Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.909
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(21): 6088-6103.e18, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39214079

RESUMEN

5-Methylcytosine (5mC) is an established epigenetic mark in vertebrate genomic DNA, but whether its oxidation intermediates formed during TET-mediated DNA demethylation possess an instructive role of their own that is also physiologically relevant remains unresolved. Here, we reveal a 5-formylcytosine (5fC) nuclear chromocenter, which transiently forms during zygotic genome activation (ZGA) in Xenopus and mouse embryos. We identify this chromocenter as the perinucleolar compartment, a structure associated with RNA Pol III transcription. In Xenopus embryos, 5fC is highly enriched on Pol III target genes activated at ZGA, notably at oocyte-type tandem arrayed tRNA genes. By manipulating Tet and Tdg enzymes, we show that 5fC is required as a regulatory mark to promote Pol III recruitment as well as tRNA expression. Concordantly, 5fC modification of a tRNA transgene enhances its expression in vivo. The results establish 5fC as an activating epigenetic mark during zygotic reprogramming of Pol III gene expression.


Asunto(s)
Citosina , Epigénesis Genética , ARN Polimerasa III , Cigoto , Animales , Citosina/metabolismo , Citosina/análogos & derivados , Ratones , Cigoto/metabolismo , ARN Polimerasa III/metabolismo , ARN Polimerasa III/genética , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Xenopus laevis/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética , Xenopus/metabolismo , Xenopus/embriología , Xenopus/genética , Femenino , Reprogramación Celular , Regulación del Desarrollo de la Expresión Génica , Oocitos/metabolismo
2.
Cell ; 186(25): 5517-5535.e24, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37992713

RESUMEN

Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galQ and manQ, respectively. However, biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, QTGAL and QTMAN, and successfully reconstituted Q-glycosylation of tRNAs using nucleotide diphosphate sugars. Ribosome profiling of knockout cells revealed that Q-glycosylation slowed down elongation at cognate codons, UAC and GAC (GAU), respectively. We also found that galactosylation of Q suppresses stop codon readthrough. Moreover, protein aggregates increased in cells lacking Q-glycosylation, indicating that Q-glycosylation contributes to proteostasis. Cryo-EM of human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylations. Furthermore, zebrafish qtgal and qtman knockout lines displayed shortened body length, implying that Q-glycosylation is required for post-embryonic growth in vertebrates.


Asunto(s)
ARN de Transferencia , Animales , Humanos , Ratas , Anticodón , Línea Celular , Codón , Glicosilación , Nucleósido Q/química , Nucleósido Q/genética , Nucleósido Q/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Porcinos , Pez Cebra/metabolismo , Conformación de Ácido Nucleico
3.
Annu Rev Biochem ; 91: 221-243, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729073

RESUMEN

Genetic code reprogramming has enabled us to ribosomally incorporate various nonproteinogenic amino acids (npAAs) into peptides in vitro. The repertoire of usable npAAs has been expanded to include not only l-α-amino acids with noncanonical sidechains but also those with noncanonical backbones. Despite successful single incorporation of npAAs, multiple and consecutive incorporations often suffer from low efficiency or are even unsuccessful. To overcome this stumbling block, engineering approaches have been used to modify ribosomes, EF-Tu, and tRNAs. Here, we provide an overview of these in vitro methods that are aimed at optimal expansion of the npAA repertoire and their applications for the development of de novo bioactive peptides containing various npAAs.


Asunto(s)
Aminoácidos , Código Genético , Aminoácidos/metabolismo , Péptidos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
4.
Annu Rev Biochem ; 90: 375-401, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33441035

RESUMEN

Codon usage bias, the preference for certain synonymous codons, is found in all genomes. Although synonymous mutations were previously thought to be silent, a large body of evidence has demonstrated that codon usage can play major roles in determining gene expression levels and protein structures. Codon usage influences translation elongation speed and regulates translation efficiency and accuracy. Adaptation of codon usage to tRNA expression determines the proteome landscape. In addition, codon usage biases result in nonuniform ribosome decoding rates on mRNAs, which in turn influence the cotranslational protein folding process that is critical for protein function in diverse biological processes. Conserved genome-wide correlations have also been found between codon usage and protein structures. Furthermore, codon usage is a major determinant of mRNA levels through translation-dependent effects on mRNA decay and translation-independent effects on transcriptional and posttranscriptional processes. Here, we discuss the multifaceted roles and mechanisms of codon usage in different gene regulatory processes.


Asunto(s)
Uso de Codones , Expresión Génica , Biosíntesis de Proteínas , Pliegue de Proteína , Animales , Eucariontes/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
5.
Nat Rev Mol Cell Biol ; 25(5): 359-378, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38182846

RESUMEN

A growing class of small RNAs, known as tRNA-derived RNAs (tdRs), tRNA-derived small RNAs or tRNA-derived fragments, have long been considered mere intermediates of tRNA degradation. These small RNAs have recently been implicated in an evolutionarily conserved repertoire of biological processes. In this Review, we discuss the biogenesis and molecular functions of tdRs in mammals, including tdR-mediated gene regulation in cell metabolism, immune responses, transgenerational inheritance, development and cancer. We also discuss the accumulation of tRNA-derived stress-induced RNAs as a distinct adaptive cellular response to pathophysiological conditions. Furthermore, we highlight new conceptual advances linking RNA modifications with tdR activities and discuss challenges in studying tdR biology in health and disease.


Asunto(s)
ARN de Transferencia , Animales , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Regulación de la Expresión Génica , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo
6.
Nat Immunol ; 23(10): 1433-1444, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138184

RESUMEN

Naive T cells undergo radical changes during the transition from dormant to hyperactive states upon activation, which necessitates de novo protein production via transcription and translation. However, the mechanism whereby T cells globally promote translation remains largely unknown. Here, we show that on exit from quiescence, T cells upregulate transfer RNA (tRNA) m1A58 'writer' proteins TRMT61A and TRMT6, which confer m1A58 RNA modification on a specific subset of early expressed tRNAs. These m1A-modified early tRNAs enhance translation efficiency, enabling rapid and necessary synthesis of MYC and of a specific group of key functional proteins. The MYC protein then guides the exit of naive T cells from a quiescent state into a proliferative state and promotes rapid T cell expansion after activation. Conditional deletion of the Trmt61a gene in mouse CD4+ T cells causes MYC protein deficiency and cell cycle arrest, disrupts T cell expansion upon cognate antigen stimulation and alleviates colitis in a mouse adoptive transfer colitis model. Our study elucidates for the first time, to our knowledge, the in vivo physiological roles of tRNA-m1A58 modification in T cell-mediated pathogenesis and reveals a new mechanism of tRNA-m1A58-controlled T cell homeostasis and signal-dependent translational control of specific key proteins.


Asunto(s)
Colitis , ARN de Transferencia , Traslado Adoptivo , Animales , Proliferación Celular/genética , Colitis/genética , Ratones , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Linfocitos T/metabolismo
7.
Cell ; 178(1): 76-90.e22, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31155236

RESUMEN

In ribosome-associated quality control (RQC), Rqc2/NEMF closely supports the E3 ligase Ltn1/listerin in promoting ubiquitylation and degradation of aberrant nascent-chains obstructing large (60S) ribosomal subunits-products of ribosome stalling during translation. However, while Ltn1 is eukaryote-specific, Rqc2 homologs are also found in bacteria and archaea; whether prokaryotic Rqc2 has an RQC-related function has remained unknown. Here, we show that, as in eukaryotes, a bacterial Rqc2 homolog (RqcH) recognizes obstructed 50S subunits and promotes nascent-chain proteolysis. Unexpectedly, RqcH marks nascent-chains for degradation in a direct manner, by appending C-terminal poly-alanine tails that act as degrons recognized by the ClpXP protease. Furthermore, RqcH acts redundantly with tmRNA/ssrA and protects cells against translational and environmental stresses. Our results uncover a proteolytic-tagging mechanism with implications toward the function of related modifications in eukaryotes and suggest that RQC was already active in the last universal common ancestor (LUCA) to help cope with incomplete translation.


Asunto(s)
Alanina/metabolismo , Bacillus subtilis/metabolismo , Células Procariotas/metabolismo , Proteolisis , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Células Eucariotas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
8.
Annu Rev Biochem ; 87: 75-100, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29328783

RESUMEN

RNA polymerase (Pol) III has a specialized role in transcribing the most abundant RNAs in eukaryotic cells, transfer RNAs (tRNAs), along with other ubiquitous small noncoding RNAs, many of which have functions related to the ribosome and protein synthesis. The high energetic cost of producing these RNAs and their central role in protein synthesis underlie the robust regulation of Pol III transcription in response to nutrients and stress by growth regulatory pathways. Downstream of Pol III, signaling impacts posttranscriptional processes affecting tRNA function in translation and tRNA cleavage into smaller fragments that are increasingly attributed with novel cellular activities. In this review, we consider how nutrients and stress control Pol III transcription via its factors and its negative regulator, Maf1. We highlight recent work showing that the composition of the tRNA population and the function of individual tRNAs is dynamically controlled and that unrestrained Pol III transcription can reprogram central metabolic pathways.


Asunto(s)
ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Animales , Humanos , Modelos Biológicos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación , Conformación Proteica , ARN Polimerasa III/química , Procesamiento Postranscripcional del ARN , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Estrés Fisiológico , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
9.
Nat Rev Mol Cell Biol ; 22(10): 671-690, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34272502

RESUMEN

Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.


Asunto(s)
Biosíntesis de Proteínas/fisiología , Células Madre/citología , Células Madre/metabolismo , Animales , Humanos , Neoplasias/metabolismo , Neoplasias/patología , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
10.
Cell ; 175(5): 1393-1404.e11, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30454648

RESUMEN

Ribonuclease (RNase) P is a ubiquitous ribozyme that cleaves the 5' leader from precursor tRNAs. Here, we report cryo-electron microscopy structures of the human nuclear RNase P alone and in complex with tRNAVal. Human RNase P is a large ribonucleoprotein complex that contains 10 protein components and one catalytic RNA. The protein components form an interlocked clamp that stabilizes the RNA in a conformation optimal for substrate binding. Human RNase P recognizes the tRNA using a double-anchor mechanism through both protein-RNA and RNA-RNA interactions. Structural comparison of the apo and tRNA-bound human RNase P reveals that binding of tRNA induces a local conformational change in the catalytic center, transforming the ribozyme into an active state. Our results also provide an evolutionary model depicting how auxiliary RNA elements in bacterial RNase P, essential for substrate binding, and catalysis, were replaced by the much more complex and multifunctional protein components in higher organisms.


Asunto(s)
Microscopía por Crioelectrón , ARN de Transferencia/química , Ribonucleasa P/química , Sitios de Unión , Evolución Molecular , Células HEK293 , Holoenzimas/química , Humanos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Dominios Proteicos , Estructura Terciaria de Proteína , ARN de Transferencia/metabolismo , Ribonucleasa P/aislamiento & purificación , Ribonucleasa P/metabolismo
11.
Cell ; 173(5): 1204-1216.e26, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29628141

RESUMEN

Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ "writer" PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing translation control in stem cells with important implications for development and disease.


Asunto(s)
Transferasas Intramoleculares/metabolismo , Biosíntesis de Proteínas , Seudouridina/metabolismo , ARN de Transferencia/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Diferenciación Celular , Factores Eucarióticos de Iniciación/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Transferasas Intramoleculares/antagonistas & inhibidores , Transferasas Intramoleculares/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Síndromes Mielodisplásicos/patología , Conformación de Ácido Nucleico , Fosfoproteínas/metabolismo , Proteína I de Unión a Poli(A)/antagonistas & inhibidores , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Nicho de Células Madre
12.
Cell ; 170(1): 61-71.e11, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666125

RESUMEN

Transposon reactivation is an inherent danger in cells that lose epigenetic silencing during developmental reprogramming. In the mouse, long terminal repeat (LTR)-retrotransposons, or endogenous retroviruses (ERV), account for most novel insertions and are expressed in the absence of histone H3 lysine 9 trimethylation in preimplantation stem cells. We found abundant 18 nt tRNA-derived small RNA (tRF) in these cells and ubiquitously expressed 22 nt tRFs that include the 3' terminal CCA of mature tRNAs and target the tRNA primer binding site (PBS) essential for ERV reverse transcription. We show that the two most active ERV families, IAP and MusD/ETn, are major targets and are strongly inhibited by tRFs in retrotransposition assays. 22 nt tRFs post-transcriptionally silence coding-competent ERVs, while 18 nt tRFs specifically interfere with reverse transcription and retrotransposon mobility. The PBS offers a unique target to specifically inhibit LTR-retrotransposons, and tRF-targeting is a potentially highly conserved mechanism of small RNA-mediated transposon control.


Asunto(s)
Silenciador del Gen , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/metabolismo , Retroviridae/genética , Células Madre/virología , Animales , Células HeLa , Humanos , Ratones , Secuencias Repetidas Terminales
13.
Mol Cell ; 84(19): 3843-3859.e8, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096899

RESUMEN

Despite the numerous sequencing methods available, the diversity in RNA size and chemical modification makes it difficult to capture all RNAs in a cell. We developed a method that combines quasi-random priming with template switching to construct sequencing libraries from RNA molecules of any length and with any type of 3' modifications, allowing for the sequencing of virtually all RNA species. Our ligation-independent detection of all types of RNA (LIDAR) is a simple, effective tool to identify and quantify all classes of coding and non-coding RNAs. With LIDAR, we comprehensively characterized the transcriptomes of mouse embryonic stem cells, neural progenitor cells, mouse tissues, and sperm. LIDAR detected a much larger variety of tRNA-derived RNAs (tDRs) compared with traditional ligation-dependent sequencing methods and uncovered tDRs with blocked 3' ends that had previously escaped detection. Therefore, LIDAR can capture all RNAs in a sample and uncover RNA species with potential regulatory functions.


Asunto(s)
ARN de Transferencia , Animales , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ratones , Análisis de Secuencia de ARN/métodos , Masculino , Células Madre Embrionarias de Ratones/metabolismo , Transcriptoma , Células-Madre Neurales/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Espermatozoides/metabolismo
14.
Mol Cell ; 84(13): 2472-2489.e8, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996458

RESUMEN

Pseudouridine (Ψ), the isomer of uridine, is ubiquitously found in RNA, including tRNA, rRNA, and mRNA. Human pseudouridine synthase 3 (PUS3) catalyzes pseudouridylation of position 38/39 in tRNAs. However, the molecular mechanisms by which it recognizes its RNA targets and achieves site specificity remain elusive. Here, we determine single-particle cryo-EM structures of PUS3 in its apo form and bound to three tRNAs, showing how the symmetric PUS3 homodimer recognizes tRNAs and positions the target uridine next to its active site. Structure-guided and patient-derived mutations validate our structural findings in complementary biochemical assays. Furthermore, we deleted PUS1 and PUS3 in HEK293 cells and mapped transcriptome-wide Ψ sites by Pseudo-seq. Although PUS1-dependent sites were detectable in tRNA and mRNA, we found no evidence that human PUS3 modifies mRNAs. Our work provides the molecular basis for PUS3-mediated tRNA modification in humans and explains how its tRNA modification activity is linked to intellectual disabilities.


Asunto(s)
Microscopía por Crioelectrón , Hidroliasas , Transferasas Intramoleculares , Seudouridina , ARN de Transferencia , Humanos , Dominio Catalítico , Células HEK293 , Hidroliasas/metabolismo , Hidroliasas/genética , Hidroliasas/química , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/enzimología , Modelos Moleculares , Mutación , Unión Proteica , Seudouridina/metabolismo , Seudouridina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Especificidad por Sustrato
15.
Mol Cell ; 84(10): 1904-1916.e7, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759626

RESUMEN

Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.


Asunto(s)
Arginina , Cisteína , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Pulmonares , Proteoma , Humanos , Cisteína/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteoma/metabolismo , Arginina/metabolismo , Mutación , Argininosuccinato Sintasa/metabolismo , Argininosuccinato Sintasa/genética , Cisplatino/farmacología , Línea Celular Tumoral , Proteómica/métodos , Regulación Neoplásica de la Expresión Génica , Supervivencia Celular/efectos de los fármacos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética
16.
Annu Rev Biochem ; 85: 103-32, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27023846

RESUMEN

Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales/ultraestructura , Biosíntesis de Proteínas , Subunidades Ribosómicas/ultraestructura , Animales , Antibacterianos/farmacología , Evolución Biológica , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , ADN Mitocondrial/metabolismo , Mamíferos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Annu Rev Genet ; 57: 461-489, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37722686

RESUMEN

Enzymes that phosphorylate, dephosphorylate, and ligate RNA 5' and 3' ends were discovered more than half a century ago and were eventually shown to repair purposeful site-specific endonucleolytic breaks in the RNA phosphodiester backbone. The pace of discovery and characterization of new candidate RNA repair activities in taxa from all phylogenetic domains greatly exceeds our understanding of the biological pathways in which they act. The key questions anent RNA break repair in vivo are (a) identifying the triggers, agents, and targets of RNA cleavage and (b) determining whether RNA repair results in restoration of the original RNA, modification of the RNA (by loss or gain at the ends), or rearrangements of the broken RNA segments (i.e., RNA recombination). This review provides a perspective on the discovery, mechanisms, and physiology of purposeful RNA break repair, highlighting exemplary repair pathways (e.g., tRNA restriction-repair and tRNA splicing) for which genetics has figured prominently in their elucidation.


Asunto(s)
ARN Ligasa (ATP) , ARN , Filogenia , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/metabolismo , ARN/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Empalme del ARN/genética
18.
Cell ; 166(3): 679-690, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27374328

RESUMEN

Translation elongation efficiency is largely thought of as the sum of decoding efficiencies for individual codons. Here, we find that adjacent codon pairs modulate translation efficiency. Deploying an approach in Saccharomyces cerevisiae that scored the expression of over 35,000 GFP variants in which three adjacent codons were randomized, we have identified 17 pairs of adjacent codons associated with reduced expression. For many pairs, codon order is obligatory for inhibition, implying a more complex interaction than a simple additive effect. Inhibition mediated by adjacent codons occurs during translation itself as GFP expression is restored by increased tRNA levels or by non-native tRNAs with exact-matching anticodons. Inhibition operates in endogenous genes, based on analysis of ribosome profiling data. Our findings suggest translation efficiency is modulated by an interplay between tRNAs at adjacent sites in the ribosome and that this concerted effect needs to be considered in predicting the functional consequences of codon choice.


Asunto(s)
Codón , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Genes Fúngicos , ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis
19.
Cell ; 167(3): 816-828.e16, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27745969

RESUMEN

tRNA is a central component of protein synthesis and the cell signaling network. One salient feature of tRNA is its heavily modified status, which can critically impact its function. Here, we show that mammalian ALKBH1 is a tRNA demethylase. It mediates the demethylation of N1-methyladenosine (m1A) in tRNAs. The ALKBH1-catalyzed demethylation of the target tRNAs results in attenuated translation initiation and decreased usage of tRNAs in protein synthesis. This process is dynamic and responds to glucose availability to affect translation. Our results uncover reversible methylation of tRNA as a new mechanism of post-transcriptional gene expression regulation.


Asunto(s)
Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas/genética , ARN de Transferencia/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Glucosa/deficiencia , Células HeLa , Humanos , Metilación , Polirribosomas/metabolismo
20.
Cell ; 166(4): 894-906, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27518564

RESUMEN

Regulation of stem and progenitor cell populations is critical in the development, maintenance, and regeneration of tissues. Here, we define a novel mechanism by which a niche-secreted RNase, angiogenin (ANG), distinctively alters the functional characteristics of primitive hematopoietic stem/progenitor cells (HSPCs) compared with lineage-committed myeloid-restricted progenitor (MyePro) cells. Specifically, ANG reduces the proliferative capacity of HSPC while simultaneously increasing proliferation of MyePro cells. Mechanistically, ANG induces cell-type-specific RNA-processing events: tRNA-derived stress-induced small RNA (tiRNA) generation in HSPCs and rRNA induction in MyePro cells, leading to respective reduction and increase in protein synthesis. Recombinant ANG protein improves survival of irradiated animals and enhances hematopoietic regeneration of mouse and human HSPCs in transplantation. Thus, ANG plays a non-cell-autonomous role in regulation of hematopoiesis by simultaneously preserving HSPC stemness and promoting MyePro proliferation. These cell-type-specific functions of ANG suggest considerable therapeutic potential.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Ribonucleasa Pancreática/metabolismo , Animales , Proliferación Celular , Hematopoyesis , Células Madre Hematopoyéticas/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , ARN de Transferencia/metabolismo , ARN no Traducido/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA