RESUMEN
Increased stiffness of solid tissues has long been recognized as a diagnostic feature of several pathologies, most notably malignant diseases. In fact, it is now well established that elevated tissue rigidity enhances disease progression and aggressiveness and is associated with a poor prognosis in patients as documented, for instance, for lung fibrosis or the highly desmoplastic cancer of the pancreas. The underlying mechanisms of the interplay between physical properties and cellular behavior are, however, not very well understood. Here, we have found that switching culture conditions from soft to stiff substrates is sufficient to evoke (macro) autophagy in various fibroblast types. Mechanistically, this is brought about by stiffness-sensing through an Integrin αV-focal adhesion kinase module resulting in sequestration and posttranslational stabilization of the metabolic master regulator AMPKα at focal adhesions, leading to the subsequent induction of autophagy. Importantly, stiffness-induced autophagy in stromal cells such as fibroblasts and stellate cells critically supports growth of adjacent cancer cells in vitro and in vivo. This process is Integrin αV dependent, opening possibilities for targeting tumor-stroma crosstalk. Our data thus reveal that the mere change in mechanical tissue properties is sufficient to metabolically reprogram stromal cell populations, generating a tumor-supportive metabolic niche.
Asunto(s)
Autofagia/fisiología , Matriz Extracelular/patología , Animales , Línea Celular , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/metabolismo , Fibrosis/patología , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Integrina alfaV/metabolismo , Ratones , Células 3T3 NIH , Neoplasias/metabolismo , Neoplasias/patología , Páncreas/metabolismo , Páncreas/patología , Células del Estroma/metabolismoRESUMEN
Long non-coding RNAs (lncRNAs) play critical roles in tumorigenesis and progression of colorectal cancer (CRC). However, functions of most lncRNAs in CRC and their molecular mechanisms remain uncharacterized. Here we found that lncRNA ITGB8-AS1 was highly expressed in CRC. Knockdown of ITGB8-AS1 suppressed cell proliferation, colony formation, and tumor growth in CRC, suggesting oncogenic roles of ITGB8-AS1. Transcriptomic analysis followed by KEGG analysis revealed that focal adhesion signaling was the most significantly enriched pathway for genes positively regulated by ITGB8-AS1. Consistently, knockdown of ITGB8-AS1 attenuated the phosphorylation of SRC, ERK, and p38 MAPK. Mechanistically, ITGB8-AS1 could sponge miR-33b-5p and let-7c-5p/let-7d-5p to regulate the expression of integrin family genes ITGA3 and ITGB3, respectively, in the cytosol of cells. Targeting ITGB8-AS1 using antisense oligonucleotide (ASO) markedly reduced cell proliferation and tumor growth in CRC, indicating the therapeutic potential of ITGB8-AS1 in CRC. Furthermore, ITGB8-AS1 was easily detected in plasma of CRC patients, which was positively correlated with differentiation and TNM stage, as well as plasma levels of ITGA3 and ITGB3. In conclusion, ITGB8-AS1 functions as a competing endogenous RNA (ceRNA) to regulate cell proliferation and tumor growth of CRC via regulating focal adhesion signaling. Targeting ITGB8-AS1 is effective in suppressing CRC cell growth and tumor growth. Elevated plasma levels of ITGB8-AS1 were detected in advanced-stage CRC. Thus, ITGB8-AS1 could serve as a potential therapeutic target and circulating biomarker in CRC.
Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Cadenas beta de Integrinas , Integrinas/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismoRESUMEN
The invasive behavior of glioblastoma is essential to its aggressive potential. Here, we show that pleckstrin homology domain interacting protein (PHIP), acting through effects on the force transduction layer of the focal adhesion complex, drives glioblastoma motility and invasion. Immunofluorescence analysis localized PHIP to the leading edge of glioblastoma cells, together with several focal adhesion proteins: vinculin (VCL), talin 1 (TLN1), integrin beta 1 (ITGB1), as well as phosphorylated forms of paxillin (pPXN) and focal adhesion kinase (pFAK). Confocal microscopy specifically localized PHIP to the force transduction layer, together with TLN1 and VCL. Immunoprecipitation revealed a physical interaction between PHIP and VCL. Targeted suppression of PHIP resulted in significant down-regulation of these focal adhesion proteins, along with zyxin (ZYX), and produced profoundly disorganized stress fibers. Live-cell imaging of glioblastoma cells overexpressing a ZYX-GFP construct demonstrated a role for PHIP in regulating focal adhesion dynamics. PHIP silencing significantly suppressed the migratory and invasive capacity of glioblastoma cells, partially restored following TLN1 or ZYX cDNA overexpression. PHIP knockdown produced substantial suppression of tumor growth upon intracranial implantation, as well as significantly reduced microvessel density and secreted VEGF levels. PHIP copy number was elevated in the classical glioblastoma subtype and correlated with elevated EGFR levels. These results demonstrate PHIP's role in regulating the actin cytoskeleton, focal adhesion dynamics, and tumor cell motility, and identify PHIP as a key driver of glioblastoma migration and invasion.
Asunto(s)
Neoplasias Encefálicas/patología , Adhesiones Focales/patología , Glioblastoma/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neovascularización Patológica/patología , Citoesqueleto de Actina/metabolismo , Animales , Encéfalo/patología , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/genética , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/irrigación sanguínea , Glioblastoma/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Microscopía Intravital , Ratones , Microscopía Confocal , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Neovascularización Patológica/genética , Imagen de Lapso de Tiempo , Vinculina/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Zearalenone (ZEA), a common mycotoxin in animal feed, is harmful to public health and causes huge economic losses. The potential target proteins of ZEA and its derivatives were screened using the PharmMapper database and the related genes (proteins) of the testis were obtained from Genecards. We obtained 144 potential targets of ZEA and its derivatives related to the testis using Venn diagrams. The PPI analysis showed that ZEA had the most targets in testis, followed by ZAN, α-ZAL, ß-ZEL, α-ZEL, and ß-ZAL. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses evaluated the metabolic and cancer pathways. We further screened four hub genes: RAC3, CCND1, EP300, and CTNNB1. Eight key biological processes were obtained by GO analysis, and four important pathways were identified by KEGG analysis. Animal and cell experimental results confirmed that ZEA could inhibit the expression of four key KEGG pathway protein components and four hub proteins that interfere with cell adhesion by inhibiting the focal adhesion structure of the testis, Leydig cells, and Sertoli cells. Collectively, our findings reveal that the destruction of the focal adhesion structure in the testis is the mechanism through which ZEA damages the male reproductive system.
Asunto(s)
Adhesiones Focales , Testículo , Zearalenona , Animales , Masculino , Ratas , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/patología , Células Intersticiales del Testículo/metabolismo , Micotoxinas/efectos adversos , Micotoxinas/toxicidad , Testículo/efectos de los fármacos , Testículo/patología , Zearalenona/efectos adversos , Zearalenona/toxicidadRESUMEN
Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion in the protein huntingtin (HTT) [55]. While the final pathological consequence of HD is the neuronal cell death in the striatum region of the brain, it is still unclear how mutant HTT (mHTT) causes synaptic dysfunctions at the early stage and during the progression of HD. Here, we discovered that the basal activity of focal adhesion kinase (FAK) is severely reduced in a striatal HD cell line, a mouse model of HD, and the human post-mortem brains of HD patients. In addition, we observed with a FRET-based FAK biosensor [59] that neurotransmitter-induced FAK activation is decreased in HD striatal neurons. Total internal reflection fluorescence (TIRF) imaging revealed that the reduced FAK activity causes the impairment of focal adhesion (FA) dynamics, which further leads to the defect in filopodial dynamics causing the abnormally increased number of immature neurites in HD striatal neurons. Therefore, our results suggest that the decreased FAK and FA dynamics in HD impair the proper formation of neurites, which is crucial for normal synaptic functions [52]. We further investigated the molecular mechanism of FAK inhibition in HD and surprisingly discovered that mHTT strongly associates with phosphatidylinositol 4,5-biphosphate, altering its normal distribution at the plasma membrane, which is crucial for FAK activation [14, 60]. Therefore, our results provide a novel molecular mechanism of FAK inhibition in HD along with its pathological mechanism for synaptic dysfunctions during the progression of HD.
Asunto(s)
Quinasa 1 de Adhesión Focal/metabolismo , Enfermedad de Huntington , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Ratones , Neuritas/patología , Neuronas/patologíaRESUMEN
Glomerular hypertension induces mechanical load to podocytes, often resulting in podocyte detachment and the development of glomerulosclerosis. Although it is well known that podocytes are mechanosensitive, the mechanosensors and mechanotransducers are still unknown. Since filamin A, an actin-binding protein, is already described to be a mechanosensor and mechanotransducer, we hypothesized that filamins could be important for the outside-in signaling as well as the actin cytoskeleton of podocytes under mechanical stress. In this study, we demonstrate that filamin A is the main isoform of the filamin family that is expressed in cultured podocytes. Together with filamin B, filamin A was significantly up-regulated during mechanical stretch (3 days, 0.5 Hz, and 5% extension). To study the role of filamin A in cultured podocytes under mechanical stress, filamin A was knocked down (Flna KD) by specific siRNA. Additionally, we established a filamin A knockout podocyte cell line (Flna KO) by CRISPR/Cas9. Knockdown and knockout of filamin A influenced the expression of synaptopodin, a podocyte-specific protein, focal adhesions as well as the morphology of the actin cytoskeleton. Moreover, the cell motility of Flna KO podocytes was significantly increased. Since the knockout of filamin A has had no effect on cell adhesion of podocytes during mechanical stress, we simultaneously knocked down the expression of filamin A and B. Thereby, we observed a significant loss of podocytes during mechanical stress indicating a compensatory mechanism. Analyzing hypertensive mice kidneys as well as biopsies of patients suffering from diabetic nephropathy, we found an up-regulation of filamin A in podocytes in contrast to the control. In summary, filamin A and B mediate matrix-actin cytoskeleton interactions which are essential for the adaptation of cultured podocyte to mechanical stress.
Asunto(s)
Citoesqueleto de Actina/metabolismo , Nefropatías Diabéticas/patología , Filaminas/metabolismo , Adhesiones Focales/patología , Glomérulos Renales/patología , Podocitos/patología , Estrés Mecánico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Estudios de Casos y Controles , Adhesión Celular , Movimiento Celular , Nefropatías Diabéticas/metabolismo , Adhesiones Focales/metabolismo , Humanos , Glomérulos Renales/metabolismo , Ratones , Persona de Mediana Edad , Podocitos/metabolismo , Estudios Retrospectivos , Transducción de SeñalRESUMEN
The human pathogen Chlamydia trachomatis targets epithelial cells lining the genital mucosa. We observed that infection of various cell types, including fibroblasts and epithelial cells resulted in the formation of unusually stable and mature focal adhesions that resisted disassembly induced by the myosin II inhibitor, blebbistatin. Superresolution microscopy revealed in infected cells the vertical displacement of paxillin and focal adhesion kinase from the signaling layer of focal adhesions, whereas vinculin remained in its normal position within the force transduction layer. The candidate type III effector TarP, which localized to focal adhesions during infection and when expressed ectopically, was sufficient to mimic both the reorganization and blebbistatin-resistant phenotypes. These effects of TarP, including its localization to focal adhesions, required a post-invasion interaction with the host protein vinculin through a specific domain at the C terminus of TarP. This interaction is repurposed from an actin-recruiting and -remodeling complex to one that mediates nanoarchitectural and dynamic changes of focal adhesions. The consequence of Chlamydia-stabilized focal adhesions was restricted cell motility and enhanced attachment to the extracellular matrix. Thus, via a novel mechanism, Chlamydia inserts TarP within focal adhesions to alter their organization and stability.
Asunto(s)
Infecciones por Chlamydia/metabolismo , Chlamydia trachomatis/fisiología , Adhesiones Focales/metabolismo , Animales , Células COS , Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/patología , Chlorocebus aethiops , Adhesiones Focales/microbiología , Adhesiones Focales/patología , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Mapas de Interacción de Proteínas , Vinculina/análisis , Vinculina/metabolismoRESUMEN
We recently reported that the enhanced susceptibility to chronic kidney disease (CKD) in the fawn-hooded hypertensive (FHH) rat is caused, at least in part, by a mutation in γ-adducin (ADD3) that attenuates renal vascular function. The present study explored whether Add3 contributes to the modulation of podocyte structure and function using FHH and FHH.Add3 transgenic rats. The expression of ADD3 on the membrane of primary podocytes isolated from FHH was reduced compared with FHH.Add3 transgenic rats. We found that F-actin nets, which are typically localized in the lamellipodia, replaced unbranched stress fibers in conditionally immortalized mouse podocytes transfected with Add3 Dicer-substrate short interfering RNA (DsiRNA) and primary podocytes isolated from FHH rats. There were increased F/G-actin ratios and expression of the Arp2/3 complexes throughout FHH podocytes in association with reduced synaptopodin and RhoA but enhanced Rac1 and CDC42 expression in the renal cortex, glomeruli, and podocytes of FHH rats. The expression of nephrin at the slit diaphragm and the levels of focal adhesion proteins integrin-α3 and integrin-ß1 were decreased in the glomeruli of FHH rats. Cell migration was enhanced and adhesion was reduced in podocytes of FHH rats as well as in immortalized mouse podocytes transfected with Add3 DsiRNA. Mean arterial pressures were similar in FHH and FHH.Add3 transgenic rats at 16 wk of age; however, FHH rats exhibited enhanced proteinuria associated with podocyte foot process effacement. These results demonstrate that reduced ADD3 function in FHH rats alters baseline podocyte pathophysiology by rearrangement of the actin cytoskeleton at the onset of proteinuria in young animals.
Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Hipertensión/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo , Insuficiencia Renal Crónica/metabolismo , Citoesqueleto de Actina/patología , Animales , Presión Arterial , Proteínas de Unión a Calmodulina/genética , Adhesión Celular , Línea Celular , Movimiento Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Hipertensión/genética , Hipertensión/patología , Hipertensión/fisiopatología , Integrinas/metabolismo , Masculino , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Podocitos/patología , Proteinuria/genética , Proteinuria/patología , Proteinuria/fisiopatología , Ratas Endogámicas , Ratas Transgénicas , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/fisiopatología , Transducción de SeñalRESUMEN
Lung adenocarcinoma (LAC) is the most prevalent form of lung cancer. Epithelial cell transforming sequence 2 (ECT2) is a guanine nucleotide exchange factor that has been implicated in oncogenic and malignant phenotypes of LAC. Here, we identified an oncogenic role of ECT2 in the extracellular matrix (ECM) dynamics of LAC cells. We showed that suppression of ECT2 decreased adhesion and spreading of LAC cells on ECM components. Morphologically, ECT2-depleted cells exhibited a rounded shape and cytoskeletal changes. Examination of transcriptional changes by RNA sequencing revealed a total of 1569 and 828 genes whose expressions were altered (absolute fold change and a difference of >2 fold) in response to suppression of ECT2 in two LAC cells (Calu-3 and NCI-H2342), respectively, along with 298 genes that were common to both cell lines. Functional enrichment analysis of common genes demonstrated a significant enrichment of focal adhesions. In accord with this observation, we found that ECT2 suppression decreased the expression level of proteins involved in focal adhesion signaling including focal adhesion kinase (FAK), Crk, integrin ß1, paxillin, and p130Cas. FAK knockdown leads to impaired cell proliferation, adhesion, and spreading of LAC cells. Moreover, in LAC cells, ECT2 binds to and stabilizes FAK and is associated with the formation of the focal adhesions. Our findings provide new insights into the underlying role of ECT2 in cell-ECM dynamics during LAC progression and suggest that ECT2 could be a promising therapeutic avenue for lung cancer.
Asunto(s)
Adenocarcinoma del Pulmón/patología , Matriz Extracelular/patología , Adhesiones Focales/patología , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas/metabolismo , Adenocarcinoma del Pulmón/metabolismo , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Neoplasias Pulmonares/metabolismoRESUMEN
Unfractionated heparin (UFH) is a widely used anticoagulant that possess numerous properties including anti-inflammatory, anti-viral, anti-angiogenesis, and anti-metastatic effects. The effect of this drug was evaluated on the podocyte, an important actor of the glomerular filtration. Using a functional approach, we demonstrate that heparin treatment leads to a functional podocyte perturbation characterized by the increase of podocyte monolayer permeability. This effect is enhanced with time of exposure. Proteomic study reveals that heparin down regulate focal adhesion and cytoskeletal protein expressions as well as the synthesis of glomerular basement membrane components. This study clearly demonstrates that UFH may affect podocyte function by altering cytoskeleton organization, cell-cell contacts and cell attachment.
Asunto(s)
Anticoagulantes/toxicidad , Heparina/toxicidad , Podocitos/efectos de los fármacos , Proteoma/efectos de los fármacos , Proteómica , Línea Celular , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patología , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Tasa de Filtración Glomerular/efectos de los fármacos , Humanos , Permeabilidad , Fenotipo , Podocitos/metabolismo , Podocitos/patología , Factores de TiempoRESUMEN
OBJECTIVE: Cerebral cavernous malformations (CCM), consisting of dilated capillary channels formed by a single layer of endothelial cells lacking surrounding mural cells. It is unclear why CCM lesions are primarily confined to brain vasculature, although the 3 CCM-associated genes (CCM1, CCM2, and CCM3) are ubiquitously expressed in all tissues. We aimed to determine the role of CCM gene in brain mural cell in CCM pathogenesis. Approach and Results: SM22α-Cre was used to drive a specific deletion of Ccm3 in mural cells, including pericytes and smooth muscle cells (Ccm3smKO). Ccm3smKO mice developed CCM lesions in the brain with onset at neonatal stages. One-third of Ccm3smKO mice survived upto 6 weeks of age, exhibiting seizures, and severe brain hemorrhage. The early CCM lesions in Ccm3smKO neonates were loosely wrapped by mural cells, and adult Ccm3smKO mice had clustered and enlarged capillary channels (caverns) formed by a single layer of endothelium lacking mural cell coverage. Importantly, CCM lesions throughout the entire brain in Ccm3smKO mice, which more accurately mimicked human disease than the current endothelial cell-specific CCM3 deletion models. Mechanistically, CCM3 loss in brain pericytes dramatically increased paxillin stability and focal adhesion formation, enhancing ITG-ß1 (integrin ß1) activity and extracellular matrix adhesion but reducing cell migration and endothelial cell-pericyte associations. Moreover, CCM3-wild type, but not a paxillin-binding defective mutant, rescued the phenotypes in CCM3-deficient pericytes. CONCLUSIONS: Our data demonstrate for the first time that deletion of a CCM gene in the brain mural cell induces CCM pathogenesis.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Encéfalo/irrigación sanguínea , Células Endoteliales/metabolismo , Eliminación de Gen , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Microvasos/metabolismo , Miocitos del Músculo Liso/metabolismo , Pericitos/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas Reguladoras de la Apoptosis/metabolismo , Comunicación Celular , Movimiento Celular , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/patología , Femenino , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Predisposición Genética a la Enfermedad , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Microvasos/anomalías , Miocitos del Músculo Liso/patología , Paxillin/metabolismo , Pericitos/patología , Fenotipo , Estabilidad Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transducción de SeñalRESUMEN
Intravasation, vascular dissemination and metastasis of malignant tumor cells require their passage through the vascular wall which is commonly composed of pericytes and endothelial cells. We currently decided to investigate the relative contribution of these cell types to B16F10 melanoma metastasis in mice using an experimental model of host Shb gene (Src homology 2 domain-containing protein B) inactivation. Conditional inactivation of Shb in endothelial cells using Cdh5-CreERt2 resulted in decreased tumor growth, reduced vascular leakage, increased hypoxia and no effect on pericyte coverage and lung metastasis. RNAseq of tumor endothelial cells from these mice revealed changes in cellular components such as adherens junctions and focal adhesions by gene ontology analysis that were in line with the observed effects on leakage and junction morphology. Conditional inactivation of Shb in pericytes using Pdgfrb-CreERt2 resulted in decreased pericyte coverage of small tumor vessels with lumen, increased leakage, aberrant platelet-derived growth factor receptor B (PDGFRB) signaling and a higher frequency of lung metastasis without concomitant effects on tumor growth or oxygenation. Flow cytometry failed to reveal immune cell alterations that could explain the metastatic phenotype in this genetic model of Shb deficiency. It is concluded that proper pericyte function plays a significant role in suppressing B16F10 lung metastasis.
Asunto(s)
Neoplasias Pulmonares/genética , Melanoma Experimental/genética , Pericitos/patología , Proteínas Proto-Oncogénicas/deficiencia , Neoplasias Cutáneas/patología , Uniones Adherentes/patología , Animales , Células Endoteliales/metabolismo , Adhesiones Focales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/citología , Pulmón/patología , Neoplasias Pulmonares/secundario , Melanoma Experimental/secundario , Ratones , Pericitos/citología , Proteínas Proto-Oncogénicas/genética , RNA-Seq , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/genética , Neoplasias Cutáneas/genéticaRESUMEN
Epithelial-mesenchymal transition (EMT) is a cell plasticity process required for metastasis and chemoresistance of carcinoma cells. We report a crucial role of the signal adaptor proteins CRK and CRKL in promoting EMT and tumor aggressiveness, as well as resistance against chemotherapy in colorectal and pancreatic carcinoma. Genetic loss of either CRKL or CRK partially counteracted EMT in three independent cancer cell lines. Strikingly, complete loss of the CRK family shifted cells strongly toward the epithelial phenotype. Cells exhibited greatly increased E-cadherin and grew as large, densely packed clusters, completely lacked invasiveness and the ability to undergo EMT induced by cytokines or genetic activation of SRC. Furthermore, CRK family-deficiency significantly reduced cell survival, proliferation and chemoresistance, as well as ERK1/2 phosphorylation and c-MYC protein levels. In accordance, MYC-target gene expression was identified as novel hallmark process positively regulated by CRK family proteins. Mechanistically, CRK proteins were identified as pivotal amplifiers of SRC/FAK signaling at focal adhesions, mediated through a novel positive feedback loop depending on RAP1. Expression of the CRK family and the EMT regulator ZEB1 was significantly correlated in samples from colorectal cancer patients, especially in invasive regions. Further, high expression of CRK family genes was significantly associated with reduced survival in locally advanced colorectal cancer, as well as in pan-cancer datasets from the TCGA project. Thus, CRK family adaptor proteins are promising therapeutic targets to counteract EMT, chemoresistance, metastasis formation and minimal residual disease. As proof of concept, CRK family-mediated oncogenic signaling was successfully inhibited by a peptide-based inhibitor.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/fisiología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-crk/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Anciano , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Colon/patología , Colon/cirugía , Neoplasias Colorrectales/terapia , Conjuntos de Datos como Asunto , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Quinasa 1 de Adhesión Focal/metabolismo , Adhesiones Focales/patología , Humanos , Masculino , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-crk/antagonistas & inhibidores , RNA-Seq , Recto/patología , Recto/cirugía , Transducción de Señal/efectos de los fármacos , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Familia-src Quinasas/metabolismoRESUMEN
Podocytes form the outer part of the glomerular filter, where they have to withstand enormous transcapillary filtration forces driving glomerular filtration. Detachment of podocytes from the glomerular basement membrane precedes most glomerular diseases. However, little is known about the regulation of podocyte adhesion in vivo. Thus, we systematically screened for podocyte-specific focal adhesome (FA) components, using genetic reporter models in combination with iTRAQ-based mass spectrometry. This approach led to the identification of FERM domain protein EPB41L5 as a highly enriched podocyte-specific FA component in vivo. Genetic deletion of Epb41l5 resulted in severe proteinuria, detachment of podocytes, and development of focal segmental glomerulosclerosis. Remarkably, by binding and recruiting the RhoGEF ARGHEF18 to the leading edge, EPB41L5 directly controls actomyosin contractility and subsequent maturation of focal adhesions, cell spreading, and migration. Furthermore, EPB41L5 controls matrix-dependent outside-in signaling by regulating the focal adhesome composition. Thus, by linking extracellular matrix sensing and signaling, focal adhesion maturation, and actomyosin activation EPB41L5 ensures the mechanical stability required for podocytes at the kidney filtration barrier. Finally, a diminution of EPB41L5-dependent signaling programs appears to be a common theme of podocyte disease, and therefore offers unexpected interventional therapeutic strategies to prevent podocyte loss and kidney disease progression.
Asunto(s)
Actomiosina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Adhesiones Focales/metabolismo , Proteínas de la Membrana/metabolismo , Podocitos/metabolismo , Animales , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Femenino , Adhesiones Focales/patología , Técnicas de Inactivación de Genes , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Síndrome Nefrótico/etiología , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Podocitos/patología , Embarazo , Proteómica , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de SeñalRESUMEN
Benign chronic familial pemphigus or Hailey-Hailey disease (HHD, OMIM 169600) is a rare, autosomal dominant blistering skin disorder characterized by suprabasal cell separation (acantholysis) of the epidermis. To date, the proteomic changes in skin lesions from HHD patients has not been reported yet. In this study, a sample of skin lesions from HHD patients was collected for isobaric tags for relative and absolute quantitation to analyze proteome changes compared with unaffected individuals. The 134 differentially expressed proteins were assigned to at least one Gene Ontology term, and 123 annotated proteins with significant matches were assigned to 187 known metabolic or signaling pathways listed in the Kyoto Encyclopedia of Genes and Genomes. Most of the altered proteins in skin lesions of HHD patients were enriched in pathways involved in the PI3K-Akt signaling, focal adhesion, extracellular matrix (ECM)-receptor interaction, and protein digestion and absorption, such as collagen family members, microfibril-associated glycoprotein 4 and plakophilin. The changes of proteins related to cell adhesion, ECM-receptor interaction, and protein folding and glycosylation suggested that strategy targeted to alter cell junction and extracellular microenvironment might provide a potential treatment for HHD.
Asunto(s)
Matriz Extracelular/genética , Adhesiones Focales/genética , Pénfigo Familiar Benigno/genética , Proteoma/genética , Receptores de Superficie Celular/genética , Adulto , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Estudios de Casos y Controles , Colágeno/genética , Colágeno/metabolismo , Enciclopedias como Asunto , Epidermis/metabolismo , Epidermis/patología , Matriz Extracelular/patología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Ontología de Genes , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Pénfigo Familiar Benigno/metabolismo , Pénfigo Familiar Benigno/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Placofilinas/genética , Placofilinas/metabolismo , Mapeo de Interacción de Proteínas , Proteoma/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de SeñalRESUMEN
Objective- Alterations in extracellular matrix quantity and composition contribute to atherosclerosis, with remodeling of the subendothelial basement membrane to an FN (fibronectin)-rich matrix preceding lesion development. Endothelial cell interactions with FN prime inflammatory responses to a variety of atherogenic stimuli; however, the mechanisms regulating early atherogenic FN accumulation remain unknown. We previously demonstrated that oxLDL (oxidized low-density lipoprotein) promotes endothelial proinflammatory gene expression by activating the integrin α5ß1, a classic mediator of FN fibrillogenesis. Approach and Results- We now show that oxLDL drives robust endothelial FN deposition and inhibiting α5ß1 (blocking antibodies, α5 knockout cells) completely inhibits oxLDL-induced FN deposition. Consistent with this, inducible endothelial-specific α5 integrin deletion in ApoE knockout mice significantly reduces atherosclerotic plaque formation, associated with reduced early atherogenic inflammation. Unlike TGFß (transforming growth factor ß)-induced FN deposition, oxLDL does not induce FN expression (mRNA, protein) or the endothelial-to-mesenchymal transition phenotype. In addition, we show that cell-derived and plasma-derived FN differentially affect endothelial function, with only cell-derived FN capable of supporting oxLDL-induced VCAM-1 (vascular cell adhesion molecule 1) expression, despite plasma FN deposition by oxLDL. The inclusion of alternative exon EIIIA (EDA) of FN (EIIIA) and alternative exon EIIIB (EDB) of FN (EIIIB) domains in cell-derived FN mediates this effect, as EIIIA/EIIIB knockout endothelial cells show diminished oxLDL-induced inflammation. Furthermore, our data suggest that EIIIA/EIIIB-positive cellular FN is required for maximal α5ß1 recruitment to focal adhesions and FN fibrillogenesis. Conclusions- Taken together, our data demonstrate that endothelial α5 integrins drive oxLDL-induced FN deposition and early atherogenic inflammation. Additionally, we show that α5ß1-dependent endothelial FN deposition mediates oxLDL-dependent endothelial inflammation and FN fibrillogenesis.
Asunto(s)
Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Enfermedades de las Arterias Carótidas/metabolismo , Células Endoteliales/metabolismo , Fibronectinas/metabolismo , Inflamación/metabolismo , Integrina alfa5beta1/metabolismo , Placa Aterosclerótica , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Cadherinas/genética , Cadherinas/metabolismo , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/patología , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Fibronectinas/deficiencia , Fibronectinas/genética , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Humanos , Inflamación/genética , Inflamación/patología , Integrina alfa5beta1/deficiencia , Integrina alfa5beta1/genética , Lipoproteínas LDL/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Transducción de SeñalRESUMEN
Extracellular biophysical cues have a profound influence on a wide range of cell behaviors, including growth, motility, differentiation, apoptosis, gene expression, adhesion, and signal transduction. Cells not only respond to definitively mechanical cues from the extracellular matrix (ECM) but can also sometimes alter the mechanical properties of the matrix and hence influence subsequent matrix-based cues in both physiological and pathological processes. Interactions between cells and materials in vitro can modify cell phenotype and ECM structure, whether intentionally or inadvertently. Interactions between cell and matrix mechanics in vivo are of particular importance in a wide variety of disorders, including cancer, central nervous system injury, fibrotic diseases, and myocardial infarction. Both the in vitro and in vivo effects of this coupling between mechanics and biology hold important implications for clinical applications.
Asunto(s)
Matriz Extracelular/metabolismo , Mecanotransducción Celular , Animales , Biofisica , Adhesión Celular , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Sistema Nervioso Central/lesiones , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Matriz Extracelular/patología , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Humanos , Integrinas/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Neoplasias/metabolismo , Neoplasias/patología , Investigación Biomédica TraslacionalRESUMEN
During metastasis, cancer cell migration is enhanced. However, the mechanisms underlying this process remain elusive. Here, we addressed this issue by functionally analyzing the transcription factor Sal-like 4 (SALL4) in basal-like breast cancer cells. Loss-of-function studies of SALL4 showed that this transcription factor is required for the spindle-shaped morphology and the enhanced migration of cancer cells. SALL4 also up-regulated integrin gene expression. The impaired cell migration observed in SALL4 knockdown cells was restored by overexpression of integrin α6 and ß1. In addition, we clarified that integrin α6 and ß1 formed a heterodimer. At the molecular level, loss of the SALL4 - integrin α6ß1 network lost focal adhesion dynamics, which impairs cell migration. Over-activation of Rho is known to inhibit focal adhesion dynamics. We observed that SALL4 knockdown cells exhibited over-activation of Rho. Aberrant Rho activation was suppressed by integrin α6ß1 expression, and pharmacological inhibition of Rho activity restored cell migration in SALL4 knockdown cells. These results indicated that the SALL4 - integrin α6ß1 network promotes cell migration via modulation of Rho activity. Moreover, our zebrafish metastasis assays demonstrated that this gene network enhances cell migration in vivo. Our findings identify a potential new therapeutic target for the prevention of metastasis, and provide an improved understanding of cancer cell migration.
Asunto(s)
Neoplasias de la Mama/genética , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Integrina alfa6/genética , Integrina beta1/genética , Factores de Transcripción/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Modelos Animales de Enfermedad , Células Epiteliales/patología , Femenino , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Humanos , Integrina alfa6/metabolismo , Integrina beta1/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Multimerización de Proteína , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Imagen de Lapso de Tiempo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Pez Cebra , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismoRESUMEN
Angiomotin (Amot) is a newly discovered, multifunctional protein that is involved in cell migration and angiogenesis. However, the role of its isoform, AmotP130, in the regulation of cytoskeleton and metastasis of breast cancer, is unclear. The aim of this study was to investigate the role of AmotP130 in the reorganization of the actin cytoskeleton and the changes of morphology in breast cancer cells through the Rho pathway that influences the invasion and migration of cells. The results suggested that AmotP130 suppressed the invasion ability through remodelling the cytoskeleton of breast cancer cells, including the actin fibre organization and focal adhesion protein turnover. Global transcriptome changes in breast cancer cells following knockdown of AmotP130 identified pathways related with the cytoskeleton and cell motility that involved the Rho GTPase family. From database analyses, changes in the Rho GTPase family of proteins were identified as possible prognostic factors in patients with breast cancer. We have been suggested that AmotP130 suppressed the invasion ability through remodelling of the cytoskeleton of breast cancer cells, involving regulation of the Rho pathway. The cytoskeleton-related pathway components may provide novel, clinically therapeutic targets for breast cancer treatment.
Asunto(s)
Actinas/genética , Neoplasias de la Mama/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Proteínas de Unión al GTP rho/genética , Angiomotinas , Neoplasias de la Mama/patología , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Citoesqueleto/genética , Femenino , Adhesiones Focales/genética , Adhesiones Focales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de Microfilamentos , Isoformas de Proteínas/genética , Transducción de Señal , Proteína de Unión al GTP rhoA/genéticaRESUMEN
Accessory subunits associated with the calcium-sensitive potassium channel (BKCa), a major determinant of vascular tone, confer functional and anatomical diversity. The ß1 subunit increases Ca2+ and voltagesensitivity of the BKCa channel and is expressed exclusively in smooth muscle cells. Evidence supporting the physiological significance of the ß1 subunit includes the observations that murine models with deletion of the ß1 subunit are hypertensive and that humans with a gain-of-function ß1 mutation are at a decreased risk of diastolic hypertension. However, whether the ß1 subunit of the BKCa channel contributes to the low tone that characterizes the normal pulmonary circulation or modulates the pulmonary vascular response to hypoxia remains unknown. To determine the role of the BKCa channel ß1 subunit in the regulation of pulmonary vascular tone and the response to acute and chronic hypoxia, mice with deletion of the Kcnmb1 gene that encodes for the ß1 subunit ( Kcnmb1-/-) were placed in chronic hypoxia (10% O2) for 21-24 days. In normoxia, right ventricular systolic pressure (RVSP) did not differ between Kcnmb1+/+ (controls) and Kcnmb1-/- mice. After exposure to either acute or chronic hypoxia, RVSP was higher in Kcnmb1-/- mice compared with Kcnmb1+/+ mice, without increased vascular remodeling. ß1 subunit expression was predominantly confined to pulmonary artery smooth muscle cells (PASMCs) from vessels ≤ 150 µm. Peripheral PASMCs contracted collagen gels irrespective of ß1 expression. Focal adhesion expression and Rho kinase activity were greater in Kcnmb1-/- compared with Kcnmb1+/+ PASMCs. Compromised PASMC ß1 function may contribute to the heightened microvascular vasoconstriction that characterizes pulmonary hypertension.