RESUMEN
The gut microbiome is the resident microbial community of the gastrointestinal tract. This community is highly diverse, but how microbial diversity confers resistance or susceptibility to intestinal pathogens is poorly understood. Using transplantation of human microbiomes into several animal models of infection, we show that key microbiome species shape the chemical environment of the gut through the activity of the enzyme bile salt hydrolase. The activity of this enzyme reduced colonization by the major human diarrheal pathogen Vibrio cholerae by degrading the bile salt taurocholate that activates the expression of virulence genes. The absence of these functions and species permits increased infection loads on a personal microbiome-specific basis. These findings suggest new targets for individualized preventative strategies of V. cholerae infection through modulating the structure and function of the gut microbiome.
Asunto(s)
Cólera/metabolismo , Susceptibilidad a Enfermedades/microbiología , Microbioma Gastrointestinal/fisiología , Adulto , Animales , Ácidos y Sales Biliares , Cólera/microbiología , Modelos Animales de Enfermedad , Trasplante de Microbiota Fecal/métodos , Femenino , Interacciones Huésped-Patógeno/fisiología , Humanos , Hidrolasas/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota , Ácido Taurocólico/metabolismo , Vibrio cholerae/patogenicidad , Vibrio cholerae/fisiología , VirulenciaRESUMEN
Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5+) cancer stem cells and promote an adenoma-to-adenocarcinoma progression. Mechanistically, we show that BAs that antagonize intestinal farnesoid X receptor (FXR) function, including tauro-ß-muricholic acid (T-ßMCA) and deoxycholic acid (DCA), induce proliferation and DNA damage in Lgr5+ cells. Conversely, selective activation of intestinal FXR can restrict abnormal Lgr5+ cell growth and curtail CRC progression. This unexpected role for FXR in coordinating intestinal self-renewal with BA levels implicates FXR as a potential therapeutic target for CRC.
Asunto(s)
Neoplasias Intestinales/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Línea Celular , Proliferación Celular/genética , Neoplasias Colorrectales/metabolismo , Ácido Desoxicólico/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Intestinales/genética , Intestinos , Hígado , Ratones , Ratones Endogámicos C57BL , Células Madre Neoplásicas/fisiología , Organoides/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Factores de Riesgo , Transducción de Señal , Ácido Taurocólico/análogos & derivados , Ácido Taurocólico/metabolismo , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiologíaRESUMEN
Bile acids (BAs) are steroid detergents in bile that contribute to the absorption of fats and fat-soluble vitamins while shaping the gut microbiome because of their antimicrobial properties1-4. Here we identify the enzyme responsible for a mechanism of BA metabolism by the gut microbiota involving amino acid conjugation to the acyl-site of BAs, thus producing a diverse suite of microbially conjugated bile acids (MCBAs). We show that this transformation is mediated by acyltransferase activity of bile salt hydrolase (bile salt hydrolase/transferase, BSH/T). Clostridium perfringens BSH/T rapidly performed acyl transfer when provided various amino acids and taurocholate, glycocholate or cholate, with an optimum at pH 5.3. Amino acid conjugation by C. perfringens BSH/T was diverse, including all proteinaceous amino acids except proline and aspartate. MCBA production was widespread among gut bacteria, with strain-specific amino acid use. Species with similar BSH/T amino acid sequences had similar conjugation profiles and several bsh/t alleles correlated with increased conjugation diversity. Tertiary structure mapping of BSH/T followed by mutagenesis experiments showed that active site structure affects amino acid selectivity. These MCBA products had antimicrobial properties, where greater amino acid hydrophobicity showed greater antimicrobial activity. Inhibitory concentrations of MCBAs reached those measured natively in the mammalian gut. MCBAs fed to mice entered enterohepatic circulation, in which liver and gallbladder concentrations varied depending on the conjugated amino acid. Quantifying MCBAs in human faecal samples showed that they reach concentrations equal to or greater than secondary and primary BAs and were reduced after bariatric surgery, thus supporting MCBAs as a significant component of the BA pool that can be altered by changes in gastrointestinal physiology. In conclusion, the inherent acyltransferase activity of BSH/T greatly diversifies BA chemistry, creating a set of previously underappreciated metabolites with the potential to affect the microbiome and human health.
Asunto(s)
Aciltransferasas , Amidohidrolasas , Ácidos y Sales Biliares , Clostridium perfringens , Microbioma Gastrointestinal , Animales , Humanos , Ratones , Aciltransferasas/química , Aciltransferasas/metabolismo , Alelos , Amidohidrolasas/química , Amidohidrolasas/metabolismo , Aminoácidos/metabolismo , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Cirugía Bariátrica , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Dominio Catalítico , Clostridium perfringens/enzimología , Clostridium perfringens/metabolismo , Heces/química , Vesícula Biliar/metabolismo , Microbioma Gastrointestinal/fisiología , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Hígado/metabolismo , Ácido Taurocólico/metabolismoRESUMEN
Human Na+ taurocholate co-transporting protein (hNTCP) is a key bile salt transporter to maintain enterohepatic circulation and is responsible for the recognition of hepatitis B and D viruses. Despite landmark cryoelectron microscopy studies revealing open-pore and inward-facing states of hNTCP stabilized by antibodies, the transport mechanism remains largely unknown. To address this knowledge gap, we used molecular dynamics and enhanced sampling metadynamics simulations to elucidate the intrinsic mechanism of hNTCP-mediated taurocholate acid (TCA) transport driven by Na+ binding. We uncovered three TCA-binding modes, including one that closely matched the limited cryoelectron microscopy density observed in the open-pore hNTCP. We also captured several key hNTCP conformations in the substrate transport cycle, particularly including an outward-facing, substrate-bound state. Furthermore, we provided thermodynamic evidence supporting that changes in the Na+-binding state drive the TCA transport by exploiting the amphiphilic nature of the substrate and modulating the protein environment, thereby enabling the TCA molecule to flip through. Understanding these mechanistic details of Na+-driven bile acid transport may aid in the development of hNTCP-targeted therapies for liver diseases.
Asunto(s)
Simulación de Dinámica Molecular , Transportadores de Anión Orgánico Sodio-Dependiente , Sodio , Simportadores , Ácido Taurocólico , Simportadores/metabolismo , Simportadores/química , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/química , Humanos , Sodio/metabolismo , Ácido Taurocólico/metabolismo , Transporte Biológico , Ácidos y Sales Biliares/metabolismo , TermodinámicaRESUMEN
The evolutionary origins of sexual preferences for chemical signals remain poorly understood, due, in part, to scant information on the molecules involved. In the current study, we identified a male pheromone in lake char (Salvelinus namaycush) to evaluate the hypothesis that it exploits a non-sexual preference for juvenile odour. In anadromous char species, the odour of stream-resident juveniles guides migratory adults into spawning streams. Lake char are also attracted to juvenile odour but have lost the anadromous phenotype and spawn on nearshore reefs, where juvenile odour does not persist long enough to act as a cue for spawning site selection by adults. Previous behavioural data raised the possibility that males release a pheromone that includes components of juvenile odour. Using metabolomics, we found that the most abundant molecule released by males was also released by juveniles but not females. Tandem mass spectrometry and nuclear magnetic resonance were used to identify the molecule as taurocholic acid (TCA), which was previously implicated as a component of juvenile odour. Additional chemical analyses revealed that males release TCA at high rates via their urine during the spawning season. Finally, picomolar concentrations of TCA attracted pre-spawning and spawning females but not males. Taken together, our results indicate that male lake char release TCA as a mating pheromone and support the hypothesis that the pheromone is a partial match of juvenile odour.
Asunto(s)
Trucha , Animales , Femenino , Masculino , Feromonas , Reproducción , Ácido TaurocólicoRESUMEN
BACKGROUND: Ferroptosis is a newly recognized form of regulatory cell death characterized by severe lipid peroxidation triggered by iron overload and the production of reactive oxygen species (ROS). However, the role of ferroptosis in severe acute pancreatitis(SAP) has not been fully elucidated. METHODS: We established four severe acute pancreatitis models of rats including the sham control group, the SAP group, the Fer -1-treated SAP (SAP + Fer-1) group, the 3-MA-treated SAP (SAP + 3-MA) group. The SAP group was induced by retrograde injection of sodium taurocholate into the pancreatic duct. The other two groups were intraperitoneally injected with ferroptosis inhibitor (Fer-1) and autophagy inhibitor (3-MA), respectively. The model of severe acute pancreatitis with amylase crest-related inflammatory factors was successfully established. Then we detected ferroptosis (GPX4, SLC7A1 etc.) and autophagy-related factors (LC3II, p62 ect.) to further clarify the relationship between ferroptosis and autophagy. RESULTS: Our study found that ferroptosis occurs during the development of SAP, such as iron and lipid peroxidation in pancreatic tissues, decreased levels of reduced glutathione peroxidase 4 (GPX 4) and glutathione (GSH), and increased malondialdehyde(MDA) and significant mitochondrial damage. In addition, ferroptosis related proteins such as GPX4, solute carrier family 7 member 11(SLC7A11) and ferritin heavy chain 1(FTH1) were significantly decreased. Next, the pathogenesis of ferroptosis in SAP was studied. First, treatment with the ferroptosis inhibitor ferrostatin-1(Fer-1) significantly alleviated ferroptosis in SAP. Interestingly, autophagy occurs during the pathogenesis of SAP, and autophagy promotes the occurrence of ferroptosis in SAP. Moreover, 3-methyladenine (3-MA) inhibition of autophagy can significantly reduce iron overload and ferroptosis in SAP. CONCLUSIONS: Our results suggest that ferroptosis is a novel pathogenesis of SAP and is dependent on autophagy. This study provides a new theoretical basis for the study of SAP.
Asunto(s)
Autofagia , Modelos Animales de Enfermedad , Ferroptosis , Peroxidación de Lípido , Pancreatitis , Ratas Sprague-Dawley , Animales , Pancreatitis/metabolismo , Pancreatitis/patología , Ratas , Masculino , Adenina/análogos & derivados , Adenina/farmacología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Ácido Taurocólico , Ciclohexilaminas/farmacología , Páncreas/patología , Páncreas/metabolismo , Fenilendiaminas/farmacología , Malondialdehído/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedad Aguda , Glutatión/metabolismo , Hierro/metabolismoRESUMEN
BACKGROUND: Acute pancreatitis (AP) is a prevalent exocrine inflammatory disorder of the pancreas characterized by pancreatic inflammation and injury to acinar cells. Vitamin B6 (VB6) is a vital nutrient that plays a significant role in preserving human health and has anti-inflammatory and anti-apoptotic effects. METHODS: This study aimed to explore the potential pancreatic protective effects of VB6 in mitigating pancreatic inflammation and apoptosis induced by taurocholate sodium (TLCS) in an AP model and to assess the underlying mechanism of action. AP was induced in SpragueâDawley (SD) rats through TLCS administration and lipopolysaccharide (LPS)-treated AR42J cells, followed by treatment with VB6. RESULTS: Various parameters associated with AP were assessed in both plasma and pancreatic tissues. VB6 has been shown to ameliorate the severity of AP through various mechanisms. It effectively reduces the levels of serum amylase, lipase, and inflammatory factors, thereby mitigating histological injury to the pancreas. Moreover, VB6 inhibited pancreatic apoptosis by downregulating bax expression and up-regulating Bcl2 expression in TLCS-treated rats. Additionally, VB6 suppressed the expression of caspase3. The anti-inflammatory and anti-apoptotic effects of VB6 observed in LPS-treated AR42J cells are consistent with those observed in a rat model of AP. CONCLUSIONS: These results suggest that VB6 exerts anti-inflammatory and anti-apoptotic effects through inhibition of the caspase3 signaling pathway and has a protective effect against AP.
Asunto(s)
Apoptosis , Caspasa 3 , Lipopolisacáridos , Pancreatitis , Ratas Sprague-Dawley , Transducción de Señal , Ácido Taurocólico , Vitamina B 6 , Animales , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Pancreatitis/patología , Pancreatitis/inducido químicamente , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Ratas , Vitamina B 6/farmacología , Vitamina B 6/uso terapéutico , Masculino , Amilasas/sangre , Páncreas/patología , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Modelos Animales de Enfermedad , Antiinflamatorios/farmacología , Enfermedad Aguda , Proteína X Asociada a bcl-2/metabolismo , Lipasa/metabolismo , Lipasa/sangre , Proteínas Proto-Oncogénicas c-bcl-2/metabolismoRESUMEN
Bile acid homeostasis is crucial for the normal physiological functioning of the liver. Disruptions in bile acid profiles are closely linked to the occurrence of cholestatic liver injury. As part of our diagnostic and therapeutic approach, we aimed to investigate the disturbance in bile acid profiles during cholestasis and its correlation with cholestatic liver injury. Before the occurrence of liver injury, alterations in bile acid profiles were detected in both plasma and liver between 8 and 16 h, persisting up to 96 h. TCA, TCDCA, and TUDCA in the plasma, as well as TCA, TUDCA, TCDCA, TDCA, TLCA, and THDCA in the liver, emerged as early sensitive and potential markers for diagnosing ANIT-induced cholestasis at 8-16 h. The distinguishing features of ANIT-induced liver injury were as follows: T-BAs exceeding G-BAs and serum biochemical indicators surpassing free bile acids. Notably, plasma T-BAs, particularly TCA, exhibited higher sensitivity to cholestatic hepatotoxicity compared with serum enzyme activity and liver histopathology. Further investigation revealed that TCA exacerbated ANIT-induced liver injury by elevating liver function enzyme activity, inflammation, and bile duct proliferation and promoting the migration of bile duct epithelial cell. Nevertheless, no morphological changes or alterations in transaminase activity indicative of liver damage were observed in the rats treated with TCA alone. Additionally, there were no changes in bile acid profiles or inflammatory responses under physiological conditions with maintained bile acid homeostasis. In summary, our findings suggest that taurine-conjugated bile acids in both plasma and liver, particularly TCA, can serve as early and sensitive markers for predicting intrahepatic cholestatic drugs and can act as potent exacerbators of cholestatic liver injury progression. However, exogenous TCA does not induce liver injury under physiological conditions where bile acid homeostasis is maintained.
Asunto(s)
1-Naftilisotiocianato , Ácidos y Sales Biliares , Biomarcadores , Enfermedad Hepática Inducida por Sustancias y Drogas , Colestasis , Hígado , Ácido Taurocólico , Animales , Biomarcadores/sangre , Masculino , Ácido Taurocólico/toxicidad , Colestasis/inducido químicamente , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/metabolismo , Ratas , 1-Naftilisotiocianato/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Ratas Sprague-DawleyRESUMEN
BACKGROUND: Severe acute pancreatitis (SAP) is associated with tremendous systemic inflammation, T-helper 17 (Th17) cells, and regulatory T (Treg) cells play an essential role in the inflammatory responses. Meanwhile, soluble fibrinogen-like protein 2 (Sfgl2) is a critical immunosuppressive effector cytokine of Treg cells and modulates immune responses. However, the impact of SAP induction on Sfgl2 expression and the role of Sfgl2 in immunomodulation under SAP conditions are largely unknown. METHODS: A taurocholate-induced mouse SAP model was established. The ratios of CD4+CD25+Foxp3+ Treg cells or CD4+IL-17+ Th17 cells in blood and pancreatic tissues as well as surface expression of CD80, CD86, and major histocompatibility complex class II (MHC-II) were determined by flow cytometry. Gene mRNA expression was determined by qPCR. Serum amylase and soluble factors were quantitated by commercial kits. Bone marrow-derived dendritic cells (DCs) were generated, and NF-κB/p65 translocation was measured by immunofluorescence staining. RESULTS: SAP induction in mice decreased the Th17/Treg ratio in the pancreatic tissue and increased the Th17/Treg ratio in the peripheral blood. In addition, SAP was associated with a reduced level of Sfgl2 in the pancreatic tissue and blood: higher levels of serum IL-17, IL-2, IFN-α, and TNF-α, and lower levels of serum IL-4 and IL-10. Furthermore, the SAP-induced reduction in Sfgl2 expression was accompanied by dysregulated maturation of bone marrow-derived DCs. CONCLUSIONS: SAP causes reduced Sfgl2 expression and Th17/Treg imbalance, thus providing critical insights for the development of Sfgl2- and Th17/Treg balance-targeted immunotherapies for patients with SAP.
Asunto(s)
Modelos Animales de Enfermedad , Fibrinógeno , Pancreatitis , Linfocitos T Reguladores , Ácido Taurocólico , Células Th17 , Animales , Células Th17/inmunología , Linfocitos T Reguladores/inmunología , Pancreatitis/inmunología , Pancreatitis/inducido químicamente , Pancreatitis/metabolismo , Ratones , Fibrinógeno/metabolismo , Masculino , Ratones Endogámicos C57BL , Regulación hacia Abajo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Enfermedad Aguda , Páncreas/inmunología , Páncreas/patología , Páncreas/metabolismoRESUMEN
The concept that gut microbiome-expressed functions regulate ponderal growth has important implications for infant and child health, as well as animal health. Using an intergenerational pig model of diet restriction (DR) that produces reduced weight gain, we developed a feature-selection algorithm to identify representative characteristics distinguishing DR fecal microbiomes from those of full-fed (FF) pigs as both groups consumed a common sequence of diets during their growth cycle. Gnotobiotic mice were then colonized with DR and FF microbiomes and subjected to controlled feeding with a pig diet. DR microbiomes have reduced representation of genes that degrade dominant components of late growth-phase diets, exhibit reduced production of butyrate, a key host-accessible energy source, and are causally linked to reduced hepatic fatty acid metabolism (ß-oxidation) and the selection of alternative energy substrates. The approach described could aid in the development of guidelines for microbiome stewardship in diverse species, including farm animals, in order to support their healthy growth.
Asunto(s)
Butiratos/metabolismo , Microbioma Gastrointestinal/fisiología , Metabolismo de los Lípidos/fisiología , Desnutrición/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , alfa-Glucosidasas/metabolismo , Algoritmos , Animales , Peso Corporal , Dieta/métodos , Dietoterapia/métodos , Modelos Animales de Enfermedad , Heces/microbiología , Vida Libre de Gérmenes , Hígado/metabolismo , Masculino , Desnutrición/fisiopatología , Ratones , Ratones Endogámicos C57BL , Almidón/metabolismo , Sacarosa/metabolismo , Porcinos , Ácido Taurocólico/metabolismoRESUMEN
Sodium taurocholate (NaT) is a hydrophobic bile salt that exhibits varying toxicity and antimicrobial activity. The accumulation of BSs during their entero-hepatic cycle causes cytotoxicity in the liver and intestine and could also alter the intestinal microbiome leading to various diseases. In this research, the acute toxicity of sodium taurocholate in different concentrations (3000 mg/L, 1500 mg/L, 750 mg/L, 375 mg/L, and 0 mg/L) was investigated on four months old zebrafish by immersion in water for 96 h. The results were determined based on the fish mortality, behavioral response, and NMR metabolomics analysis which revealed LC50 of 1760.32 mg/L and 1050.42 mg/L after 72 and 96 h treatment, respectively. However, the non-lethal NaT concentrations of 750 mg/L and 375 mg/L at 96 h exposure significantly (p ≤ 0.05) decreased the total distance traveled and the activity duration, also caused surface respiration on the zebrafish. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) revealed that the metabolome of the fish treated with 750 mg/L was discriminated from that of the control by PC1. Major significantly downregulated metabolites by NaT-induction include valine, isoleucine, 2-hydroxyvalerate, glycine, glycerol, choline, glucose, pyruvate, anserine, threonine, carnitine and homoserine. On the contrary, taurine, creatine, lactate, acetate and 3-hydroxybutyrate were upregulated suggesting cellular consumption of lipids, glucose and amino acids for adenosine triphosphate (ATP) generation during immune and inflammatory response. whereby these metabolites were released in the process. In conclusion, the research revealed the toxic effect of NaT and its potential to trigger changes in zebrafish metabolism.
Asunto(s)
Ácido Taurocólico , Pez Cebra , Animales , Pez Cebra/metabolismo , Ácido Taurocólico/metabolismo , Metabolómica/métodos , Espectroscopía de Resonancia Magnética/métodos , Glucosa/metabolismoRESUMEN
Amaranth is a dicotyledonous plant, now considered a health-promoting food. It has been rediscovered by the worldwide food industry, which is increasingly becoming aware of the many uses and benefits provided by amaranth in various food preparations. Amaranth dietary fibers, soluble and insoluble fractions, obtained from flour, protein isolate, and beverage were physicochemically characterized and their potential bile acid binding capacity was evaluated. Primary bile acids binding to fiber might contribute to a hypocholesterolemic effect, while the binding of secondary bile acids could minimize the cytotoxic effect that these metabolites exert on the colon. Amaranth fiber fractions were capable of sequestering cholate, taurocholate, deoxycholate, and bovine bile, with a percentage depending not only on the origin and the type of amaranth fiber evaluated but also on the bile acid studied. Flour fiber and the protein isolate insoluble fractions were the most efficient for binding bile and bile acids with uptake values between 29 and 100% relative to cholestyramine. Moreover, deoxycholate, a hydrophobic secondary bile acid, was the most captured by all the fractions, reaching 100% uptake with total and insoluble fibers of the three amaranth products. These results would suggest that the main effect through which amaranth fiber binds bile acids corresponds to an adsorptive effect mediated by hydrophobic interactions.
Asunto(s)
Ácidos y Sales Biliares , Fibras de la Dieta , Animales , Bovinos , Fibras de la Dieta/análisis , Ácido Taurocólico , Ácido DesoxicólicoRESUMEN
OBJECTIVES: Edaravone (EDR) is an effective neuroprotective agent in various neurological diseases; however, its use is restricted due to poor oral absorption. Bile salts are known for improving solubility and inhibiting drug crystallization in supersaturated conditions of the gastrointestinal tract (GIT). In our previous work, we prepared coamorphous dispersion (COAM) of EDR with sodium taurocholate (NaTC) using spray drying. The optimized EDR COAM exhibited superior in vitro performance compared to plain EDR. EDR is well absorbed in fasted-over-fed conditions. METHODS: The present work, we conducted a pharmacokinetic study for EDR and EDR COAM in fasted and fed conditions to check effect of food on its oral absorption. The LC-MS/MS-based method was developed and validated to determine the amount of EDR in plasma. RESULTS: The results suggested that EDR COAM did not show a significant difference in Cmax (P=0.3544) and AUC (P=0.1696) of fasted and fed states. On the other hand, plain EDR showed 2-fold and 3-fold reduced Cmax (P<0.0001) and AUC (P=0.0094) in the fed condition, respectively. The Cmax and AUC of EDR COAM were improved in fasted (AUC: 2.56-fold) and fed states (AUC: 5.74-fold) than plain EDR, suggesting better oral absorption of COAM than crystalline EDR without having the effect of food. CONCLUSIONS: The unique structural attributes of NaTC had the potential to inhibit the recrystallization of EDR in GIT, while concurrently reducing the impact of food on the oral absorption of EDR.
Asunto(s)
Ácidos y Sales Biliares , Edaravona , Interacciones Alimento-Droga , Administración Oral , Ácidos y Sales Biliares/química , Masculino , Humanos , Edaravona/farmacocinética , Edaravona/administración & dosificación , Edaravona/química , Espectrometría de Masas en Tándem , Adulto , Ayuno , Solubilidad , Ácido Taurocólico/farmacocinética , Ácido Taurocólico/química , Área Bajo la Curva , Adulto Joven , Estudios Cruzados , Secado por PulverizaciónRESUMEN
Na+/taurocholate cotransporting polypeptide (NTCP) is a member of the solute carrier (SLC) family 10 transporters (gene symbol SLC10A1) and is responsible for the sodium-dependent uptake of bile salts across the basolateral membrane of hepatocytes. In addition to its primary transporter function, NTCP is the high-affinity hepatic receptor for hepatitis B (HBV) and hepatitis D (HDV) viruses and, therefore, is a prerequisite for HBV/HDV virus entry into hepatocytes. The inhibition of HBV/HDV binding to NTCP and internalization of the virus/NTCP receptor complex has become a major concept in the development of new antiviral drugs called HBV/HDV entry inhibitors. Hence, NTCP has emerged as a promising target for therapeutic interventions against HBV/HDV infections in the last decade. In this review, recent findings on protein-protein interactions (PPIs) between NTCP and cofactors relevant for entry of the virus/NTCP receptor complex are summarized. In addition, strategies aiming to block PPIs with NTCP to dampen virus tropism and HBV/HDV infection rates are discussed. Finally, this article suggests novel directions for future investigations evaluating the functional contribution of NTCP-mediated PPIs in the development and progression of HBV/HDV infection and subsequent chronic liver disorders.
Asunto(s)
Hepatitis B , Simportadores , Humanos , Antivirales/farmacología , Células Hep G2 , Hepatitis B/tratamiento farmacológico , Hepatitis B/metabolismo , Virus de la Hepatitis B , Virus de la Hepatitis Delta/metabolismo , Hepatocitos/metabolismo , Péptidos , Simportadores/metabolismo , Ácido Taurocólico/metabolismo , Ácido Taurocólico/uso terapéutico , Internalización del VirusRESUMEN
Cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of >20% of marketed drugs. CYP2D6 expression and activity exhibit high interindividual variability and is induced during pregnancy. The farnesoid X receptor (FXR) is a transcriptional regulator of CYP2D6 that is activated by bile acids. In pregnancy, elevated plasma bile acid concentrations are associated with maternal and fetal risks. However, modest changes in bile acid concentrations may occur during healthy pregnancy, thereby altering FXR signaling. A previous study demonstrated that hepatic tissue concentrations of bile acids positively correlated with the hepatic mRNA expression of CYP2D6. This study sought to characterize the plasma bile acid metabolome in healthy women (n = 47) during midpregnancy (25-28 weeks gestation) and ≥3 months postpartum and to determine if plasma bile acids correlate with CYP2D6 activity. It is hypothesized that during pregnancy, plasma bile acids would favor less hydrophobic bile acids (cholic acid vs. chenodeoxycholic acid) and that plasma concentrations of cholic acid and its conjugates would positively correlate with the urinary ratio of dextrorphan/dextromethorphan. At 25-28 weeks gestation, taurine-conjugated bile acids comprised 23% of the quantified serum bile acids compared with 7% ≥3 months postpartum. Taurocholic acid positively associated with the urinary ratio of dextrorphan/dextromethorphan, a biomarker of CYP2D6 activity. Collectively, these results confirm that the bile acid plasma metabolome differs between pregnancy and postpartum and provide evidence that taurocholic acid may impact CYP2D6 activity during pregnancy. SIGNIFICANCE STATEMENT: Bile acid homeostasis is altered in pregnancy, and plasma concentrations of taurocholic acid positively correlate with CYP2D6 activity. Differences between plasma and/or tissue concentrations of farnesoid X receptor ligands such as bile acids may contribute to the high interindividual variability in CYP2D6 expression and activity.
Asunto(s)
Citocromo P-450 CYP2D6 , Dextrometorfano , Humanos , Femenino , Embarazo , Citocromo P-450 CYP2D6/metabolismo , Dextrometorfano/metabolismo , Dextrorfano , Ácido Taurocólico , Periodo PospartoRESUMEN
Inflammatory bowel disease (IBD) is a group of chronic and life-threating inflammatory diseases of the gastrointestinal tract. The active intestinal absorption of bile salts is reduced in IBD, resulting in higher luminal concentrations of these agents that contribute to the pathophysiology of IBD-associated diarrhea. Butyrate (BT) is a short-chain fatty acid produced by colonic bacterial fermentation of dietary fibers. BT utilization is impaired in the intestinal inflamed mucosa of IBD patients. Our aim was to investigate the link between IBD and bile acid absorption, by testing the effect of the pro-inflammatory cytokines TNF-α and IFN-γ and of BT upon 3H-TC uptake by Caco-2 cells. The proinflammatory cytokines TNF-α and IFN-γ inhibit Na+-independent, non-ASBT (sodium-dependent bile acid transporter)-mediated 3H-TC uptake by Caco-2 cells. The inhibitory effect of these cytokines on Na+-independent 3H-TC uptake is PI3K- and JAK/STAT1-mediated. These two compounds upregulate ASBT expression levels, but no corresponding increase in Na+-dependent component of 3H-TC is observed. Moreover, BT was also found to inhibit 3H-TC uptake and showed an additive effect with IFN-γ in reducing 3H-TC uptake. We conclude that an interaction between BT and bile acids appears to exist in IBD, which may participate in the link between diet, microbiota and IBD.
Asunto(s)
Citocinas , Enfermedades Inflamatorias del Intestino , Humanos , Células CACO-2 , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Butiratos/farmacología , Ácido Taurocólico/farmacología , Ácido Taurocólico/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Ácidos y Sales BiliaresRESUMEN
BACKGROUND AND AIMS: We have previously shown that gabexate mesylate-poloxamer 407 conjugate (GMTI) alleviates traumatic pancreatitis in rats. In this study, we evaluated the therapeutic effect of GMTI on sodium taurocholate-induced severe acute pancreatitis (SAP) in an optimized rat model. METHODS: An SAP rat model was established via microinjection of 3.5% sodium taurocholate and retention in the bile duct for 1 min. SAP rats were administered GMTI via tail vein injection (i.v.) or tail vein injection + intraperitoneal injection (i.v. + i.p.). All rats were sacrificed at 12 h after treatment. Biochemical approach and enzyme-linked immunosorbent assay were performed to measure the serum levels of amylase (AMY), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Hematoxylin and eosin staining and TUNEL assay were conducted to examine histopathology and acinar cell apoptosis in the rat pancreas. RESULTS: SAP was successfully induced in all model rats, as evidenced by progressively aggravating SAP symptoms and signs, pancreatic histopathological abnormalities, as well as elevated serum levels of TNF-α, IL-6, and AMY. The mortality rates at 1 h, 6 h, and 12 h were 0%, 0%, and 25%, respectively. GMTI therapy via i.v. or i.v. + i.p. significantly reduced pancreatic wet weights, ascites amounts, pathological scores, and circulating levels of TNF-α and IL-6 while promoting acinar cell apoptosis in SAP rats. GMTI therapy via i.v. + i.p. outperformed i.v. in improving pancreatic histology and reducing TNF-α and IL-6 serum levels in SAP rats. CONCLUSIONS: Our optimized SAP rat model is reliable and reproducible. GMTI therapy is a promising approach against SAP.
Asunto(s)
Gabexato , Pancreatitis , Ratas , Animales , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Gabexato/efectos adversos , Poloxámero/farmacología , Interleucina-6 , Factor de Necrosis Tumoral alfa , Ratas Sprague-Dawley , Ácido Taurocólico , Enfermedad Aguda , Páncreas/patologíaRESUMEN
Severe acute pancreatitis (SAP) is an inflammatory disease of the pancreas accompanied by tissue injury and necrosis. It not only affects the pancreas but also triggers a systemic inflammatory response that leads to multiorgan failure or even death. Moreover, there is no effective treatment currently that can reverse the disease progression. In this study, tetrahedral framework nucleic acids (tFNAs) were utilized to treat SAP in mice for the first time and proved to be effective in suppressing inflammation and preventing pathological cell death. Serum levels of pancreatitis-related biomarkers witnessed significant changes after tFNAs treatment. Reduction in the expression of certain cytokines involved in local and systemic inflammatory response were observed, together with alteration in proteins related to cell death and apoptosis. Collectively, our results demonstrate that tFNAs could both alleviate SAP and its subsequent multiorgan injury in mice, thus offering a novel and effective option to deal with SAP in the future.
Asunto(s)
Ácidos Nucleicos , Pancreatitis , Enfermedad Aguda , Animales , Ratones , Ácidos Nucleicos/uso terapéutico , Páncreas/metabolismo , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/complicaciones , Pancreatitis/tratamiento farmacológico , Ácido Taurocólico/efectos adversosRESUMEN
A hyperactive immune response can be observed in patients with bacterial or viral infection, which may lead to the overproduction of proinflammatory cytokines, or "cytokine storm", and a poor clinical outcome. Extensive research efforts have been devoted to the discovery of effective immune modulators, yet the therapeutic options are still very limited. Here, we focused on the clinically indicated anti-inflammatory natural product Calculus bovis and its related patent drug Babaodan to investigate the major active molecules in the medicinal mixture. Combined with high-resolution mass spectrometry, transgenic zebrafish-based phenotypic screening, and mouse macrophage models, taurochiolic acid (TCA) and glycoholic acid (GCA) were identified as two naturally derived anti-inflammatory agents with high efficacy and safety. Both bile acids significantly inhibited the lipopolysaccharide-induced macrophage recruitment and the secretion of proinflammatory cytokines/chemokines in in vivo and in vitro models. Further studies identified strongly increased expression of the farnesoid X receptor at both the mRNA and protein levels upon the administration of TCA or GCA, which may be essential for mediating the anti-inflammatory effects of the two bile acids. In conclusion, we identified TCA and GCA as two major anti-inflammatory compounds in Calculus bovis and Babaodan, which could be important quality markers for the future development of Calculus bovis, as well as promising lead compounds in the treatment of overactive immune responses.
Asunto(s)
Lipopolisacáridos , Ácido Taurocólico , Ratones , Animales , Lipopolisacáridos/farmacología , Pez Cebra/metabolismo , Ácido Glicocólico/farmacología , Macrófagos , Inflamación , Ácidos y Sales Biliares/farmacología , Antiinflamatorios/farmacología , Citocinas/metabolismoRESUMEN
Objective: This study focuses on Na(+)-taurocholate cotransporting polypeptide (NTCP) deficiency to analyze and investigate the value of the serum bile acid profile for facilitating the diagnosis and differential diagnosis. Methods: Clinical data of 66 patients with cholestatic liver diseases (CLDs) diagnosed and treated in the Department of Pediatrics of the First Affiliated Hospital of Jinan University from early April 2015 to the end of December 2021 were collected, including 32 cases of NTCP deficiency (16 adults and 16 children), 16 cases of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), 8 cases of Alagille syndrome, and 10 cases of biliary atresia. At the same time, adult and pediatric healthy control groups (15 cases each) were established. The serum bile acid components of the study subjects were qualitatively and quantitatively analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry. The data were plotted and compared using statistical SPSS 19.0 and GraphPad Prism 5.0 software. The clinical and bile acid profiles of children with NTCP deficiency and corresponding healthy controls, as well as differences between NTCP deficiency and other CLDs, were compared using statistical methods such as t-tests, Wilcoxon rank sum tests, and Kruskal-Wallis H tests. Results: Compared with the healthy control, the levels of total conjugated bile acids, total primary bile acids, total secondary bile acids, glycocholic acid, taurocholic acid, and glycochenodeoxycholic acid were increased in NTCP deficiency patients (P < 0.05). Compared with adults with NTCP deficiency, the levels of total conjugated bile acids and total primary bile acids were significantly increased in children with NTCP deficiency (P < 0.05). The serum levels of taurochenodeoxycholic acid, glycolithocholate, taurohyocholate, and tauro-α-muricholic acid were significantly increased in children with NTCP deficiency, but the bile acid levels such as glycodeoxycholic acid, glycolithocholate, and lithocholic acid were decreased (P < 0.05). The serum levels of secondary bile acids such as lithocholic acid, deoxycholic acid, and hyodeoxycholic acid were significantly higher in children with NTCP deficiency than those in other CLD groups such as NICCD, Alagille syndrome, and biliary atresia (P < 0.05). Total primary bile acids/total secondary bile acids, total conjugated bile acids/total unconjugated bile acids, taurocholic acid, serum taurodeoxycholic acid, and glycodeoxycholic acid effectively distinguished children with NTCP deficiency from other non-NTCP deficiency CLDs. Conclusion: This study confirms that serum bile acid profile analysis has an important reference value for facilitating the diagnosis and differential diagnosis of NTCP deficiency. Furthermore, it deepens the scientific understanding of the changing characteristics of serum bile acid profiles in patients with CLDs such as NTCP deficiency, provides a metabolomic basis for in-depth understanding of its pathogenesis, and provides clues and ideas for subsequent in-depth research.