Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecol Lett ; 25(12): 2637-2650, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36257904

RESUMEN

Considering the global intensification of aridity in tropical biomes due to climate change, we need to understand what shapes the distribution of drought sensitivity in tropical plants. We conducted a pantropical data synthesis representing 1117 species to test whether xylem-specific hydraulic conductivity (KS ), water potential at leaf turgor loss (ΨTLP ) and water potential at 50% loss of KS (ΨP50 ) varied along climate gradients. The ΨTLP and ΨP50 increased with climatic moisture only for evergreen species, but KS did not. Species with high ΨTLP and ΨP50 values were associated with both dry and wet environments. However, drought-deciduous species showed high ΨTLP and ΨP50 values regardless of water availability, whereas evergreen species only in wet environments. All three traits showed a weak phylogenetic signal and a short half-life. These results suggest strong environmental controls on trait variance, which in turn is modulated by leaf habit along climatic moisture gradients in the tropics.


Asunto(s)
Sequías , Hojas de la Planta , Clima Tropical , Filogenia , Hojas de la Planta/fisiología , Xilema
2.
New Phytol ; 223(3): 1296-1306, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31059125

RESUMEN

Vulnerability to embolism varies between con-generic species distributed along aridity gradients, yet little is known about intraspecific variation and its drivers. Even less is known about intraspecific variation in tissues other than stems, despite results suggesting that roots, stems and leaves can differ in vulnerability. We hypothesized that intraspecific variation in vulnerability in leaves and stems is adaptive and driven by aridity. We quantified leaf and stem vulnerability of Quercus douglasii using the optical technique. To assess contributions of genetic variation and phenotypic plasticity to within-species variation, we quantified the vulnerability of individuals growing in a common garden, but originating from populations along an aridity gradient, as well as individuals from the same wild populations. Intraspecific variation in water potential at which 50% of total embolism in a tissue is observed (P50 ) was explained mostly by differences between individuals (>66% of total variance) and tissues (16%). There was little between-population variation in leaf/stem P50 in the garden, which was not related to site of origin aridity. Unexpectedly, we observed a positive relationship between wild individual stem P50 and aridity. Although there is no local adaptation and only minor phenotypic plasticity in leaf/stem vulnerability in Q. douglasii, high levels of potentially heritable variation within populations or strong environmental selection could contribute to adaptive responses under future climate change.


Asunto(s)
Adaptación Fisiológica/fisiología , Hojas de la Planta/fisiología , Tallos de la Planta/fisiología , Quercus/fisiología , Xilema/fisiología , Análisis de Varianza , California , Clima , Geografía , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA