Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 399
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Bacteriol ; 206(4): e0004224, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38563759

RESUMEN

In Salmonella enterica, the absence of the RidA deaminase results in the accumulation of the reactive enamine 2-aminoacrylate (2AA). The resulting 2AA stress impacts metabolism and prevents growth in some conditions by inactivating a specific target pyridoxal 5'-phosphate (PLP)-dependent enzyme(s). The detrimental effects of 2AA stress can be overcome by changing the sensitivity of a critical target enzyme or modifying flux in one or more nodes in the metabolic network. The catabolic L-alanine racemase DadX is a target of 2AA, which explains the inability of an alr ridA strain to use L-alanine as the sole nitrogen source. Spontaneous mutations that suppressed the growth defect of the alr ridA strain were identified as lesions in folE, which encodes GTP cyclohydrolase and catalyzes the first step of tetrahydrofolate (THF) synthesis. The data here show that THF limitation resulting from a folE lesion, or inhibition of dihydrofolate reductase (FolA) by trimethoprim, decreases the 2AA generated from endogenous serine. The data are consistent with an increased level of threonine, resulting from low folate levels, decreasing 2AA stress.IMPORTANCERidA is an enamine deaminase that has been characterized as preventing the 2-aminoacrylate (2AA) stress. In the absence of RidA, 2AA accumulates and damages various cellular enzymes. Much of the work describing the 2AA stress system has depended on the exogenous addition of serine to increase the production of the enamine stressor. The work herein focuses on understanding the effect of 2AA stress generated from endogenous serine pools. As such, this work describes the consequences of a subtle level of stress that nonetheless compromises growth in at least two conditions. Describing mechanisms that alter the physiological consequences of 2AA stress increases our understanding of endogenous metabolic stress and how the robustness of the metabolic network allows perturbations to be modulated.


Asunto(s)
Salmonella enterica , Scrapie , Ovinos , Animales , Salmonella enterica/genética , Acrilatos/metabolismo , Proteínas Bacterianas/genética , Fosfato de Piridoxal/metabolismo , Tetrahidrofolatos/metabolismo , Serina/metabolismo
2.
Biochemistry (Mosc) ; 89(4): 701-710, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38831506

RESUMEN

Many microorganisms are capable of anaerobic respiration in the absence of oxygen, by using different organic compounds as terminal acceptors in electron transport chain. We identify here an anaerobic respiratory chain protein responsible for acrylate reduction in the marine bacterium Shewanella woodyi. When the periplasmic proteins of S. woodyi were separated by ion exchange chromatography, acrylate reductase activity copurified with an ArdA protein (Swoo_0275). Heterologous expression of S. woodyi ardA gene (swoo_0275) in Shewanella oneidensis MR-1 cells did not result in the appearance in them of periplasmic acrylate reductase activity, but such activity was detected when the ardA gene was co-expressed with an ardB gene (swoo_0276). Together, these genes encode flavocytochrome c ArdAB, which is thus responsible for acrylate reduction in S. woodyi cells. ArdAB was highly specific for acrylate as substrate and reduced only methacrylate (at a 22-fold lower rate) among a series of other tested 2-enoates. In line with these findings, acrylate and methacrylate induced ardA gene expression in S. woodyi under anaerobic conditions, which was accompanied by the appearance of periplasmic acrylate reductase activity. ArdAB-linked acrylate reduction supports dimethylsulfoniopropionate-dependent anaerobic respiration in S. woodyi and, possibly, other marine bacteria.


Asunto(s)
Acrilatos , Shewanella , Shewanella/enzimología , Shewanella/genética , Shewanella/metabolismo , Transporte de Electrón , Acrilatos/metabolismo , Anaerobiosis , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
3.
J Biol Chem ; 298(6): 101970, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460692

RESUMEN

Pyridoxal 5'-phosphate (PLP) is an essential cofactor for a class of enzymes that catalyze diverse reactions in central metabolism. The catalytic mechanism of some PLP-dependent enzymes involves the generation of reactive enamine intermediates like 2-aminoacrylate (2AA). 2AA can covalently modify PLP in the active site of some PLP-dependent enzymes and subsequently inactivate the enzyme through the formation of a PLP-pyruvate adduct. In the absence of the enamine/imine deaminase RidA, Salmonella enterica experiences 2AA-mediated metabolic stress. Surprisingly, PLP-dependent enzymes that generate endogenous 2AA appear to be immune to its attack, while other PLP-dependent enzymes accumulate damage in the presence of 2AA stress; however, structural determinants of 2AA sensitivity are unclear. In this study, we refined a molecular method to query proteins from diverse systems for their sensitivity to 2AA in vivo. This method was then used to examine active site residues of Alr, a 2AA-sensitive PLP-dependent enzyme, that affect its sensitivity to 2AA in vivo. Unexpectedly, our data also showed that a low level of 2AA stress can persist even in the presence of a functional RidA. In summary, this study expands our understanding of 2AA metabolism and takes an initial step toward characterizing the structural determinants influencing enzyme susceptibility to damage by free 2AA.


Asunto(s)
Acrilatos/metabolismo , Salmonella enterica , Animales , Proteínas Bacterianas/metabolismo , Fosfato de Piridoxal/metabolismo
4.
J Biol Chem ; 296: 100651, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839153

RESUMEN

The Rid protein family (PF14588, IPR006175) is divided into nine subfamilies, of which only the RidA subfamily has been characterized biochemically. RutC, the founding member of one subfamily, is encoded in the pyrimidine utilization (rut) operon that encodes a pathway that allows Escherichia coli to use uracil as a sole nitrogen source. Results reported herein demonstrate that RutC has 3-aminoacrylate deaminase activity and facilitates one of the reactions previously presumed to occur spontaneously in vivo. RutC was active with several enamine-imine substrates, showing similarities and differences in substrate specificity with the canonical member of the Rid superfamily, Salmonella enterica RidA. Under standard laboratory conditions, a Rut pathway lacking RutC generates sufficient nitrogen from uracil for growth of E. coli. These results support a revised model of the Rut pathway and provide evidence that Rid proteins may modulate metabolic fitness, rather than catalyzing essential functions.


Asunto(s)
Acrilatos/metabolismo , Aminohidrolasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Oxidorreductasas/metabolismo , Aminohidrolasas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Nitrógeno/metabolismo , Oxidorreductasas/genética , Fosfato de Piridoxal/metabolismo , Salmonella enterica/enzimología , Especificidad por Sustrato , Uracilo/metabolismo
5.
PLoS Comput Biol ; 17(3): e1008704, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33684125

RESUMEN

Acrylic acid is a value-added chemical used in industry to produce diapers, coatings, paints, and adhesives, among many others. Due to its economic importance, there is currently a need for new and sustainable ways to synthesise it. Recently, the focus has been laid in the use of Escherichia coli to express the full bio-based pathway using 3-hydroxypropionate as an intermediary through three distinct pathways (glycerol, malonyl-CoA, and ß-alanine). Hence, the goals of this work were to use COPASI software to assess which of the three pathways has a higher potential for industrial-scale production, from either glucose or glycerol, and identify potential targets to improve the biosynthetic pathways yields. When compared to the available literature, the models developed during this work successfully predict the production of 3-hydroxypropionate, using glycerol as carbon source in the glycerol pathway, and using glucose as a carbon source in the malonyl-CoA and ß-alanine pathways. Finally, this work allowed to identify four potential over-expression targets (glycerol-3-phosphate dehydrogenase (G3pD), acetyl-CoA carboxylase (AccC), aspartate aminotransferase (AspAT), and aspartate carboxylase (AspC)) that should, theoretically, result in higher AA yields.


Asunto(s)
Acrilatos/metabolismo , Carbono/metabolismo , Escherichia coli/metabolismo , Modelos Biológicos , Vías Biosintéticas , Glucosa/metabolismo , Glicerol/metabolismo , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo , Ingeniería Metabólica
6.
Microb Cell Fact ; 21(1): 116, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710409

RESUMEN

BACKGROUND: Microbial production of propionate from diluted streams of ethanol (e.g., deriving from syngas fermentation) is a sustainable alternative to the petrochemical production route. Yet, few ethanol-fermenting propionigenic bacteria are known, and understanding of their metabolism is limited. Anaerotignum neopropionicum is a propionate-producing bacterium that uses the acrylate pathway to ferment ethanol and CO2 to propionate and acetate. In this work, we used computational and experimental methods to study the metabolism of A. neopropionicum and, in particular, the pathway for conversion of ethanol into propionate. RESULTS: Our work describes iANEO_SB607, the first genome-scale metabolic model (GEM) of A. neopropionicum. The model was built combining the use of automatic tools with an extensive manual curation process, and it was validated with experimental data from this and published studies. The model predicted growth of A. neopropionicum on ethanol, lactate, sugars and amino acids, matching observed phenotypes. In addition, the model was used to implement a dynamic flux balance analysis (dFBA) approach that accurately predicted the fermentation profile of A. neopropionicum during batch growth on ethanol. A systematic analysis of the metabolism of A. neopropionicum combined with model simulations shed light into the mechanism of ethanol fermentation via the acrylate pathway, and revealed the presence of the electron-transferring complexes NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (Nfn) and acryloyl-CoA reductase-EtfAB, identified for the first time in this bacterium. CONCLUSIONS: The realisation of the GEM iANEO_SB607 is a stepping stone towards the understanding of the metabolism of the propionate-producer A. neopropionicum. With it, we have gained insight into the functioning of the acrylate pathway and energetic aspects of the cell, with focus on the fermentation of ethanol. Overall, this study provides a basis to further exploit the potential of propionigenic bacteria as microbial cell factories.


Asunto(s)
Clostridium , Propionatos , Acrilatos/metabolismo , Clostridiales , Clostridium/metabolismo , Etanol/metabolismo , Fermentación , Ácido Láctico/metabolismo , Propionatos/metabolismo
7.
Appl Microbiol Biotechnol ; 106(22): 7547-7562, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36282302

RESUMEN

The carboxylic acid propionate is a valuable platform chemical with applications in various fields. The biological production of this acid has become of great interest as it can be considered a sustainable alternative to petrochemical synthesis. In this work, Clostridium saccharoperbutylacetonicum was metabolically engineered to produce propionate via the acrylate pathway. In total, the established synthetic pathway comprised eight genes encoding the enzymes catalyzing the conversion of pyruvate to propionate. These included the propionate CoA-transferase, the lactoyl-CoA dehydratase, and the acryloyl-CoA reductase from Anaerotignum neopropionicum as well as a D-lactate dehydrogenase from Leuconostoc mesenteroides subsp. mesenteroides. Due to difficulties in assembling all genes on one plasmid under the control of standard promoters, the PtcdB-tcdR promoter system from Clostridium difficile was integrated into a two-plasmid system carrying the acrylate pathway genes. Several promoters were analyzed for their activity in C. saccharoperbutylacetonicum using the fluorescence-activating and absorption-shifting tag (FAST) as a fluorescent reporter to identify suitable candidates to drive tcdR expression. After selecting the lactose-inducible PbgaL promoter, engineered C. saccharoperbutylacetonicum strains produced 0.7 mM propionate upon induction of gene expression. The low productivity was suspected to be a consequence of a metabolic imbalance leading to acryloyl-CoA accumulation in the cells. To even out the proposed imbalance, the propionate-synthesis operons were rearranged, thereby increasing the propionate concentration by almost four-fold. This study is the first one to report recombinant propionate production using a clostridial host strain that has opened a new path towards bio-based propionate to be improved further in subsequent work. KEY POINTS: • Determination of promoter activities in C. saccharoperbutylacetonicum using FAST. • Implementation of propionate production in C. saccharoperbutylacetonicum. • Elevation of propionate production by 375% to a concentration of 3 mM.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Propionatos/metabolismo , Toxinas Bacterianas/metabolismo , Clostridium/genética , Clostridium/metabolismo , Acrilatos/metabolismo
8.
Molecules ; 27(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35164194

RESUMEN

This study demonstrated that polymerization behavior of plant oil-based acrylic monomers (POBMs) synthesized in one-step transesterification reaction from naturally rich in oleic acid olive, canola, and high-oleic soybean oils is associated with a varying mass fraction of polyunsaturated fatty acid fragments (linoleic (C18:2) and linolenic (C18:3) acid esters) in plant oil. Using miniemulsion polymerization, a range of stable copolymer latexes was synthesized from 60 wt.% of each POBM and styrene to determine the impact of POBM chemical composition (polyunsaturation) on thermal and mechanical properties of the resulted polymeric materials. The unique composition of each plant oil serves as an experimental tool to determine the effect of polyunsaturated fatty acid fragments on POBM polymerization behavior and thermomechanical properties of crosslinked films made from POBM-based latexes. The obtained results show that increasing polyunsaturation in the copolymers results in an enhanced crosslink density of the latex polymer network which essentially impacts the mechanical properties of the films (both Young's modulus and toughness). Maximum toughness was observed for crosslinked latex films made from 50 wt.% of each POBM in the monomer feed.


Asunto(s)
Acrilatos/metabolismo , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Polímeros/metabolismo , Emulsiones
9.
Chem Res Toxicol ; 34(4): 1046-1054, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33682414

RESUMEN

Benzophenone is a mutagen, carcinogen, and endocrine disruptor. Its presence in food products or food packaging is banned in the United States. Under California Proposition 65, there is no safe harbor for benzophenone in any personal care products, including sunscreens, anti-aging creams, and moisturizers. The purpose of this study was to determine (1) if benzophenone was present in a wide variety of commercial sun protection factor (SPF)/sunscreen products, (2) whether benzophenone concentration in the product increased over time, and (3) if the degradation of octocrylene was the likely source for benzophenone contamination. Benzophenone concentration was assayed in nine commercial sunscreen products from the European Union and eight from the United States (in triplicate), including two single ingredient sources of octocrylene. These same SPF items were subjected to the United States Food and Drug Administration (U.S. FDA)-accelerated stability aging protocol for 6 weeks. Benzophenone was measured in the accelerated-aged products. Sixteen octocrylene-containing product lines that were recently purchased had an average concentration of 39 mg/kg benzophenone, ranging from 6 mg/kg to 186 mg/kg. Benzophenone was not detectable in the product that did not contain octocrylene. After subjecting the 17 products to the U.S. FDA-accelerated stability method, the 16 octocrylene-containing products had an average concentration of 75 mg/kg, ranging from 9.8 mg/kg to 435 mg/kg. Benzophenone was not detectable in the product that did not contain octocrylene. Benzophenone was detected in the pure octocrylene manufactured ingredient. Octocrylene generates benzophenone through a retro-aldol condensation. In vivo, up to 70% of the benzophenone in these sunscreen products may be absorbed through the skin. U.S. FDA has established a zero tolerance for benzophenone as a food additive. In the United States, there were 2999 SPF products containing octocrylene in 2019. The safety of octocrylene as a benzophenone generator in SPF or any consumer products should be expeditiously reviewed by regulatory agencies.


Asunto(s)
Acrilatos/metabolismo , Benzofenonas/metabolismo , Protectores Solares/metabolismo , Acrilatos/química , Benzofenonas/química , Contaminación de Alimentos/análisis , Humanos , Estructura Molecular , Protectores Solares/química , Factores de Tiempo , Estados Unidos
10.
Angew Chem Int Ed Engl ; 60(33): 18231-18239, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34097796

RESUMEN

Protein crystallography (PX) is widely used to drive advanced stages of drug optimization or to discover medicinal chemistry starting points by fragment soaking. However, recent progress in PX could allow for a more integrated role into early drug discovery. Here, we demonstrate for the first time the interplay of high throughput synthesis and high throughput PX. We describe a practical multicomponent reaction approach to acrylamides and -esters from diverse building blocks suitable for mmol scale synthesis on 96-well format and on a high-throughput nanoscale format in a highly automated fashion. High-throughput PX of our libraries efficiently yielded potent covalent inhibitors of the main protease of the COVID-19 causing agent, SARS-CoV-2. Our results demonstrate, that the marriage of in situ HT synthesis of (covalent) libraires and HT PX has the potential to accelerate hit finding and to provide meaningful strategies for medicinal chemistry projects.


Asunto(s)
Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Acrilamidas/síntesis química , Acrilamidas/metabolismo , Acrilatos/síntesis química , Acrilatos/metabolismo , Dominio Catalítico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Cristalografía por Rayos X , Inhibidores de Cisteína Proteinasa/síntesis química , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Unión Proteica , SARS-CoV-2/química , Bibliotecas de Moléculas Pequeñas/síntesis química
11.
Biotechnol Bioeng ; 117(12): 3785-3798, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32716047

RESUMEN

To maximize the productivity of engineered metabolic pathway, in silico model is an established means to provide features of enzyme reaction dynamics. In our previous study, Escherichia coli engineered with acrylate pathway yielded low propionic acid titer. To understand the bottleneck behind this low productivity, a kinetic model was developed that incorporates the enzymatic reactions of the acrylate pathway. The resulting model was capable of simulating the fluxes reported under in vitro studies with good agreement, suggesting repression of propionyl-CoA transferase (Pct) by carboxylate metabolites as the main limiting factor for propionate production. Furthermore, the predicted flux control coefficients of the pathway enzymes under steady state conditions revealed that the control of flux is shared between Pct and lactoyl-CoA dehydratase. Increase in lactate concentration showed gradual decrease in flux control coefficients of Pct that in turn confirmed the control exerted by the carboxylate substrate. To interpret these in silico predictions under in vivo system, an organized study was conducted with a lactic acid bacteria strain engineered with acrylate pathway. Analysis reported a decreased product formation rate on attainment of inhibitory titer by suspected metabolites and supported the model.


Asunto(s)
Acrilatos/metabolismo , Simulación por Computador , Lactococcus lactis , Ingeniería Metabólica , Modelos Biológicos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
12.
Bioorg Med Chem Lett ; 30(11): 127145, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32249119

RESUMEN

Two new chlorinated secondary metabolites, saccharochlorines A and B (1 and 2), were isolated from the saline cultivation of a marine-derived bacterium Saccharomonospora sp. (KCTC-19160). The chemical structures of the saccharochlorines were elucidated by 2D NMR and MS spectroscopic data. Saccharochlorines A and B (1 and 2) exhibit weak inhibition of ß-secretase (BACE1) in biochemical inhibitory assay, but they induced the release of Aß (1-40) and Aß (1-42) in H4-APP neuroglial cells. This discrepancy might be derived from the differences between the cellular and sub-cellular environments or the epigenetic stimulation of BACE1 expression.


Asunto(s)
Acrilatos/química , Actinobacteria/química , Acrilatos/aislamiento & purificación , Acrilatos/metabolismo , Acrilatos/farmacología , Actinobacteria/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Conformación Molecular , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Fragmentos de Péptidos/metabolismo
13.
Bioorg Med Chem ; 28(13): 115558, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32546300

RESUMEN

Photodynamic therapy (PDT) is a non-invasive, selective, and cost-effective cancer therapy. We previously reported that thiophene-based organic D-π-A sensitizers consist of an electron-donating (D) moiety, a π-conjugated bridge (π) moiety, and an electron-accepting (A) moiety, and are readily accessible and stable templates for photosensitizers that could be used in PDT. In addition, acrylic acid acceptor-containing photosensitizers exert a high level of phototoxicity. This study was an investigation into 1) the possibility of increasing phototoxicity by introducing another carboxyl group or by replacing a carboxyl group with a pyridinium group, and 2) the importance of an alkene in the acrylic acid acceptor for phototoxicity. A review of the design, synthesis, and evaluation of sensitizers revealed that neither dicarboxylic acid nor pyridinium photosensitizers enhance phototoxicity. An evaluation of a photosensitizer without an alkene in the acrylic acid moiety revealed that the alkene was not indispensable in the pursuit of phototoxicity. The obtained results provided new insight into the design of ideal D-π-A photosensitizers for PDT.


Asunto(s)
Acrilatos/química , Antineoplásicos/química , Fármacos Fotosensibilizantes/química , Tiofenos/síntesis química , Acrilatos/metabolismo , Alquenos/química , Antineoplásicos/farmacología , Permeabilidad de la Membrana Celular , Supervivencia Celular/efectos de los fármacos , Ácidos Dicarboxílicos/química , Células HeLa , Humanos , Estructura Molecular , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Albúmina Sérica Humana/metabolismo , Oxígeno Singlete/química , Tiofenos/farmacología
14.
Nucleic Acids Res ; 46(17): 8689-8699, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30102385

RESUMEN

DEAD-box proteins are an essential class of enzymes involved in all stages of RNA metabolism. The study of DEAD-box proteins is challenging in a native setting since they are structurally similar, often essential and display dosage sensitivity. Pharmacological inhibition would be an ideal tool to probe the function of these enzymes. In this work, we describe a chemical genetic strategy for the specific inactivation of individual DEAD-box proteins with small molecule inhibitors using covalent complementarity. We identify a residue of low conservation within the P-loop of the nucleotide-binding site of DEAD-box proteins and show that it can be mutated to cysteine without a substantial loss of enzyme function to generate electrophile-sensitive mutants. We then present a series of small molecules that rapidly and specifically bind and inhibit electrophile-sensitive DEAD-box proteins with high selectivity over the wild-type enzyme. Thus, this approach can be used to systematically generate small molecule-sensitive alleles of DEAD-box proteins, allowing for pharmacological inhibition and functional characterization of members of this enzyme family.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Proteína 58 DEAD Box/química , ARN Helicasas DEAD-box/química , Proteína Oncogénica pp60(v-src)/química , Proteínas de Saccharomyces cerevisiae/química , Acrilamidas/síntesis química , Acrilamidas/metabolismo , Acrilatos/síntesis química , Acrilatos/metabolismo , Adenosina Monofosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Clonación Molecular , Crotonatos/síntesis química , Crotonatos/metabolismo , Cristalografía por Rayos X , Proteína 58 DEAD Box/antagonistas & inhibidores , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , ARN Helicasas DEAD-box/antagonistas & inhibidores , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Modelos Moleculares , Proteína Oncogénica pp60(v-src)/antagonistas & inhibidores , Proteína Oncogénica pp60(v-src)/genética , Proteína Oncogénica pp60(v-src)/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores Inmunológicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
J Biol Chem ; 293(50): 19240-19249, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30327426

RESUMEN

RidA is a conserved and broadly distributed protein that has enamine deaminase activity. In a variety of organisms tested thus far, lack of RidA results in the accumulation of the reactive metabolite 2-aminoacrylate (2AA), an obligate intermediate in the catalytic mechanism of several pyridoxal 5'-phosphate (PLP)-dependent enzymes. This study reports the characterization of variants of the biosynthetic serine/threonine dehydratase (EC 4.3.1.19; IlvA), which is a significant generator of 2AA in the bacteria Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa and the yeast Saccharomyces cerevisiae Two previously identified mutations, ilvA3210 and ilvA3211, suppressed the phenotypic growth consequences of 2AA accumulation in S. enterica Characterization of the respective protein variants suggested that they affect 2AA metabolism in vivo by two different catalytic mechanisms, both leading to an overall reduction in serine dehydratase activity. To emphasize the physiological relevance of the in vitro enzyme characterization, we sought to explain in vivo phenotypes using these data. A simple mathematical model describing the impact these catalytic deficiencies had on 2AA production was generally supported by our data. However, caveats arose when kinetic parameters, determined in vitro, were used to predict formation of the isoleucine precursor 2-ketobutyrate and model in vivo (growth) behaviors. Altogether, our data support the need for a holistic approach, including in vivo and in vitro analyses, to generate data used in understanding and modeling metabolism.


Asunto(s)
Acrilatos/metabolismo , L-Serina Deshidratasa/genética , L-Serina Deshidratasa/metabolismo , Mutación , Salmonella enterica/enzimología , Alelos , Biocatálisis , Cinética
16.
Anal Chem ; 91(1): 990-995, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30516955

RESUMEN

Octocrylene (OC) is an ingredient used in many sunscreens and cosmetics worldwide. Our group evaluated the toxicity of OC in corals. Adult Pocillopora damicornis coral was treated with OC at concentrations of 5, 50, 300, and 1000 µg/L. Most polyps were closed at concentrations of 300 µg/L and higher. Further, metabolomic profiling provided crucial information regarding OC accumulation in coral tissues and OC toxicity. First, we demonstrated that OC was transformed into fatty acid conjugates via oxidation of the ethylhexyl chain, yielding very lipophilic OC analogues that accumulate in coral tissues. Second, the differential analysis of coral profiles revealed higher levels of 15 acylcarnitines, suggesting abnormal fatty acid metabolism related to mitochondrial dysfunction. The formation of OC analogues suggests that OC concentrations measured in the environment, and organisms may have been largely underestimated. Overall, these results call for an in-depth evaluation of OC toxicity and the reevaluation of the actual OC accumulation rate in the ocean's food chain, including OC-fatty acid conjugates.


Asunto(s)
Acrilatos/metabolismo , Antozoos/química , Antozoos/citología , Ácidos Grasos/metabolismo , Metabolómica , Mitocondrias/metabolismo , Acrilatos/análisis , Animales , Antozoos/metabolismo , Cromatografía Líquida de Alta Presión , Ácidos Grasos/química , Mitocondrias/química , Estructura Molecular , Espectrometría de Masas en Tándem
17.
Microb Cell Fact ; 18(1): 139, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426802

RESUMEN

BACKGROUND: Acrylic acid (AA) is a widely used commodity chemical derived from non-renewable fossil fuel sources. Alternative microbial-based production methodologies are being developed with the aim of providing "green" acrylic acid. These initiatives will benefit from component sensing tools that facilitate rapid and easy detection of in vivo AA production. RESULTS: We developed a novel transcriptional sensor facilitating in vivo detection of acrylic acid (AA). RNAseq analysis of Escherichia coli exposed to sub-lethal doses of acrylic acid identified a selectively responsive promoter (PyhcN) that was cloned upstream of the eGFP gene. In the presence of AA, eGFP expression in E. coli cells harbouring the sensing construct was readily observable by fluorescence read-out. Low concentrations of AA (500 µM) could be detected whilst the closely related lactic and 3-hydroxy propionic acids failed to activate the sensor. We further used the developed AA-biosensor for in vivo FACS-based screening and identification of amidase mutants with improved catalytic properties for deamination of acrylamide to acrylic acid. CONCLUSIONS: The transcriptional AA sensor developed in this study will benefit strain, enzyme and pathway engineering initiatives targeting the efficient formation of bio-acrylic acid.


Asunto(s)
Acrilatos/metabolismo , Técnicas Biosensibles/métodos , Escherichia coli/metabolismo , Acrilamida/metabolismo , Escherichia coli/genética , Fluorescencia , Ingeniería Metabólica/métodos , Regiones Promotoras Genéticas/genética
18.
Nature ; 502(7473): 677-80, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24153189

RESUMEN

Globally, reef-building corals are the most prolific producers of dimethylsulphoniopropionate (DMSP), a central molecule in the marine sulphur cycle and precursor of the climate-active gas dimethylsulphide. At present, DMSP production by corals is attributed entirely to their algal endosymbiont, Symbiodinium. Combining chemical, genomic and molecular approaches, we show that coral juveniles produce DMSP in the absence of algal symbionts. DMSP levels increased up to 54% over time in newly settled coral juveniles lacking algal endosymbionts, and further increases, up to 76%, were recorded when juveniles were subjected to thermal stress. We uncovered coral orthologues of two algal genes recently identified in DMSP biosynthesis, strongly indicating that corals possess the enzymatic machinery necessary for DMSP production. Our results overturn the paradigm that photosynthetic organisms are the sole biological source of DMSP, and highlight the double jeopardy represented by worldwide declining coral cover, as the potential to alleviate thermal stress through coral-produced DMSP declines correspondingly.


Asunto(s)
Antozoos/fisiología , Estrés Fisiológico , Compuestos de Sulfonio/metabolismo , Temperatura , Acrilatos/análisis , Acrilatos/metabolismo , Proteínas Algáceas/genética , Animales , Antozoos/genética , Antozoos/metabolismo , Cambio Climático , Fotosíntesis , Metabolismo Secundario , Simbiosis , Factores de Tiempo
19.
J Environ Manage ; 230: 190-198, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30286348

RESUMEN

Slow-release fertilizer has been proven to be more effective than traditional fertilizer for providing a long-term stable nutrient supply. Although such fertilizers have been widely investigated, their water-retention properties and biodegradability have not been fully analysed. Composites of fertilizers and polymers provide opportunities to prepare new types of fertilizer with enhanced properties for real applications. Chicken feather protein-graft-poly(potassium acrylate)-polyvinyl alcohol semi-interpenetrating networks forming a super absorbent resin combined with nitrogen (N) and phosphorus (P) (CFP-g-PKA/PVA/NP semi-IPNs SAR) was prepared. The chemically bonded or physically embedded fertilizer compound could be released form the resin matrix to the surrounding soil under irrigation. The synthesis mechanism, morphology, and chemical and mechanical structure of the synthesized composites were investigated. The reactant doses were optimized through response surface methodology (RSM). A 30-day field trial of the prepared SAR was applied to detect the influence of sample particle size, soil salinity, pH, and moisture content on the slow-release behaviour of N and P. The maximum release values of N and P from the composites were 69.46% N and 65.23% P. A 120-day soil burying experiment and 30-day Aspergillus niger (A. niger) inoculation were performed, and the biodegradability and change in microstructure were monitored. The addition of SAR to soil could also improve the water-retention ability of the soil.


Asunto(s)
Biomasa , Polímeros/metabolismo , Acrilatos/metabolismo , Fertilizantes/análisis , Nitrógeno/química , Tamaño de la Partícula , Fósforo/química , Alcohol Polivinílico/metabolismo , Potasio/metabolismo , Suelo/química
20.
Fish Physiol Biochem ; 45(3): 873-883, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30387033

RESUMEN

n-Butyl acrylate (nBA) is one of acrylate esters which has been applied to diverse industrial fields. For unveiling of xeno-estrogenic effects and oxidative stress induction by nBA under two-generational exposure regimen (17 weeks), the biomarkers relevant to an estrogenic effect and oxidative stress were analyzed. Acute toxicity value of nBA in Oryzias latipes was 7.2 mg/L (96 h-LC50). Over exposure time, the significant transcriptional change of cytochrome P450 19A (CYP19A) and vitellogenin 1/2 (VTG1/2) was not observed (one-way ANOVA, P < 0.05), meaning no estrogenic effect of nBA. Significant reduction of glutathione (GSH) content was observed in F0 male and female fish, while in F1 male, the content was increased (P < 0.05). Catalase (CAT) activity of male fish showed the significant decrease in both F0 and F1 fish, showing multi-generational suppressing effect of nBA on CAT activity. But in case of reactive oxygen species (ROS), expression level and glutathione S-transferase (GST) activity were not modulated in response to nBA. These findings suggest that nBA could affect an antioxidant system alteration through GSH depletion and inhibition of CAT activity which could be transferred to the next generation, whereas xeno-estrogenic effect would be questionable.


Asunto(s)
Acrilatos/toxicidad , Antioxidantes/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Oryzias/genética , Acrilatos/metabolismo , Adaptación Fisiológica/fisiología , Animales , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Hígado/metabolismo , Masculino , Oryzias/metabolismo , Pruebas de Toxicidad Aguda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA