Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(27): e2409257121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917009

RESUMEN

Dynamic protein structures are crucial for deciphering their diverse biological functions. Two-dimensional infrared (2DIR) spectroscopy stands as an ideal tool for tracing rapid conformational evolutions in proteins. However, linking spectral characteristics to dynamic structures poses a formidable challenge. Here, we present a pretrained machine learning model based on 2DIR spectra analysis. This model has learned signal features from approximately 204,300 spectra to establish a "spectrum-structure" correlation, thereby tracing the dynamic conformations of proteins. It excels in accurately predicting the dynamic content changes of various secondary structures and demonstrates universal transferability on real folding trajectories spanning timescales from microseconds to milliseconds. Beyond exceptional predictive performance, the model offers attention-based spectral explanations of dynamic conformational changes. Our 2DIR-based pretrained model is anticipated to provide unique insights into the dynamic structural information of proteins in their native environments.


Asunto(s)
Aprendizaje Automático , Proteínas , Espectrofotometría Infrarroja , Proteínas/química , Espectrofotometría Infrarroja/métodos , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína
2.
Proc Natl Acad Sci U S A ; 121(41): e2414037121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39356673

RESUMEN

The ultrafast photochemical reaction mechanism, transient spectra, and transition kinetics of the human blue cone visual pigment have been recorded at room temperature. Ultrafast time-resolved absorption spectroscopy revealed the progressive formation and decay of several metastable photo-intermediates, corresponding to the Batho to Meta-II photo-intermediates previously observed with bovine rhodopsin and human green cone opsin, on the picosecond to millisecond timescales following pulsed excitation. The experimental data reveal several interesting similarities and differences between the photobleaching sequences of bovine rhodopsin, human green cone opsin, and human blue cone opsin. While Meta-II formation kinetics are comparable between bovine rhodopsin and blue cone opsin, the transition kinetics of earlier photo-intermediates and qualitative characteristics of the Meta-I to Meta-II transition are more similar for blue cone opsin and green cone opsin. Additionally, the blue cone photo-intermediate spectra exhibit a high degree of overlap with uniquely small spectral shifts. The observed variation in Meta-II formation kinetics between rod and cone visual pigments is explained based on key structural differences.


Asunto(s)
Temperatura , Humanos , Cinética , Bovinos , Animales , Opsinas de los Conos/metabolismo , Opsinas de los Conos/química , Rodopsina/química , Rodopsina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Opsinas de Bastones/química , Opsinas de Bastones/metabolismo , Pigmentos Retinianos/química , Pigmentos Retinianos/metabolismo , Análisis Espectral/métodos
3.
Proc Natl Acad Sci U S A ; 120(12): e2208968120, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36917673

RESUMEN

Strong interactions between different degrees of freedom lead to exotic phases of matter with complex order parameters and emergent collective excitations. Conventional techniques, such as scattering and transport, probe the amplitudes of these excitations, but they are typically insensitive to phase. Therefore, novel methods with phase sensitivity are required to understand ground states with phase modulations and interactions that couple to the phase of collective modes. Here, by performing phase-resolved coherent phonon spectroscopy (CPS), we reveal a hidden spin-lattice coupling in a vdW antiferromagnet FePS3 that eluded other phase-insensitive conventional probes, such as Raman and X-ray scattering. With comparative analysis and analytical calculations, we directly show that the magnetic order in FePS3 selectively couples to the trigonal distortions through partially filled t2g orbitals. This magnetoelastic coupling is linear in magnetic order and lattice parameters, rendering these distortions inaccessible to inelastic scattering techniques. Our results not only capture the elusive spin-lattice coupling in FePS3 but also establish phase-resolved CPS as a tool to investigate hidden interactions.

4.
Proc Natl Acad Sci U S A ; 120(15): e2221725120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37014859

RESUMEN

The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields. In compound semiconductors, these dynamics can be probed via any of their atomic constituents with core-level transitions into valence and conduction band. Typically, the atomic species forming the compound contribute comparably to the relevant electronic properties of the material. One therefore expects to observe similar dynamics, irrespective of the choice of atomic species via which it is probed. Here, we show in the two-dimensional transition metal dichalcogenide semiconductor MoSe2, that through a selenium-based core-level transition we observe charge carriers acting independently from each other, while when probed through molybdenum, the collective, many-body motion of the carriers dominates. Such unexpectedly contrasting behavior can be explained by a strong localization of electrons around molybdenum atoms following absorption of light, which modifies the local fields acting on the carriers. We show that similar behavior in elemental titanium metal [M. Volkov et al., Nat. Phys. 15, 1145-1149 (2019)] carries over to transition metal-containing compounds and is expected to play an essential role for a wide range of such materials. Knowledge of independent particle and collective response is essential for fully understanding these materials.

5.
Proc Natl Acad Sci U S A ; 120(28): e2220477120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399405

RESUMEN

In photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical reactions. While the energy transfer dynamics within individual antenna proteins have been extensively studied over the past decades, the dynamics between the proteins are poorly understood due to the heterogeneous organization of the network. Previously reported timescales averaged over such heterogeneity, obscuring individual interprotein energy transfer steps. Here, we isolated and interrogated interprotein energy transfer by embedding two variants of the primary antenna protein from purple bacteria, light-harvesting complex 2 (LH2), together into a near-native membrane disc, known as a nanodisc. We integrated ultrafast transient absorption spectroscopy, quantum dynamics simulations, and cryogenic electron microscopy to determine interprotein energy transfer timescales. By varying the diameter of the nanodiscs, we replicated a range of distances between the proteins. The closest distance possible between neighboring LH2, which is the most common in native membranes, is 25 Šand resulted in a timescale of 5.7 ps. Larger distances of 28 to 31 Šresulted in timescales of 10 to 14 ps. Corresponding simulations showed that the fast energy transfer steps between closely spaced LH2 increase transport distances by ∼15%. Overall, our results introduce a framework for well-controlled studies of interprotein energy transfer dynamics and suggest that protein pairs serve as the primary pathway for the efficient transport of solar energy.


Asunto(s)
Complejos de Proteína Captadores de Luz , Proteobacteria , Proteobacteria/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Análisis Espectral , Transferencia de Energía
6.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35181610

RESUMEN

The photophysical properties of anionic semireduced flavin radicals are largely unknown despite their importance in numerous biochemical reactions. Here, we studied the photoproducts of these intrinsically unstable species in five different flavoprotein oxidases where they can be stabilized, including the well-characterized glucose oxidase. Using ultrafast absorption and fluorescence spectroscopy, we unexpectedly found that photoexcitation systematically results in the oxidation of protein-bound anionic flavin radicals on a time scale of less than ∼100 fs. The thus generated photoproducts decay back in the remarkably narrow 10- to 20-ps time range. Based on molecular dynamics and quantum mechanics computations, positively charged active-site histidine and arginine residues are proposed to be the electron acceptor candidates. Altogether, we established that, in addition to the commonly known and extensively studied photoreduction of oxidized flavins in flavoproteins, the reverse process (i.e., the photooxidation of anionic flavin radicals) can also occur. We propose that this process may constitute an excited-state deactivation pathway for protein-bound anionic flavin radicals in general. This hitherto undocumented photochemical reaction in flavoproteins further extends the family of flavin photocycles.


Asunto(s)
Dinitrocresoles/química , Transporte de Electrón/fisiología , Flavoproteínas/química , Aniones , Dominio Catalítico/fisiología , Dinitrocresoles/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/metabolismo , Flavoproteínas/metabolismo , Cinética , Luz , Modelos Moleculares , Simulación de Dinámica Molecular , Oxidación-Reducción , Oxidorreductasas/metabolismo , Espectrofotometría/métodos
7.
Proc Natl Acad Sci U S A ; 119(42): e2208033119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215463

RESUMEN

The photosystem II core complex (PSII-CC) is the smallest subunit of the oxygenic photosynthetic apparatus that contains core antennas and a reaction center, which together allow for rapid energy transfer and charge separation, ultimately leading to efficient solar energy conversion. However, there is a lack of consensus on the interplay between the energy transfer and charge separation dynamics of the core complex. Here, we report the application of two-dimensional electronic-vibrational (2DEV) spectroscopy to the spinach PSII-CC at 77 K. The simultaneous temporal and spectral resolution afforded by 2DEV spectroscopy facilitates the separation and direct assignment of coexisting dynamical processes. Our results show that the dominant dynamics of the PSII-CC are distinct in different excitation energy regions. By separating the excitation regions, we are able to distinguish the intraprotein dynamics and interprotein energy transfer. Additionally, with the improved resolution, we are able to identify the key pigments involved in the pathways, allowing for a direct connection between dynamical and structural information. Specifically, we show that C505 in CP43 and the peripheral chlorophyll ChlzD1 in the reaction center are most likely responsible for energy transfer from CP43 to the reaction center.


Asunto(s)
Clorofila , Complejo de Proteína del Fotosistema II , Clorofila/metabolismo , Transferencia de Energía , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Análisis Espectral
8.
Proc Natl Acad Sci U S A ; 119(43): e2212343119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36227945

RESUMEN

The natural black-brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter. However, the extreme chemical and physical complexity of eumelanin masks its photoprotection mechanism. We sought to determine the electronic and structural relaxation pathways in eumelanin using three complementary ultrafast optical spectroscopy methods: fluorescence, transient absorption, and stimulated Raman spectroscopies. We show that photoexcitation of chromophores across the UV-visible spectrum rapidly generates a distribution of visible excitation energies via ultrafast internal conversion among neighboring coupled chromophores, and then all these excitations relax on a timescale of ∼4 ps without transferring their energy to other chromophores. Moreover, these picosecond dynamics are shared by the monomeric building block, 5,6-dihydroxyindole-2-carboxylic acid. Through a series of solvent and pH-dependent measurements complemented by quantum chemical modeling, we show that these ultrafast dynamics are consistent with the partial excited-state proton transfer from the catechol hydroxy groups to the solvent. The use of this multispectroscopic approach allows the minimal functional unit in eumelanin and the role of exciton coupling and excited-state proton transfer to be determined, and ultimately reveals the mechanism of photoprotection in eumelanin. This knowledge has potential for use in the design of new soft optical components and organic sunscreens.


Asunto(s)
Protones , Protectores Solares , Catecoles , Humanos , Melaninas , Solventes
9.
Proc Natl Acad Sci U S A ; 119(18): e2202713119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476517

RESUMEN

Protein secondary structure discrimination is crucial for understanding their biological function. It is not generally possible to invert spectroscopic data to yield the structure. We present a machine learning protocol which uses two-dimensional UV (2DUV) spectra as pattern recognition descriptors, aiming at automated protein secondary structure determination from spectroscopic features. Accurate secondary structure recognition is obtained for homologous (97%) and nonhomologous (91%) protein segments, randomly selected from simulated model datasets. The advantage of 2DUV descriptors over one-dimensional linear absorption and circular dichroism spectra lies in the cross-peak information that reflects interactions between local regions of the protein. Thanks to their ultrafast (∼200 fs) nature, 2DUV measurements can be used in the future to probe conformational variations in the course of protein dynamics.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Proteínas , Análisis Espectral
10.
Proc Natl Acad Sci U S A ; 119(25): e2204219119, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35704757

RESUMEN

We explore pump-probe high harmonic generation (HHG) from monolayer hexagonal-boron-nitride, where a terahertz pump excites coherent optical phonons that are subsequently probed by an intense infrared pulse that drives HHG. We find, through state-of-the-art ab initio calculations, that the structure of the emission spectrum is attenuated by the presence of coherent phonons and no longer comprises discrete harmonic orders, but rather a continuous emission in the plateau region. The HHG yield strongly oscillates as a function of the pump-probe delay, corresponding to ultrafast changes in the lattice such as specific bond compression or stretching dynamics. We further show that in the regime where the excited phonon period and the pulse duration are of the same order of magnitude, the HHG process becomes sensitive to the carrier-envelope phase (CEP) of the driving field, even though the pulse duration is so long that no such sensitivity is observed in the absence of coherent phonons. The degree of CEP sensitivity versus pump-probe delay is shown to be a highly selective measure for instantaneous structural changes in the lattice, providing an approach for ultrafast multidimensional HHG spectroscopy. Remarkably, the obtained temporal resolution for phonon dynamics is ∼1 femtosecond, which is much shorter than the probe pulse duration because of the inherent subcycle contrast mechanism. Our work paves the way toward routes of probing phonons and ultrafast material structural changes with subcycle temporal resolution and provides a mechanism for controlling the HHG spectrum.

11.
Proc Natl Acad Sci U S A ; 119(15): e2119726119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35380900

RESUMEN

Intense light­matter interactions and unique structural and electrical properties make van der Waals heterostructures composed by graphene (Gr) and monolayer transition metal dichalcogenides (TMD) promising building blocks for tunneling transistors and flexible electronics, as well as optoelectronic devices, including photodetectors, photovoltaics, and quantum light emitting devices (QLEDs), bright and narrow-line emitters using minimal amounts of active absorber material. The performance of such devices is critically ruled by interlayer interactions which are still poorly understood in many respects. Specifically, two classes of coupling mechanisms have been proposed, charge transfer (CT) and energy transfer (ET), but their relative efficiency and the underlying physics are open questions. Here, building on a time-resolved Raman scattering experiment, we determine the electronic temperature profile of Gr in response to TMD photoexcitation, tracking the picosecond dynamics of the G and 2D Raman bands. Compelling evidence for a dominant role of the ET process accomplished within a characteristic time of ∼4 ps is provided. Our results suggest the existence of an intermediate process between the observed picosecond ET and the generation of a net charge underlying the slower electric signals detected in optoelectronic applications.

12.
Nano Lett ; 24(29): 9096-9103, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38985893

RESUMEN

The field of molecular electronics has emerged from efforts to understand electron propagation through single molecules and to use them in electronic circuits. Serving as a testbed for advanced theoretical methods, it reveals a significant discrepancy between the operational time scales of experiments (static to GHz frequencies) and theoretical models (femtoseconds). Utilizing a recently developed time-linear nonequilibrium Green function formalism, we model molecular junctions on experimentally accessible time scales. Our study focuses on the quantum pump effect in a benzenedithiol molecule connected to two copper electrodes and coupled with cavity photons. By calculating both electric and photonic current responses to an ac bias voltage, we observe pronounced electroluminescence and high harmonic generation in this setup. The mechanism of the latter effect is more analogous to that from solids than from isolated molecules, with even harmonics being suppressed or enhanced depending on the symmetry of the driving field.

13.
Nano Lett ; 24(26): 8117-8125, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38901032

RESUMEN

Transition metal dichalcogenides (TMDs) are quantum confined systems with interesting optoelectronic properties, governed by Coulomb interactions in the monolayer (1L) limit, where strongly bound excitons provide a sensitive probe for many-body interactions. Here, we use two-dimensional electronic spectroscopy (2DES) to investigate many-body interactions and their dynamics in 1L-WS2 at room temperature and with sub-10 fs time resolution. Our data reveal coherent interactions between the strongly detuned A and B exciton states in 1L-WS2. Pronounced ultrafast oscillations of the transient optical response of the B exciton are the signature of a coherent 50 meV coupling and coherent population oscillations between the two exciton states. Supported by microscopic semiconductor Bloch equation simulations, these coherent dynamics are rationalized in terms of Dexter-like interactions. Our work sheds light on the role of coherent exciton couplings and many-body interactions in the ultrafast temporal evolution of spin and valley states in TMDs.

14.
Nano Lett ; 24(3): 797-804, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38189787

RESUMEN

Structurally well-defined graphene nanoribbons (GNRs) are nanostructures with unique optoelectronic properties. In the liquid phase, strong aggregation typically hampers the assessment of their intrinsic properties. Recently we reported a novel type of GNRs, decorated with aliphatic side chains, yielding dispersions consisting mostly of isolated GNRs. Here we employ two-dimensional electronic spectroscopy to unravel the optical properties of isolated GNRs and disentangle the transitions underlying their broad and rather featureless absorption band. We observe that vibronic coupling, typically neglected in modeling, plays a dominant role in the optical properties of GNRs. Moreover, a strong environmental effect is revealed by a large inhomogeneous broadening of the electronic transitions. Finally, we also show that the photoexcited bright state decays, on the 150 fs time scale, to a dark state which is in thermal equilibrium with the bright state, that remains responsible for the emission on nanosecond time scales.

15.
Nano Lett ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39388607

RESUMEN

Quantum-dot (QD) light-emitting diodes (QLEDs) are promising candidates for future display technology. An imbalance in the injection of electrons and holes into QLEDs leads to the accumulation of excess charges, predominantly electrons, in the QDs. The precise effects of these accumulated electrons have not yet been fully quantified. This study examines how electron accumulation affects QLED efficiency by operating multiple QLEDs at the same voltage and analyzing the correlation between device efficiency and the number of accumulated electrons, as measured by using electrically pumped transient absorption technology. We analyzed 186 QLED devices made with QDs of different colors and quantum yields. Our results show that when QLEDs utilize QDs with a quantum yield of 95%, electron accumulation indeed reduces device efficiency. However, in QLEDs using QDs with a quantum yield below 70%, a higher density of accumulated electrons enhances the device efficiency.

16.
Nano Lett ; 24(40): 12576-12581, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39331651

RESUMEN

Single-molecule fluorescence spectroscopy is a powerful method that avoids ensemble averaging, but its temporal resolution is limited by the fluorescence lifetime to nanoseconds at most. At the ensemble level, two-dimensional spectroscopy provides insight into ultrafast femtosecond processes, such as energy transfer and line broadening, even beyond the Fourier limit, by correlating pump and probe spectra. Here, we combine these two techniques and demonstrate coherent 2D spectroscopy of individual dibenzoterrylene (DBT) molecules at room temperature. We excite the molecule in a confocal microscope with a phase-modulated train of femtosecond pulses and detect the emitted fluorescence with single-photon counting detectors. Using a phase-sensitive detection scheme, we were able to measure the nonlinear 2D spectra of most of the DBT molecules that we studied. Our method is applicable to a wide range of single emitters and opens new avenues for understanding energy transfer in single quantum objects on ultrafast time scales.

17.
Nano Lett ; 24(30): 9337-9344, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39038175

RESUMEN

Localized surface plasmon resonances (LSPRs) can enhance the electromagnetic fields on metallic nanostructures upon light illumination, providing an approach for manipulating light-matter interactions at the sub-wavelength scale. However, currently, there is no thorough investigation of the physical mechanism in the dynamic formation of the strongly coupled LSPRs on sub-5 nm plasmonic cavities at the sub-picosecond scale. In this work, through femtosecond broadband transient absorption spectroscopy, we reveal the dynamic ultrastrong coupling processes in a nanoparticle-in-trench (NPiT) structure containing 2 nm gap cavities, and demonstrate a coherent motional coupling between vibrating AuNPs and the nanogaps. We achieve a maximum Rabi splitting energy of ∼660 meV in the sub-picosecond hot-electron relaxation time scale under the resonant excitation of the nanogap cavity's LSPR, reaching the ultrastrong coupling regime. This leads to a change of global vibration modes for the 2 nm gap cavity, potentially related to the dynamical Casimir effect with nanogap resonators.

18.
Photosynth Res ; 161(3): 191-201, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38907135

RESUMEN

The ring-like peripheral light-harvesting complex 2 (LH2) expressed by many phototrophic purple bacteria is a popular model system in biological light-harvesting research due to its robustness, small size, and known crystal structure. Furthermore, the availability of structural variants with distinct electronic structures and optical properties has made this group of light harvesters an attractive testing ground for studies of structure-function relationships in biological systems. LH2 is one of several pigment-protein complexes for which a link between functionality and effects such as excitonic coherence and vibronic coupling has been proposed. While a direct connection has not yet been demonstrated, many such interactions are highly sensitive to resonance conditions, and a dependence of intra-complex dynamics on detailed electronic structure might be expected. To gauge the sensitivity of energy-level structure and relaxation dynamics to naturally occurring structural changes, we compare the photo-induced dynamics in two structurally distinct LH2 variants. Using polarization-controlled 2D electronic spectroscopy at cryogenic temperatures, we directly access information on dynamic and static disorder in the complexes. The simultaneous optimal spectral and temporal resolution of these experiments further allows us to characterize the ultrafast energy relaxation, including exciton transport within the complexes. Despite the variations in PPC molecular structure manifesting as clear differences in electronic structure and disorder, the energy-transport and-relaxation dynamics remain remarkably similar. This indicates that the light-harvesting functionality of purple bacteria within a single LH2 complex is highly robust to structural perturbations and likely does not rely on finely tuned electronic- or electron-vibrational resonance conditions.


Asunto(s)
Complejos de Proteína Captadores de Luz , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Rhodopseudomonas/metabolismo , Transferencia de Energía , Luz
19.
Photosynth Res ; 159(1): 79-91, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38363474

RESUMEN

Cyanobacterial photosynthetic apparatus efficiently capture sunlight, and the energy is subsequently transferred to photosystem I (PSI) and II (PSII), to produce electrochemical potentials. PSII is a unique membrane protein complex that photo-catalyzes oxidation of water and majorly contains photosynthetic pigments of chlorophyll a and carotenoids. In the present study, the ultrafast energy transfer and charge separation dynamics of PSII from a thermophilic cyanobacterium Thermosynechococcus vulcanus were reinvestigated by femtosecond pump-probe spectroscopic measurements under low temperature and weak intensity excitation condition. The results imply the two possible models of the energy transfers and subsequent charge separation in PSII. One is the previously suggested "transfer-to-trapped limit" model. Another model suggests that the energy transfers from core CP43 and CP47 antennas to the primary electron donor ChlD1 with time-constants of 0.71 ps and 3.28 ps at 140 K (0.17 and 1.33 ps at 296 K), respectively and that the pheophytin anion (PheoD1-) is generated with the time-constant of 43.0 ps at 140 K (14.8 ps at 296 K) upon excitation into the Qy band of chlorophyll a at 670 nm. The secondary electron transfer to quinone QA: PheoD1-QA → PheoD1QA- is observed with the time-constant of 650 ps only at 296 K. On the other hand, an inefficient ß-carotene → chlorophyll a energy transfer (33%) occurred after excitation to the S2 state of ß-carotene at 500 nm. Instead, the carotenoid triplet state appeared in an ultrafast timescale after excitation at 500 nm.


Asunto(s)
Cianobacterias , beta Caroteno , Clorofila A , beta Caroteno/metabolismo , Análisis Espectral , Transporte de Electrón , Cianobacterias/metabolismo , Carotenoides/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Thermosynechococcus
20.
Chemistry ; : e202402669, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39403879

RESUMEN

We have synthesized two dyads (dyad 1 and 2) comprising of tetraarylpyrrolo[3,2-b]pyrrole (TAPP) and BODIPY. In dyad 1, two BODIPYs are directly connected with TAPP moiety whereas in dyad 2, BODIPYs are connected through phenylethynyl linkers. TAPP is a blue energy donor which is easy to synthesize and functionalize as compared to other well-known blue energy donors like pyrene, perylene etc. This is the first report of using TAPP as an energy donor in BODIPY based dyad molecules. Complete quenching of TAPP fluorescence in the dyads suggests fast energy transfer from TAPP to BODIPY unit (ETE ~ 99.9%). Ultrafast fluorescence and transient absorption spectroscopic studies of dyad 1 showed TAPP to BODIPY energy transfer in 125 fs (kET = 8.0 x 1012 s-1) which is one of the fastest energy transfer events in BODIPY based dyad reported so far. Whereas, in dyad 2, energy transfer is almost four times slower (480 fs, kET = 2.1 x 1012 s-1). These results were rationalized by theoretical Förster formulations. This study shows that suitably matched optical properties of TAPP and BODIPY dyes along with their easy syntheses will be the key to develop highly efficient energy transfer systems in future for multiple applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA