Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.784
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 36: 667-694, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29677479

RESUMEN

Pattern recognition receptors (PRRs) survey intra- and extracellular spaces for pathogen-associated molecular patterns (PAMPs) within microbial products of infection. Recognition and binding to cognate PAMP ligand by specific PRRs initiates signaling cascades that culminate in a coordinated intracellular innate immune response designed to control infection. In particular, our immune system has evolved specialized PRRs to discriminate viral nucleic acid from host. These are critical sensors of viral RNA to trigger innate immunity in the vertebrate host. Different families of PRRs of virus infection have been defined and reveal a diversity of PAMP specificity for wide viral pathogen coverage to recognize and extinguish virus infection. In this review, we discuss recent insights in pathogen recognition by the RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensor PRRs, to present emerging themes in innate immune signaling during virus infection.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Virosis/etiología , Virosis/metabolismo , Virus/inmunología , Animales , ARN Helicasas DEAD-box/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , ARN Helicasas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Receptores Inmunológicos , Transducción de Señal , Receptores Toll-Like/metabolismo
2.
Annu Rev Biochem ; 93(1): 79-108, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594920

RESUMEN

DEAD- and DExH-box ATPases (DDX/DHXs) are abundant and highly conserved cellular enzymes ubiquitously involved in RNA processing. By remodeling RNA-RNA and RNA-protein interactions, they often function as gatekeepers that control the progression of diverse RNA maturation steps. Intriguingly, most DDX/DHXs localize to membraneless organelles (MLOs) such as nucleoli, nuclear speckles, stress granules, or processing bodies. Recent findings suggest not only that localization to MLOs can promote interaction between DDX/DHXs and their targets but also that DDX/DHXs are key regulators of MLO formation and turnover through their condensation and ATPase activity.In this review, we describe the molecular function of DDX/DHXs in ribosome biogenesis, messenger RNA splicing, export, translation, and storage or decay as well as their association with prominent MLOs. We discuss how the enzymatic function of DDX/DHXs in RNA processing is linked to DDX/DHX condensation, the accumulation of ribonucleoprotein particles and MLO dynamics. Future research will reveal how these processes orchestrate the RNA life cycle in MLO space and DDX/DHX time.


Asunto(s)
ARN Helicasas DEAD-box , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/química , Humanos , Animales , ARN/metabolismo , ARN/genética , ARN/química , Empalme del ARN , Orgánulos/metabolismo , Orgánulos/genética , Ribosomas/metabolismo , Ribosomas/genética , Pliegue del ARN , Procesamiento Postranscripcional del ARN , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética
3.
Cell ; 186(1): 80-97.e26, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608661

RESUMEN

Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation.


Asunto(s)
ARN Helicasas DEAD-box , Glucosa , Queratinocitos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Glucosa/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Humanos
4.
Cell ; 185(12): 2132-2147.e26, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35688134

RESUMEN

RNA quality control relies on co-factors and adaptors to identify and prepare substrates for degradation by ribonucleases such as the 3' to 5' ribonucleolytic RNA exosome. Here, we determined cryogenic electron microscopy structures of human nuclear exosome targeting (NEXT) complexes bound to RNA that reveal mechanistic insights to substrate recognition and early steps that precede RNA handover to the exosome. The structures illuminate ZCCHC8 as a scaffold, mediating homodimerization while embracing the MTR4 helicase and flexibly anchoring RBM7 to the helicase core. All three subunits collaborate to bind the RNA, with RBM7 and ZCCHC8 surveying sequences upstream of the 3' end to facilitate RNA capture by MTR4. ZCCHC8 obscures MTR4 surfaces important for RNA binding and extrusion as well as MPP6-dependent recruitment and docking onto the RNA exosome core, interactions that contribute to RNA surveillance by coordinating RNA capture, translocation, and extrusion from the helicase to the exosome for decay.


Asunto(s)
Exosomas , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Unión Proteica , ARN/metabolismo , Estabilidad del ARN
5.
Annu Rev Biochem ; 89: 359-388, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31794245

RESUMEN

The spliceosome removes introns from messenger RNA precursors (pre-mRNA). Decades of biochemistry and genetics combined with recent structural studies of the spliceosome have produced a detailed view of the mechanism of splicing. In this review, we aim to make this mechanism understandable and provide several videos of the spliceosome in action to illustrate the intricate choreography of splicing. The U1 and U2 small nuclear ribonucleoproteins (snRNPs) mark an intron and recruit the U4/U6.U5 tri-snRNP. Transfer of the 5' splice site (5'SS) from U1 to U6 snRNA triggers unwinding of U6 snRNA from U4 snRNA. U6 folds with U2 snRNA into an RNA-based active site that positions the 5'SS at two catalytic metal ions. The branch point (BP) adenosine attacks the 5'SS, producing a free 5' exon. Removal of the BP adenosine from the active site allows the 3'SS to bind, so that the 5' exon attacks the 3'SS to produce mature mRNA and an excised lariat intron.


Asunto(s)
ARN Helicasas DEAD-box/genética , Factores de Empalme de ARN/genética , Empalme del ARN , ARN Nuclear Pequeño/genética , Saccharomyces cerevisiae/genética , Empalmosomas/metabolismo , Dominio Catalítico , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Exones , Humanos , Intrones , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Secundaria de Proteína , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/genética , Empalmosomas/ultraestructura
6.
Cell ; 181(4): 818-831.e19, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32359423

RESUMEN

Cells sense elevated temperatures and mount an adaptive heat shock response that involves changes in gene expression, but the underlying mechanisms, particularly on the level of translation, remain unknown. Here we report that, in budding yeast, the essential translation initiation factor Ded1p undergoes heat-induced phase separation into gel-like condensates. Using ribosome profiling and an in vitro translation assay, we reveal that condensate formation inactivates Ded1p and represses translation of housekeeping mRNAs while promoting translation of stress mRNAs. Testing a variant of Ded1p with altered phase behavior as well as Ded1p homologs from diverse species, we demonstrate that Ded1p condensation is adaptive and fine-tuned to the maximum growth temperature of the respective organism. We conclude that Ded1p condensation is an integral part of an extended heat shock response that selectively represses translation of housekeeping mRNAs to promote survival under conditions of severe heat stress.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Biosíntesis de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/fisiología , Expresión Génica/genética , Genes Esenciales/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
7.
Cell ; 180(3): 411-426.e16, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31928844

RESUMEN

Stress granules are condensates of non-translating mRNAs and proteins involved in the stress response and neurodegenerative diseases. Stress granules form in part through intermolecular RNA-RNA interactions, and to better understand how RNA-based condensation occurs, we demonstrate that RNA is effectively recruited to the surfaces of RNA or RNP condensates in vitro. We demonstrate that, through ATP-dependent RNA binding, the DEAD-box protein eIF4A reduces RNA condensation in vitro and limits stress granule formation in cells. This defines a function for eIF4A to limit intermolecular RNA-RNA interactions in cells. These results establish an important role for eIF4A, and potentially other DEAD-box proteins, as ATP-dependent RNA chaperones that limit the condensation of RNA, analogous to the function of proteins like HSP70 in combatting protein aggregates.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4F Eucariótico de Iniciación/metabolismo , ARN Helicasas/metabolismo , ARN de Hongos/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Células HeLa , Humanos , Microscopía Confocal , Unión Proteica , ARN de Hongos/aislamiento & purificación , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Imagen de Lapso de Tiempo
8.
Cell ; 178(4): 964-979.e20, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398345

RESUMEN

PIWI-interacting RNAs (piRNAs) guide transposon silencing in animals. The 22-30 nt piRNAs are processed in the cytoplasm from long non-coding RNAs that often lack RNA processing hallmarks of export-competent transcripts. By studying how these transcripts achieve nuclear export, we uncover an RNA export pathway specific for piRNA precursors in the Drosophila germline. This pathway requires Nxf3-Nxt1, a variant of the hetero-dimeric mRNA export receptor Nxf1-Nxt1. Nxf3 interacts with UAP56, a nuclear RNA helicase essential for mRNA export, and CG13741/Bootlegger, which recruits Nxf3-Nxt1 and UAP56 to heterochromatic piRNA source loci. Upon RNA cargo binding, Nxf3 achieves nuclear export via the exportin Crm1 and accumulates together with Bootlegger in peri-nuclear nuage, suggesting that after export, Nxf3-Bootlegger delivers precursor transcripts to the piRNA processing sites. These findings indicate that the piRNA pathway bypasses nuclear RNA surveillance systems to export unprocessed transcripts to the cytoplasm, a strategy also exploited by retroviruses.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Heterocromatina/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Argonautas/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , ARN Helicasas DEAD-box/metabolismo , Elementos Transponibles de ADN , Silenciador del Gen , Células Germinativas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transcripción Genética , Proteína Exportina 1
9.
Cell ; 173(5): 1191-1203.e12, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29706542

RESUMEN

Human Dicer (hDicer) is a multi-domain protein belonging to the RNase III family. It plays pivotal roles in small RNA biogenesis during the RNA interference (RNAi) pathway by processing a diverse range of double-stranded RNA (dsRNA) precursors to generate ∼22 nt microRNA (miRNA) or small interfering RNA (siRNA) products for sequence-directed gene silencing. In this work, we solved the cryoelectron microscopy (cryo-EM) structure of hDicer in complex with its cofactor protein TRBP and revealed the precise spatial arrangement of hDicer's multiple domains. We further solved structures of the hDicer-TRBP complex bound with pre-let-7 RNA in two distinct conformations. In combination with biochemical analysis, these structures reveal a property of the hDicer-TRBP complex to promote the stability of pre-miRNA's stem duplex in a pre-dicing state. These results provide insights into the mechanism of RNA processing by hDicer and illustrate the regulatory role of hDicer's N-terminal helicase domain.


Asunto(s)
ARN Helicasas DEAD-box/química , MicroARNs/química , Ribonucleasa III/química , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Humanos , MicroARNs/metabolismo , Coactivadores de Receptor Nuclear/química , Coactivadores de Receptor Nuclear/genética , Coactivadores de Receptor Nuclear/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína , División del ARN , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
10.
Cell ; 173(4): 1014-1030.e17, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727661

RESUMEN

Tools to understand how the spliceosome functions in vivo have lagged behind advances in the structural biology of the spliceosome. Here, methods are described to globally profile spliceosome-bound pre-mRNA, intermediates, and spliced mRNA at nucleotide resolution. These tools are applied to three yeast species that span 600 million years of evolution. The sensitivity of the approach enables the detection of canonical and non-canonical events, including interrupted, recursive, and nested splicing. This application of statistical modeling uncovers independent roles for the size and position of the intron and the number of introns per transcript in substrate progression through the two catalytic stages. These include species-specific inputs suggestive of spliceosome-transcriptome coevolution. Further investigations reveal the ATP-dependent discard of numerous endogenous substrates after spliceosome assembly in vivo and connect this discard to intron retention, a form of splicing regulation. Spliceosome profiling is a quantitative, generalizable global technology used to investigate an RNP central to eukaryotic gene expression.


Asunto(s)
Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Adenosina Trifosfato/metabolismo , Teorema de Bayes , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Inmunoprecipitación , Precursores del ARN/metabolismo , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telomerasa/genética , Telomerasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Cell ; 169(5): 918-929.e14, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28502770

RESUMEN

Mechanistic understanding of pre-mRNA splicing requires detailed structural information on various states of the spliceosome. Here we report the cryo electron microscopy (cryo-EM) structure of the human spliceosome just before exon ligation (the C∗ complex) at an average resolution of 3.76 Å. The splicing factor Prp17 stabilizes the active site conformation. The step II factor Slu7 adopts an extended conformation, binds Prp8 and Cwc22, and is poised for selection of the 3'-splice site. Remarkably, the intron lariat traverses through a positively charged central channel of RBM22; this unusual organization suggests mechanisms of intron recruitment, confinement, and release. The protein PRKRIP1 forms a 100-Å α helix linking the distant U2 snRNP to the catalytic center. A 35-residue fragment of the ATPase/helicase Prp22 latches onto Prp8, and the quaternary exon junction complex (EJC) recognizes upstream 5'-exon sequences and associates with Cwc22 and the GTPase Snu114. These structural features reveal important mechanistic insights into exon ligation.


Asunto(s)
Precursores del ARN/metabolismo , Empalmosomas/química , Empalmosomas/ultraestructura , Secuencia de Bases , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/metabolismo , Exones , Humanos , Intrones , Modelos Moleculares , Empalme del ARN , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/química , Empalmosomas/metabolismo
12.
Cell ; 169(1): 72-84.e13, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340352

RESUMEN

Multiple sclerosis (MS) is an autoimmune disorder where T cells attack neurons in the central nervous system (CNS) leading to demyelination and neurological deficits. A driver of increased MS risk is the soluble form of the interleukin-7 receptor alpha chain gene (sIL7R) produced by alternative splicing of IL7R exon 6. Here, we identified the RNA helicase DDX39B as a potent activator of this exon and consequently a repressor of sIL7R, and we found strong genetic association of DDX39B with MS risk. Indeed, we showed that a genetic variant in the 5' UTR of DDX39B reduces translation of DDX39B mRNAs and increases MS risk. Importantly, this DDX39B variant showed strong genetic and functional epistasis with allelic variants in IL7R exon 6. This study establishes the occurrence of biological epistasis in humans and provides mechanistic insight into the regulation of IL7R exon 6 splicing and its impact on MS risk.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Epistasis Genética , Subunidad alfa del Receptor de Interleucina-7/genética , Empalme del ARN , ARN Helicasas DEAD-box/genética , Exones , Células HeLa , Humanos , Esclerosis Múltiple/genética , Biosíntesis de Proteínas , ARN Interferente Pequeño/metabolismo , Linfocitos T/inmunología
13.
Cell ; 169(4): 664-678.e16, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475895

RESUMEN

Dysregulated rRNA synthesis by RNA polymerase I (Pol I) is associated with uncontrolled cell proliferation. Here, we report a box H/ACA small nucleolar RNA (snoRNA)-ended long noncoding RNA (lncRNA) that enhances pre-rRNA transcription (SLERT). SLERT requires box H/ACA snoRNAs at both ends for its biogenesis and translocation to the nucleolus. Deletion of SLERT impairs pre-rRNA transcription and rRNA production, leading to decreased tumorigenesis. Mechanistically, SLERT interacts with DEAD-box RNA helicase DDX21 via a 143-nt non-snoRNA sequence. Super-resolution images reveal that DDX21 forms ring-shaped structures surrounding multiple Pol I complexes and suppresses pre-rRNA transcription. Binding by SLERT allosterically alters individual DDX21 molecules, loosens the DDX21 ring, and evicts DDX21 suppression on Pol I transcription. Together, our results reveal an important control of ribosome biogenesis by SLERT lncRNA and its regulatory role in DDX21 ring-shaped arrangements acting on Pol I complexes.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ARN Polimerasa I/metabolismo , Precursores del ARN/genética , ARN Largo no Codificante/metabolismo , Sitio Alostérico , Animales , Carcinogénesis , Línea Celular , Línea Celular Tumoral , ARN Helicasas DEAD-box/química , Femenino , Técnicas de Inactivación de Genes , Humanos , Ratones , Ratones Desnudos , Precursores del ARN/metabolismo , Transcripción Genética
14.
Mol Cell ; 84(1): 107-119, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38118451

RESUMEN

The ability to sense and respond to infection is essential for life. Viral infection produces double-stranded RNAs (dsRNAs) that are sensed by proteins that recognize the structure of dsRNA. This structure-based recognition of viral dsRNA allows dsRNA sensors to recognize infection by many viruses, but it comes at a cost-the dsRNA sensors cannot always distinguish between "self" and "nonself" dsRNAs. "Self" RNAs often contain dsRNA regions, and not surprisingly, mechanisms have evolved to prevent aberrant activation of dsRNA sensors by "self" RNA. Here, we review current knowledge about the life of endogenous dsRNAs in mammals-the biosynthesis and processing of dsRNAs, the proteins they encounter, and their ultimate degradation. We highlight mechanisms that evolved to prevent aberrant dsRNA sensor activation and the importance of competition in the regulation of dsRNA sensors and other dsRNA-binding proteins.


Asunto(s)
ARN Bicatenario , Virosis , Animales , ARN Bicatenario/genética , ARN Helicasas DEAD-box/metabolismo , Inmunidad Innata , Mamíferos/metabolismo
15.
Mol Cell ; 84(9): 1631-1632, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701738

RESUMEN

In this issue of Molecular Cell, Hao et al.1 demonstrate that the RNA helicase DDX21 recruits the m6A methyltransferase complex to R-loops, ensuring proper transcription termination and genome stability.


Asunto(s)
ARN Helicasas DEAD-box , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Humanos , Estructuras R-Loop , Metiltransferasas/metabolismo , Metiltransferasas/genética , Inestabilidad Genómica , Adenosina/metabolismo , Adenosina/análogos & derivados , Terminación de la Transcripción Genética
16.
Mol Cell ; 84(18): 3545-3563.e25, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39260367

RESUMEN

Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translation. Nevertheless, a lack of technologies to enrich RAPs across sample types has prevented systematic analysis of RAP identities, dynamics, and functions. We have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including Dhx30 and Llph, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development linked to the translation of genes with long coding sequences. In addition, we showed that RAPIDASH can identify ribosome changes in cancer cells. Finally, we characterized ribosome composition remodeling during immune cell activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs in multiple cell types, tissues, and stimuli and is adaptable to characterize ribosome remodeling in several contexts.


Asunto(s)
Macrófagos , Proteínas Ribosómicas , Ribosomas , Animales , Ribosomas/metabolismo , Ribosomas/genética , Ratones , Humanos , Macrófagos/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Biosíntesis de Proteínas , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Regulación del Desarrollo de la Expresión Génica , Línea Celular Tumoral , Ratones Endogámicos C57BL
17.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569554

RESUMEN

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , ARN Helicasas DEAD-box , Exorribonucleasas , Inestabilidad Genómica , Metiltransferasas , Estructuras R-Loop , ARN Polimerasa II , Terminación de la Transcripción Genética , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Adenosina/metabolismo , Adenosina/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Células HEK293 , Cromatina/metabolismo , Cromatina/genética , Daño del ADN , Células HeLa , ARN/metabolismo , ARN/genética , Transcripción Genética , Metilación de ARN
18.
Mol Cell ; 84(14): 2765-2784.e16, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38964322

RESUMEN

Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.


Asunto(s)
Núcleo Celular , Cromatina , ARN Helicasas DEAD-box , ARN Mensajero , Animales , Humanos , Ratones , ARN Mensajero/metabolismo , ARN Mensajero/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Cromatina/metabolismo , Cromatina/genética , Citoplasma/metabolismo , Citoplasma/genética , Estabilidad del ARN , Transporte Activo de Núcleo Celular , Polirribosomas/metabolismo , Polirribosomas/genética , Aprendizaje Automático , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Exosomas/metabolismo , Exosomas/genética
19.
Mol Cell ; 84(10): 1886-1903.e10, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38688280

RESUMEN

Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.


Asunto(s)
Neoplasias Hematológicas , Proteínas Musculares , Mutación , Fosfoproteínas , Factores de Empalme de ARN , Animales , Humanos , Ratones , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/metabolismo , Hematopoyesis/genética , Intrones , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
20.
Cell ; 167(1): 122-132.e9, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27641505

RESUMEN

A major determinant of mRNA half-life is the codon-dependent rate of translational elongation. How the processes of translational elongation and mRNA decay communicate is unclear. Here, we establish that the DEAD-box protein Dhh1p is a sensor of codon optimality that targets an mRNA for decay. First, we find mRNAs whose translation elongation rate is slowed by inclusion of non-optimal codons are specifically degraded in a Dhh1p-dependent manner. Biochemical experiments show Dhh1p is preferentially associated with mRNAs with suboptimal codon choice. We find these effects on mRNA decay are sensitive to the number of slow-moving ribosomes on an mRNA. Moreover, we find Dhh1p overexpression leads to the accumulation of ribosomes specifically on mRNAs (and even codons) of low codon optimality. Lastly, Dhh1p physically interacts with ribosomes in vivo. Together, these data argue that Dhh1p is a sensor for ribosome speed, targeting an mRNA for repression and subsequent decay.


Asunto(s)
Codón/metabolismo , ARN Helicasas DEAD-box/metabolismo , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Codón/genética , ARN Helicasas DEAD-box/genética , Semivida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA