise target the transcript for degradation via nonsense-mediated decay or destabilizing AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR). Finally, we will discuss prospects and anticipated challenges of exploiting α3ß1 as a clinical target for the treatment of cancer or wound healing.


Asunto(s)
Células Endoteliales , Integrina alfa3beta1 , Integrina alfa3beta1/genética , Integrina alfa3beta1/metabolismo , Células Endoteliales/metabolismo , Queratinocitos/metabolismo , Péptido Hidrolasas/metabolismo , Citocinas/metabolismo , Adhesión Celular
4.
Infect Immun ; 92(9): e0047623, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38829045

RESUMEN

Macrophages are dynamic innate immune cells that either reside in tissue, serving as sentinels, or recruited as monocytes from bone marrow into inflamed and infected tissue. In response to cues in the tissue microenvironment (TME), macrophages polarize on a continuum toward M1 or M2 with diverse roles in progression and resolution of disease. M1-like macrophages exhibit proinflammatory functions with antimicrobial and anti-tumorigenic activities, while M2-like macrophages have anti-inflammatory functions that generally resolve inflammatory responses and orchestrate a tissue healing process. Given these opposite phenotypes, proper spatiotemporal coordination of macrophage polarization in response to cues within the TME is critical to effectively resolve infectious disease and regulate wound healing. However, if this spatiotemporal coordination becomes disrupted due to persistent infection or dysregulated coagulation, macrophages' inappropriate response to these cues will result in the development of diseases with clinically unfavorable outcomes. Since plasticity and heterogeneity are hallmarks of macrophages, they are attractive targets for therapies to reprogram toward specific phenotypes that could resolve disease and favor clinical prognosis. In this review, we discuss how basic science studies have elucidated macrophage polarization mechanisms in TMEs during infections and inflammation, particularly coagulation. Therefore, understanding the dynamics of macrophage polarization within TMEs in diseases is important in further development of targeted therapies.


Asunto(s)
Macrófagos , Humanos , Macrófagos/inmunología , Animales , Inflamación/inmunología , Activación de Macrófagos
5.
Histochem Cell Biol ; 159(4): 353-361, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36598563

RESUMEN

This study provides a combined histochemical method for detecting enzyme activity of chloroacetate esterase simultaneously with immunolabeling of the components of a specific tissue microenvironment on formalin-fixed, paraffin-embedded specimens. Chromogenic detection of the molecular targets within and outside the mast cells provides novel options in determining the histoarchitectonics of organ-specific mast cell populations, studying the functional significance of chloroacetate esterase and specifying the immune landscape of the tissue microenvironment.


Asunto(s)
Hidrolasas de Éster Carboxílico , Mastocitos , Hidrolasas de Éster Carboxílico/análisis , Técnicas Histológicas , Colorantes
6.
J Transl Med ; 21(1): 327, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198647

RESUMEN

The pathogenesis of osteoporosis involves multiple factors, among which alterations in the bone microenvironment play a crucial role in disrupting normal bone metabolic balance. Transient receptor potential vanilloid 5 (TRPV5), a member of the TRPV family, is an essential determinant of the bone microenvironment, acting at multiple levels to influence its properties. TRPV5 exerts a pivotal influence on bone through the regulation of calcium reabsorption and transportation while also responding to steroid hormones and agonists. Although the metabolic consequences of osteoporosis, such as loss of bone calcium, reduced mineralization capacity, and active osteoclasts, have received significant attention, this review focuses on the changes in the osteoporotic microenvironment and the specific effects of TRPV5 at various levels.


Asunto(s)
Antineoplásicos , Osteoporosis , Humanos , Calcio/metabolismo , Canales de Calcio/metabolismo , Osteoporosis/metabolismo , Osteoclastos , Huesos/metabolismo , Antineoplásicos/farmacología , Canales Catiónicos TRPV
7.
Surg Today ; 53(5): 545-553, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35576018

RESUMEN

The "bystander effect" is a transmission phenomenon mediating communication from target to non-target cells, as well as cell-to-cell interactions between neighboring and distantly located cells. In this narrative review, we describe the fundamental and clinical significance of the bystander effect with respect to cell-to-cell interactions in carcinogenesis, therapeutic response, and tissue regeneration. In carcinogenesis, the bystander effect mediates communications between tumor microenvironments and non-malignant epithelial cells and has been suggested to impact heterogeneous tumorigenic cells in tumors and cancerized fields. In therapeutic response, the bystander effect mediates communications between drug-sensitive and drug-resistant cells and may transmit both drug efficacy and resistance. Therefore, control of therapeutic response transmission via the bystander effect might offer a promising future cancer treatment. Finally, in tissue regeneration, circulating cells and stromal cells may differentiate into various cells for the purpose of tissue regeneration under direction of the bystander effect arising from surrounding cells in a defective space. We hope that the findings we present will promote the development of innovative cancer therapies and tissue regeneration methodologies from the viewpoint of cell-to-cell interactions through the bystander effect.


Asunto(s)
Efecto Espectador , Neoplasias , Humanos , Neoplasias/terapia , Comunicación Celular , Carcinogénesis , Microambiente Tumoral
8.
Altern Lab Anim ; 51(4): 263-288, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37282515

RESUMEN

Animal experimentation has been integral to drug discovery and development and safety assessment for many years, since it provides insights into the mechanisms of drug efficacy and toxicity (e.g. pharmacology, pharmacokinetics and pharmacodynamics). However, due to species differences in physiology, metabolism and sensitivity to drugs, the animal models can often fail to replicate the effects of drugs and chemicals in human patients, workers and consumers. Researchers across the globe are increasingly applying the Three Rs principles by employing innovative methods in research and testing. The Three Rs concept focuses on: the replacement of animal models (e.g. with in vitro and in silico models or human studies), on the reduction of the number of animals required to achieve research objectives, and on the refinement of existing experimental practices (e.g. eliminating distress and enhancing animal wellbeing). For the last two years, Oncoseek Bio-Acasta Health, a 3-D cell culture-based cutting-edge translational biotechnology company, has organised an annual International Conference on 3Rs Research and Progress. This series of global conferences aims to bring together researchers with diverse expertise and interests, and provides a platform where they can share and discuss their research to promote practices according to the Three Rs principles. In November 2022, the 3rd international conference, Advances in Animal Models and Cutting-Edge Research in Alternatives, took place at the GITAM University in Vishakhapatnam (AP, India) in a hybrid format (i.e. online and in-person). These conference proceedings provide details of the presentations, which were categorised under five different topic sessions. It also describes a special interactive session on in silico strategies for preclinical research in oncology, which was held at the end of the first day.


Asunto(s)
Experimentación Animal , Animales , Humanos , Modelos Animales , Descubrimiento de Drogas , India , Alternativas a las Pruebas en Animales
9.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047472

RESUMEN

The mechanisms of ovarian endometrioid cyst formation, or cystic ovarian endometriosis, still remain to be elucidated. To address this issue, we analyzed the involvement of mast cell (MC) tryptase and carboxypeptidase A3 (CPA3) in the development of endometriomas. It was found that the formation of endometrioid cysts was accompanied by an increased MC population in the ovarian medulla, as well as by an MC appearance in the cortical substance. The formation of MC subpopulations was associated with endometrioma wall structures. An active, targeted secretion of tryptase and CPA3 to the epithelium of endometrioid cysts, immunocompetent cells, and the cells of the cytogenic ovarian stroma was detected. The identification of specific proteases in the cell nuclei of the ovarian local tissue microenvironment suggests new mechanisms for the regulatory effects of MCs. The cytoplasmic outgrowths of MCs propagate in the structures of the stroma over a considerable distance; they offer new potentials for MC effects on the structures of the ovarian-specific tissue microenvironment under pathological conditions. Our findings indicate the potential roles of MC tryptase and CPA3 in the development of ovarian endometriomas and infer new perspectives on their uses as pharmacological targets in personalized medicine.


Asunto(s)
Quistes , Endometriosis , Humanos , Femenino , Triptasas , Mastocitos , Carboxipeptidasas , Quimasas , Microambiente Tumoral
10.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239926

RESUMEN

The COVID-19 pandemic caused by the SARS-CoV-2 coronavirus remains a global public health concern due to the systemic nature of the infection and its long-term consequences, many of which remain to be elucidated. SARS-CoV-2 targets endothelial cells and blood vessels, altering the tissue microenvironment, its secretion, immune-cell subpopulations, the extracellular matrix, and the molecular composition and mechanical properties. The female reproductive system has high regenerative potential, but can accumulate damage, including due to SARS-CoV-2. COVID-19 is profibrotic and can change the tissue microenvironment toward an oncogenic niche. This makes COVID-19 and its consequences one of the potential regulators of a homeostasis shift toward oncopathology and fibrosis in the tissues of the female reproductive system. We are looking at SARS-CoV-2-induced changes at all levels in the female reproductive system.


Asunto(s)
COVID-19 , Femenino , Humanos , SARS-CoV-2 , Pandemias , Células Endoteliales , Fibrosis , Genitales Femeninos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA