Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biomech Eng ; 146(7)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581378

RESUMEN

Wildland firefighters (WLFFs) experience lung function decline due to occupational exposure to fire smoke. WLFFs typically do not wear respiratory personal protective equipment, and if they do, it is a simple bandana, which is not effective at filtering smoke. To pinpoint the biological underpinnings of abnormal respiratory function following 3-7 years of WLFF service, we exposed mice to Douglas fir smoke (DFS) over 8 weeks. Following exposure, we assessed changes in lung structure through Magnetic Resonance Imaging (MRI) and histological analysis, which was supported by immunohistochemistry staining. With MRI, we found that the signal decay time, T2*, from ultrashort echo time (UTE) images was significantly shorter in mice exposed to DFS compared to air controls. In addition, the variation in T2* was more heterogeneously distributed throughout the left lung in DFS-exposed mice, compared to air controls. As confirmed by histological analysis, shorter T2* was caused by larger parenchyma airspace sizes and not fibrotic remodeling. Destruction of the alveolar spaces was likely due to inflammation, as measured by an influx of CD68+ macrophages and destruction due to enhanced neutrophil elastase. In addition, measurements of airspace dimensions from histology were more heterogeneously distributed throughout the lung, corroborating the enhanced relative dispersion of T2*. Findings from this study suggest that the decline in lung function observed in WLFFs may be due to emphysema-like changes in the lung, which can be quantified with MRI.


Asunto(s)
Pulmón , Imagen por Resonancia Magnética , Humo , Animales , Ratones , Pulmón/diagnóstico por imagen , Pulmón/patología , Humo/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino , Remodelación de las Vías Aéreas (Respiratorias)
2.
J Environ Manage ; 354: 120270, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377748

RESUMEN

Solutions-driven research is a transdisciplinary approach that incorporates diverse forms of expertise to identify solutions to stakeholder-identified environmental problems. This qualitative evaluation of early solutions-driven research projects provides transferable recommendations to improve researcher and stakeholder experiences and outcomes in transdisciplinary environmental research projects. Researchers with the U.S. Environmental Protection Agency (EPA) Office of Research and Development recently piloted a solutions-driven research approach in two parallel projects; one addressing nutrient management related to coastal waters and another studying wildland fire smoke impacts on indoor air quality. Studying the experiences of those involved with these pilots can enhance the integration of researcher and experiential expertise, improving solutions-driven research outcomes. Data collection included semi-structured interviews with 17 EPA researchers and 12 other stakeholders and reflective case narratives from the authors. We used conventional content analysis to qualitatively analyze perspectives on implementing innovative engagement and research approaches in a solutions-driven process. Findings that reflect common perspectives include the importance of continuous engagement, the challenges of differing timelines and priorities for researchers and stakeholders, and the need to define consistent markers of success across researchers and stakeholders. Key lessons to improve transdisciplinary research identified from the analysis are (1) improving clarity of roles and responsibilities; (2) planning to provide sufficient, continuous project funding over multiple years; (3) expecting research needs and plans to adapt to evolving circumstances; and (4) clearly defining the end of the project.


Asunto(s)
Nutrientes , Salud Pública
3.
Medicina (Kaunas) ; 58(2)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35208563

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Smoking remains the most important risk factor, but occupational exposures may play an essential role as well. Firefighters are among occupations regularly exposed to a variety of irritative inhalational products, and they may be expected to develop respiratory health problems because of such an occupational exposure. To better understand and characterize this relationship, we performed an extensive search of the scientific literature, and we identified two major research areas: firefighters exposed to wildland fire smoke and firefighters involved in the World Trade Centre disaster-related operations. Most of the studies did not report a significant increase in COPD diagnosis in firefighters. An accelerated rate of decline in lung function was seen, a short time after major exposure events. This is the reason for an increased rate of exacerbations observed in individuals already diagnosed with obstructive respiratory disorders. A limited number of studies not covering these specific circumstances of exposure were found. They reported long-term morbidity and mortality data, and the results are controversial. Major confounding factors for most of the studies were the "healthy worker effect" and the lack of useful data regarding smoking habits. Efforts should be made in the future to better characterize specific biomarkers for the progression of COPD; to establish exposure limits; and to implement preventive strategies like rotation of workers, smoking cessation programs, and long-term monitoring programs for respiratory disorders.


Asunto(s)
Bomberos , Enfermedades Profesionales , Exposición Profesional , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Exposición Profesional/efectos adversos , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Humo
4.
Environ Res ; 193: 110541, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249041

RESUMEN

Wildland firefighters are repeatedly exposed to elevated levels of wildland fire smoke (WFS) while protecting lives and properties from wildland fires. Studies reporting personal exposure concentrations of air pollutants in WFS during fire suppression or prescribed burn activities have been geographically limited to the western and southeastern United States. The objective of this study is to characterize exposure concentrations of air pollutants in WFS emissions among wildland firefighters who conducted prescribed burns in the Midwest. Between 2016 and 2019, a total of 35 firefighters (31 males and 4 females, age of 35.63 ± 9.31 years) were recruited to participate in this study. Personal particulate matter 2.5 (PM2.5) and carbon monoxide (CO) exposure concentrations were measured during prescribed burns. The level of black carbon (BC) in WFS particulates was determined using the light transmission technique, while trace metal composition was analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results showed geometric means for PM2.5, CO, and BC concentrations were 1.43 ± 0.13 mg/m3, 7.02 ± 0.69 ppm, and 58.79 ± 5.46 µg/m3, respectively. Although no occupational exposure limits (OELs) were exceeded by 8-h time-weighted average (TWA) exposure concentration observed in the firefighters, a total of 28 personal CO exposure concentrations were above the National Institute for Occupational Safety and Health (NIOSH) Recommended Exposure Limit (REL) Ceiling (200 ppm) for CO. PM2.5 and CO concentrations were about 2-7 times higher in the Midwest than the other regions. Firefighters who performed holding had higher CO exposure concentrations compared to firefighters who performed lighting (p < 0.01), while lighters were exposed to higher level of BC in the smoke particulates (p < 0.01), possibly due to the domination of exposure by different combustion sources and stages. The levels of trace metals in WFS particulates were well below the corresponding OELs and no task-related difference was observed except for manganese. Our results suggest that wildland firefighters in the midwestern region have higher WFS exposures while working at prescribed burns compared to those western and southeastern United States.


Asunto(s)
Contaminantes Ocupacionales del Aire , Bomberos , Incendios , Exposición Profesional , Adulto , Contaminantes Ocupacionales del Aire/análisis , Femenino , Humanos , Exposición por Inhalación/análisis , Masculino , Persona de Mediana Edad , Medio Oeste de Estados Unidos/epidemiología , Exposición Profesional/análisis , Humo/análisis , Sudeste de Estados Unidos/epidemiología , Estados Unidos
5.
Artículo en Inglés | MEDLINE | ID: mdl-33889052

RESUMEN

Wildland fires can emit substantial amounts of air pollution that may pose a risk to those in proximity (e.g., first responders, nearby residents) as well as downwind populations. Quickly deploying air pollution measurement capabilities in response to incidents has been limited to date by the cost, complexity of implementation, and measurement accuracy. Emerging technologies including miniaturized direct-reading sensors, compact microprocessors, and wireless data communications provide new opportunities to detect air pollution in real time. The U.S. Environmental Protection Agency (EPA) partnered with other U.S. federal agencies (CDC, NASA, NPS, NOAA, USFS) to sponsor the Wildland Fire Sensor Challenge. EPA and partnering organizations share the desire to advance wildland fire air measurement technology to be easier to deploy, suitable to use for high concentration events, and durable to withstand difficult field conditions, with the ability to report high time resolution data continuously and wirelessly. The Wildland Fire Sensor Challenge encouraged innovation worldwide to develop sensor prototypes capable of measuring fine particulate matter (PM2.5), carbon monoxide (CO), carbon dioxide (CO2), and ozone (O3) during wildfire episodes. The importance of using federal reference method (FRM) versus federal equivalent method (FEM) instruments to evaluate performance in biomass smoke is discussed. Ten solvers from three countries submitted sensor systems for evaluation as part of the challenge. The sensor evaluation results including sensor accuracy, precision, linearity, and operability are presented and discussed, and three challenge winners are announced. Raw solver submitted PM2.5 sensor accuracies of the winners ranged from ~22 to 32%, while smoke specific EPA regression calibrations improved the accuracies to ~75-83% demonstrating the potential of these systems in providing reasonable accuracies over conditions that are typical during wildland fire events.

6.
Atmos Environ (1994) ; 265: 1-8, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35153533

RESUMEN

Wildland fire activity and associated emission of particulate matter air pollution is increasing in the United States over the last two decades due primarily to a combination of increased temperature, drought, and historically high forest fuel loading. The regulatory monitoring networks in the Unites States are mostly concentrated in larger population centers where anthropogenic air pollution sources are concentrated. Smaller population centers in areas more likely to be impacted by wildland fire smoke in many instances lack adequate observational air quality data. Several commercially available small form factor filter-based PM2.5 samplers (SFFFS) were evaluated under typical ambient and simulated near-to mid-field wildland fire smoke conditions to evaluate their accuracy for use in temporary deployments during prescribed and wildfire events. The performance of all the SFFFS tested versus the designated federal reference methods (FRM) was acceptable in determining PM2.5 concentration in both ambient (2.7-14.0 µg m-3) and chamber smoke environments (24.6-3044.6 µg m-3) with accuracies ranging from ~92 to 98%. However, only the ARA Instruments model N-FRM Sampler was found to provide PM2.5 mass measurement accuracies that meet FRM guideline performance specifications under both typical ambient (97.3 ± 1.9%) and simulated wildland fire conditions (98.2 ± 1.4%).

7.
Arch Toxicol ; 93(6): 1501-1513, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31006059

RESUMEN

The characteristics of wildland fire smoke exposures which initiate or exacerbate cardiopulmonary conditions are unclear. We previously reported that, on a mass basis, lung toxicity associated with particulate matter (PM) from flaming smoke aspirated into mouse lungs is greater than smoldering PM. In this study, we developed a computer-controlled inhalation system which can precisely control complex biomass smoke emissions from different combustion conditions. This system was used to examine the toxicity of inhaled biomass smoke from peat, eucalyptus, and oak fuels generated under smoldering and flaming phases with emissions set to the same approximate concentration of carbon monoxide (CO) for each exposure (60-110 ppm), resulting in PM levels of ~ 4 mg/m3 for flaming and ~ 40 mg/m3 for smoldering conditions. Mice were exposed by inhalation 1 h/day for 2 days, and assessed for lung toxicity at 4 and 24 h after the final exposure. Peat (flaming and smoldering) and eucalyptus (smoldering) smoke elicited significant inflammation (neutrophil influx) in mouse lungs at 4 h with the peat (flaming) smoke causing even greater lung inflammation at 24-h post-exposure. A significant alteration in ventilatory timing was also observed in mice exposed to the peat (flaming) and eucalyptus (flaming and smoldering) smoke immediately after each day of exposure. No responses were seen for exposures to similar concentrations of flaming or smoldering oak smoke. The lung toxicity potencies (neutrophil influx per PM mass) agreed well between the inhalation and previously reported aspiration studies, demonstrating that although flaming smoke contains much less PM mass than smoldering smoke, it is more toxic on a mass basis than smoldering smoke exposure, and that fuel type is also a controlling factor.


Asunto(s)
Biomasa , Exposición por Inhalación/efectos adversos , Humo/efectos adversos , Contaminantes Atmosféricos/toxicidad , Animales , Monóxido de Carbono/análisis , Eucalyptus , Femenino , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Infiltración Neutrófila/efectos de los fármacos , Material Particulado/toxicidad , Quercus , Pruebas de Función Respiratoria , Suelo , Madera
8.
Inhal Toxicol ; 31(2): 73-87, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30985217

RESUMEN

Background: Wildland firefighters conducting prescribed burns are exposed to a complex mixture of pollutants, requiring an integrated measure of exposure. Objective: We used urinary mutagenicity to assess if systemic exposure to mutagens is higher in firefighters after working at prescribed burns versus after non-burn work days. Other biomarkers of exposure and oxidative stress markers were also measured. Methods: Using a repeated measures study design, we collected urine before, immediately after, and the morning after a work shift on prescribed burn and non-burn work days from 12 healthy subjects, and analyzed for malondialdehyde (MDA), 8-isoprostane, 1-hydroxypyrene (OH-pyrene), and mutagenicity in Salmonella YG1041 +S9. Particulate matter (PM2.5) and carbon monoxide (CO) were measured by personal monitoring. Light-absorbing carbon (LAC) of PM2.5 was measured as a surrogate for black carbon exposure. Linear mixed-effect models were used to assess cross-work shift changes in urinary biomarkers. Results: No significant differences occurred in creatinine-adjusted urinary mutagenicity across the work shift between burn days and non-burn days. Firefighters lighting fires had a non-significant, 1.6-fold increase in urinary mutagenicity for burn versus non-burn day exposures. Positive associations were found between cross-work shift changes in creatinine-adjusted urinary mutagenicity and MDA (p = 0.0010), OH-pyrene (p = 0.0001), and mass absorption efficiency which is the LAC/PM2.5 ratio (p = 0.2245), respectively. No significant effect of day type or work task on cross-work shift changes in MDA or 8-isoprostane was observed. Conclusion: Urinary mutagenicity may serve as a suitable measure of occupational smoke exposures among wildland firefighters, especially among those lighting fires for prescribed burns.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Biomarcadores/orina , Bomberos , Mutágenos/toxicidad , Exposición Profesional/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Humo/efectos adversos , Contaminantes Ocupacionales del Aire/orina , Creatinina/orina , Dinoprost/análogos & derivados , Dinoprost/orina , Incendios , Humanos , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Malondialdehído/orina , Pruebas de Mutagenicidad , Exposición Profesional/análisis , Pirenos/orina , Salmonella/efectos de los fármacos , Salmonella/genética , South Carolina
9.
Atmos Environ X ; 20: 1-8, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38269205

RESUMEN

Wildland fires, which includes both wild and prescribed fires, and agricultural fires in sum are one of the largest sources of fine particulate matter (PM2.5) emissions to the atmosphere in the United States (US). Although wildland fire PM2.5 emissions are primarily composed of carbonaceous material, many other elements including trace metals are emitted at very low levels. Lead (Pb) is a US Environmental Protection Agency (EPA) criteria pollutant that is ubiquitous in the environment at very low concentrations including in biomass that can burn and emit Pb into the atmosphere. Although fires may emit Pb at very low concentrations, they can be a source of sizeable Pb emissions to the atmosphere because of the large quantity of PM2.5 emitted from fires. In this work, we measure Pb concentrations in unburned biomass, ash/residues, and particulate matter <2.5 µm (PM2.5) emitted from wildland fires using in-field measurements near prescribed fires and in laboratory simulations. Emission factors were calculated for multiple biomass types, representative of different regions of the US including grasslands in Oregon and Kansas; forest litter from Oregon, Montana, Minnesota, and North Carolina; and peat cores from Minnesota. Most of the biomass Pb remains in the ash/residues. The small percentage (<10%) that is emitted in PM2.5 is dependent on the biomass Pb concentration. The emissions factors measured here are several orders of magnitude lower than some reported in the literature, but the studies exhibited a wide range of values, which may be due to large uncertainties in the measurement method rather than differences in Pb emissions. Wildland fires are expected to increase in size and frequency in future years and these new emission factors can be used to improve the accuracy of Pb emissions estimates and better constrain our understanding of Pb emissions to the atmosphere.

10.
Sci Total Environ ; 861: 160609, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36470384

RESUMEN

While mounting evidence suggests that wildland fire smoke (WFS) inhalation may increase the burden of cardiopulmonary disease, the occupational risk of repeated exposure during wildland firefighting remains unknown. To address this concern, we evaluated the cardiopulmonary function in mice following a cumulative exposure to lab-scale WFS equivalent to a mid-length wildland firefighter (WLFF) career. Dosimetry analysis indicated that 80 exposure hours at a particulate concentration of 22 mg/m3 yield in mice the same cumulative deposited mass per unit of lung surface area as 3600 h of wildland firefighting. To satisfy this condition, male Apoe-/- mice were whole-body exposed to either air or smoldering Douglas fir smoke (DFS) for 2 h/day, 5 days/week, over 8 consecutive weeks. Particulate size in DFS fell within the respirable range for both mice and humans, with a count median diameter of 110 ± 20 nm. Expiratory breath hold in mice exposed to DFS significantly reduced their minute volume (DFS: 27 ± 4; Air: 122 ± 8 mL/min). By the end of the exposure time frame, mice in the DFS group exhibited a thicker (DFS: 109 ± 3; Air: 98 ± 3 µm) and less distensible (DFS: 23 ± 1; Air: 28 ± 1 MPa-1) aorta with reduced diastolic blood augmentation capacity (DFS: 53 ± 2; Air: 63 ± 2 kPa). Cardiac magnetic resonance imaging further revealed larger end-systolic volume (DFS: 14.6 ± 1.1; Air: 9.9 ± 0.9 µL) and reduced ejection-fraction (DFS: 64.7 ± 1.0; Air: 75.3 ± 0.9 %) in mice exposed to DFS. Consistent with increased airway epithelium thickness (DFS: 10.4 ± 0.8; Air: 7.6 ± 0.3 µm), airway Newtonian resistance was larger following DFS exposure (DFS: 0.23 ± 0.03; Air: 0.20 ± 0.03 cmH2O-s/mL). Furthermore, parenchyma mean linear intercept (DFS: 36.3 ± 0.8; Air: 33.3 ± 0.8 µm) and tissue thickness (DFS: 10.1 ± 0.5; Air: 7.4 ± 0.7 µm) were larger in DFS mice. Collectively, mice exposed to DFS manifested early signs of cardiopulmonary dysfunction aligned with self-reported events in mid-career WLFFs.


Asunto(s)
Pseudotsuga , Animales , Masculino , Ratones , Aorta , Polvo , Exposición por Inhalación/análisis , Pulmón , Humo/efectos adversos , Volumen Sistólico
11.
Front Physiol ; 14: 1225195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538378

RESUMEN

Climate change favors weather conditions conducive to wildland fires. The intensity and frequency of forest fires are increasing, and fire seasons are lengthening. Exposure of human populations to smoke emitted by these fires increases, thereby contributing to airborne pollution through the emission of gas and particulate matter (PM). The adverse health outcomes associated with wildland fire exposure represent an important burden on the economies and health systems of societies. Even though cardiovascular diseases (CVDs) are the main of cause of the global burden of diseases attributable to PM exposure, it remains difficult to show reliable associations between exposure to wildland fire smoke and cardiovascular disease risk in population-based studies. Optimal health requires a resilient and adaptable network of small blood vessels, namely, the microvasculature. Often alterations of this microvasculature precede the occurrence of adverse health outcomes, including CVD. Biomarkers of microvascular health could then represent possible markers for the early detection of poor cardiovascular outcomes. This review aims to synthesize the current literature to gauge whether assessing the microvasculature can better estimate the cardiovascular impact of wildland fires.

12.
Atmos Environ X ; 16: 1-17, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36960321

RESUMEN

Wildland fires are a major source of gases and aerosols, and the production, dispersion, and transformation of fire emissions have significant ambient air quality impacts and climate interactions. The increase in wildfire area burned and severity across the United States and Canada in recent decades has led to increased interest in expanding the use of prescribed fires as a forest management tool. While the primary goal of prescribed fire use is to limit the loss of life and property and ecosystem damage by constraining the growth and severity of future wildfires, a potential additional benefit of prescribed fire - reduction in the adverse impacts of smoke production and greenhouse gas (GHG) emissions - has recently gained the interest of land management agencies and policy makers in the United States and other nations. The evaluation of prescribed fire/wildfire scenarios and the potential mitigation of adverse impacts on air quality and GHGs requires fuel layer specific pollutant emission factors (EFs) for fire prone forest ecosystems. Our study addresses this need with laboratory experiments measuring EFs for carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), ethyne (C2H2), formaldehyde (H2CO), formic acid (CH2O2), hydrogen cyanide (HCN), fine particulate matter (PM2.5), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and total reduced sulfur (TRS) for the burning of individual fuel components from three forest ecosystems which account for a large share of wildfire burned area and emissions in the western United States and Canada - Douglas fir, ponderosa pine, and black spruce/jack pine.

13.
Int J Hyg Environ Health ; 237: 113827, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34403889

RESUMEN

Wildland firefighters at prescribed burns are exposed to elevated levels of wildland fire smoke (WFS) while performing physically demanding tasks. WFS exposure has been linked to increases in hospital and emergency admissions for cardiovascular disorders in the general population. However, knowledge about the cardiovascular effect of occupational WFS exposure among wildland firefighters is limited. To provide a better understanding of the effect of this exposure scenario on acute hemodynamic responses, resting systolic/diastolic blood pressure (SBP/DBP) and heart rate (HR) of wildland firefighters were measured before (pre-shift), after (post-shift), and the morning (next morning) immediately following prescribed burn shifts (burn days) and regular work shifts (non-burn days). A total of 38 firefighters (34 males and 4 females) participated in this study and resting BP and HR were recorded on 9 burn days and 7 non-burn days. On burn days, HR significantly increased from pre-to post-shift (13.25 bpm, 95% CI: 7.47 to 19.02 bpm) while SBP significantly decreased in the morning following the prescribed burns compared to pre-shift (-6.25 mmHg, 95% CI: -12.30 to -0.20 mmHg). However, this was due to the decrease of SBP in the firefighters who were hypertensive (-8.46 mmHg, 95% CI: -16.08 to -0.84 mmHg). Significant cross-shift reductions (post-shift/next morning vs. pre-shift) were observed in SBP on burn days compared to non-burn days (-7.01 mmHg, 95% CI: -10.94 to -3.09 mmHg and -8.64 mmHg, 95% CI: -13.81 to -3.47 mmHg, respectively). A significant reduction on burn days was also observed from pre-shift to the following morning for HR compared to non-burn days (-7.28 bpm, 95% CI: -13.50 to -1.06 bpm) while HR significantly increased in pre-to post-shift on burn days compared to non-burn days (10.61 bpm, 95% CI: 5.05 to 16.17 bpm). The decreased BP observed in wildland firefighters might be due to a high level of carbon monoxide exposure and exercise-induced hypotension. The increase in HR immediately after prescribed burns might be attributable to WFS exposure and physical exertion in prescribed burn shifts. The results suggest that wildland firefighting exposure might cause a distinct hemodynamic response, including SBP reduction and HR increment, especially for those who have pre-existing hypertension.


Asunto(s)
Quemaduras , Bomberos , Incendios , Exposición Profesional , Femenino , Humanos , Masculino , Humo/análisis
14.
Arch Environ Occup Health ; 75(2): 65-69, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30668286

RESUMEN

Wildland firefighters are directly exposed to elevated levels of wildland fire (WF) smoke. Although studies demonstrate WF smoke exposure is associated with lung function changes, few studies that use invasive sample collection methods have been conducted to investigate underlying biochemical changes. These methods are also either unrepresentative of the deeper airways or capable of inducing inflammation. In the present study, levels of biomarkers of oxidative stress (8-isoprostane) and pro-inflammatory response (interleukin-6 [IL-6], interleukin-8 [IL-8], C-reactive protein [CRP], and soluble intercellular adhesion molecule-1 [sICAM-1]) were determined in exhaled breath condensate (EBC) samples that were collected from firefighters before, after, and next morning following prescribed burn and regular work shifts. Results show only a marginal cross-shift increase in 8-isoprostane on burn days (.05 < p value < .1), suggesting WF smoke exposure causes mild pulmonary responses.


Asunto(s)
Pruebas Respiratorias , Exposición por Inhalación/efectos adversos , Exposición Profesional/efectos adversos , Estrés Oxidativo , Humo/efectos adversos , Adulto , Biomarcadores/análisis , Femenino , Humanos , Masculino , Incendios Forestales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA