Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(13): 7825-7842, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38869066

RESUMEN

Translational fidelity relies critically on correct aminoacyl-tRNA supply. The trans-editing factor AlaX predominantly hydrolyzes Ser-tRNAAla, functioning as a third sieve of alanyl-tRNA synthetase (AlaRS). Despite extensive studies in bacteria and archaea, the mechanism of trans-editing in mammals remains largely unknown. Here, we show that human AlaX (hAlaX), which is exclusively distributed in the cytoplasm, is an active trans-editing factor with strict Ser-specificity. In vitro, both hAlaX and yeast AlaX (ScAlaX) were capable of hydrolyzing nearly all Ser-mischarged cytoplasmic and mitochondrial tRNAs; and robustly edited cognate Ser-charged cytoplasmic and mitochondrial tRNASers. In vivo or cell-based studies revealed that loss of ScAlaX or hAlaX readily induced Ala- and Thr-to-Ser misincorporation. Overexpression of hAlaX impeded the decoding efficiency of consecutive Ser codons, implying its regulatory role in Ser codon decoding. Remarkably, yeast cells with ScAlaX deletion responded differently to translation inhibitor treatment, with a gain in geneticin resistance, but sensitivity to cycloheximide, both of which were rescued by editing-capable ScAlaX, alanyl- or threonyl-tRNA synthetase. Altogether, our results demonstrated the previously undescribed editing peculiarities of eukaryotic AlaXs, which provide multiple checkpoints to maintain the speed and fidelity of genetic decoding.


Asunto(s)
Alanina-ARNt Ligasa , Biosíntesis de Proteínas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Humanos , Alanina-ARNt Ligasa/genética , Alanina-ARNt Ligasa/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/genética , Citoplasma/metabolismo , Citoplasma/genética , Edición de ARN , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Codón/genética
2.
Hum Mol Genet ; 32(13): 2177-2191, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37010095

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate tRNA molecules to cognate amino acids. Heterozygosity for missense variants or small in-frame deletions in six ARS genes causes dominant axonal peripheral neuropathy. These pathogenic variants reduce enzyme activity without significantly decreasing protein levels and reside in genes encoding homo-dimeric enzymes. These observations raise the possibility that neuropathy-associated ARS variants exert a dominant-negative effect, reducing overall ARS activity below a threshold required for peripheral nerve function. To test such variants for dominant-negative properties, we developed a humanized yeast assay to co-express pathogenic human alanyl-tRNA synthetase (AARS1) mutations with wild-type human AARS1. We show that multiple loss-of-function AARS1 mutations impair yeast growth through an interaction with wild-type AARS1, but that reducing this interaction rescues yeast growth. This suggests that neuropathy-associated AARS1 variants exert a dominant-negative effect, which supports a common, loss-of-function mechanism for ARS-mediated dominant peripheral neuropathy.


Asunto(s)
Alanina-ARNt Ligasa , Aminoacil-ARNt Sintetasas , Enfermedades del Sistema Nervioso Periférico , Humanos , Alanina-ARNt Ligasa/genética , Enfermedades del Sistema Nervioso Periférico/patología , Mutación , Aminoacil-ARNt Sintetasas/genética , Nervios Periféricos/metabolismo
3.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35929539

RESUMEN

tRNA synthetase deficiency leads to unfolded protein responses in neuronal disorders; however, its function in embryonic neurogenesis remains unclear. This study identified an aars1cq71/cq71 mutant zebrafish allele that showed increased neuronal apoptosis and compromised neurogenesis. aars1 transcripts were highly expressed in primary neural progenitor cells, and their aberration resulted in protein overloading and activated Perk. nfe2l2b, a paralog of mammalian Nfe2l2, which encodes Nrf2, is a pivotal executor of Perk signaling that regulates neuronal phenotypes in aars1cq71/cq71 mutants. Interference of nfe2l2b in nfe2l2bΔ1/Δ1 mutants did not affect global larval development. However, aars1cq71/cq71;nfe2l2bΔ1/Δ1 mutant embryos exhibited increased neuronal cell survival and neurogenesis compared with their aars1cq71/cq71 siblings. nfe2l2b was harnessed by Perk at two levels. Its transcript was regulated by Chop, an implementer of Perk. It was also phosphorylated by Perk. Both pathways synergistically assured the nuclear functions of nfe2l2b to control cell survival by targeting p53. Our study extends the understanding of tRNA synthetase in neurogenesis and implies that Nrf2 is a cue to mitigate neurodegenerative pathogenesis.


Asunto(s)
Alanina-ARNt Ligasa , Factor 2 Relacionado con NF-E2 , Animales , Diferenciación Celular/genética , Supervivencia Celular/genética , Mamíferos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Pez Cebra
4.
Nucleic Acids Res ; 51(7): 3327-3340, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36951106

RESUMEN

Homochirality of the cellular proteome is attributed to the L-chiral bias of the translation apparatus. The chiral specificity of enzymes was elegantly explained using the 'four-location' model by Koshland two decades ago. In accordance with the model, it was envisaged and noted that some aminoacyl-tRNA synthetases (aaRS) that charge larger amino acids are porous to D-amino acids. However, a recent study showed that alanyl-tRNA synthetase (AlaRS) can mischarge D-alanine and that its editing domain, but not the universally present D-aminoacyl-tRNA deacylase (DTD), is responsible for correcting the chirality-based error. Here, using in vitro and in vivo data coupled with structural analysis, we show that AlaRS catalytic site is a strict D-chiral rejection system and therefore does not activate D-alanine. It obviates the need for AlaRS editing domain to be active against D-Ala-tRNAAla and we show that it is indeed the case as it only corrects L-serine and glycine mischarging. We further provide direct biochemical evidence showing activity of DTD on smaller D-aa-tRNAs that corroborates with the L-chiral rejection mode of action proposed earlier. Overall, while removing anomalies in the fundamental recognition mechanisms, the current study further substantiates how chiral fidelity is perpetuated during protein biosynthesis.


Asunto(s)
Alanina-ARNt Ligasa , Biosíntesis de Proteínas , Alanina-ARNt Ligasa/genética , Alanina-ARNt Ligasa/metabolismo , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/genética , ARN de Transferencia/metabolismo , Animales
5.
J Biol Chem ; 299(9): 105149, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567477

RESUMEN

Alanyl-tRNA synthetase retains a conserved prototype structure throughout its biology. Nevertheless, its C-terminal domain (C-Ala) is highly diverged and has been shown to play a role in either tRNA or DNA binding. Interestingly, we discovered that Caenorhabditis elegans cytoplasmic C-Ala (Ce-C-Alac) robustly binds both ligands. How Ce-C-Alac targets its cognate tRNA and whether a similar feature is conserved in its mitochondrial counterpart remain elusive. We show that the N- and C-terminal subdomains of Ce-C-Alac are responsible for DNA and tRNA binding, respectively. Ce-C-Alac specifically recognized the conserved invariant base G18 in the D-loop of tRNAAla through a highly conserved lysine residue, K934. Despite bearing little resemblance to other C-Ala domains, C. elegans mitochondrial C-Ala robustly bound both tRNAAla and DNA and maintained targeting specificity for the D-loop of its cognate tRNA. This study uncovers the underlying mechanism of how C. elegans C-Ala specifically targets the D-loop of tRNAAla.


Asunto(s)
Alanina-ARNt Ligasa , Caenorhabditis elegans , Motivos de Nucleótidos , ARN de Transferencia de Alanina , Animales , Alanina-ARNt Ligasa/química , Alanina-ARNt Ligasa/metabolismo , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Secuencia Conservada , Citoplasma/enzimología , ADN/química , ADN/metabolismo , Ligandos , Lisina/metabolismo , Mitocondrias/enzimología , Dominios Proteicos , ARN de Transferencia de Alanina/química , ARN de Transferencia de Alanina/metabolismo , Especificidad por Sustrato , Conformación de Ácido Nucleico
6.
Nature ; 557(7706): 510-515, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29769718

RESUMEN

Editing domains of aminoacyl tRNA synthetases correct tRNA charging errors to maintain translational fidelity. A mutation in the editing domain of alanyl tRNA synthetase (AlaRS) in Aars sti mutant mice results in an increase in the production of serine-mischarged tRNAAla and the degeneration of cerebellar Purkinje cells. Here, using positional cloning, we identified Ankrd16, a gene that acts epistatically with the Aars sti mutation to attenuate neurodegeneration. ANKRD16, a vertebrate-specific protein that contains ankyrin repeats, binds directly to the catalytic domain of AlaRS. Serine that is misactivated by AlaRS is captured by the lysine side chains of ANKRD16, which prevents the charging of serine adenylates to tRNAAla and precludes serine misincorporation in nascent peptides. The deletion of Ankrd16 in the brains of Aarssti/sti mice causes widespread protein aggregation and neuron loss. These results identify an amino-acid-accepting co-regulator of tRNA synthetase editing as a new layer of the machinery that is essential to the prevention of severe pathologies that arise from defects in editing.


Asunto(s)
Alanina-ARNt Ligasa/genética , Alanina-ARNt Ligasa/metabolismo , Mutación , Biosíntesis de Proteínas , Células de Purkinje/enzimología , Células de Purkinje/patología , Alanina/metabolismo , Alanina-ARNt Ligasa/química , Animales , Dominio Catalítico , Muerte Celular , Femenino , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Células de Purkinje/metabolismo , Serina/metabolismo
7.
Nucleic Acids Res ; 50(4): 2190-2200, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35100402

RESUMEN

Unlike many other aminoacyl-tRNA synthetases, alanyl-tRNA synthetase (AlaRS) retains a conserved prototype structure throughout biology. While Caenorhabditis elegans cytoplasmic AlaRS (CeAlaRSc) retains the prototype structure, its mitochondrial counterpart (CeAlaRSm) contains only a residual C-terminal domain (C-Ala). We demonstrated herein that the C-Ala domain from CeAlaRSc robustly binds both tRNA and DNA. It bound different tRNAs but preferred tRNAAla. Deletion of this domain from CeAlaRSc sharply reduced its aminoacylation activity, while fusion of this domain to CeAlaRSm selectively and distinctly enhanced its aminoacylation activity toward the elbow-containing (or L-shaped) tRNAAla. Phylogenetic analysis showed that CeAlaRSm once possessed the C-Ala domain but later lost most of it during evolution, perhaps in response to the deletion of the T-arm (part of the elbow) from its cognate tRNA. This study underscores the evolutionary gain of C-Ala for docking AlaRS to the L-shaped tRNAAla.


Asunto(s)
Alanina-ARNt Ligasa , Aminoacil-ARNt Sintetasas , Alanina-ARNt Ligasa/genética , Aminoacil-ARNt Sintetasas/genética , Aminoacilación , Filogenia , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Alanina/genética
8.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753480

RESUMEN

Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.


Asunto(s)
Alanina-ARNt Ligasa/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Neuropilina-1/metabolismo , Alanina-ARNt Ligasa/química , Alanina-ARNt Ligasa/genética , Aminoacilación/genética , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/sangre , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Humanos , Linfocitos , Mutación , Neuropilina-1/genética , Cultivo Primario de Células , Unión Proteica/genética , Dominios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Dispersión del Ángulo Pequeño
9.
J Biol Chem ; 298(3): 101601, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065077

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that synthesize aminoacyl-tRNAs to facilitate translation of the genetic code. Quality control by aaRS proofreading and other mechanisms maintains translational accuracy, which promotes cellular viability. Systematic disruption of proofreading, as recently demonstrated for alanyl-tRNA synthetase (AlaRS), leads to dysregulation of the proteome and reduced viability. Recent studies showed that environmental challenges such as exposure to reactive oxygen species can also alter aaRS synthetic and proofreading functions, prompting us to investigate if oxidation might positively or negatively affect AlaRS activity. We found that while oxidation leads to modification of several residues in Escherichia coli AlaRS, unlike in other aaRSs, this does not affect proofreading activity against the noncognate substrates serine and glycine and only results in a 1.6-fold decrease in efficiency of cognate Ala-tRNAAla formation. Mass spectrometry analysis of oxidized AlaRS revealed that the critical proofreading residue in the editing site, Cys666, and three methionine residues (M217 in the active site, M658 in the editing site, and M785 in the C-Ala domain) were modified to cysteine sulfenic acid and methionine sulfoxide, respectively. Alanine scanning mutagenesis showed that none of the identified residues were solely responsible for the change in cognate tRNAAla aminoacylation observed under oxidative stress, suggesting that these residues may act as reactive oxygen species "sinks" to protect catalytically critical sites from oxidative damage. Combined, our results indicate that E. coli AlaRS proofreading is resistant to oxidative damage, providing an important mechanism of stress resistance that helps to maintain proteome integrity and cellular viability.


Asunto(s)
Alanina-ARNt Ligasa , Escherichia coli , Alanina-ARNt Ligasa/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Estrés Oxidativo , Proteoma , ARN de Transferencia de Alanina/genética , ARN de Transferencia de Alanina/metabolismo , Especies Reactivas de Oxígeno/metabolismo
10.
Hum Mol Genet ; 30(18): 1711-1720, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-33909043

RESUMEN

Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.


Asunto(s)
Alanina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/genética , Síndromes de Tricotiodistrofia/genética , Alanina-ARNt Ligasa/metabolismo , Niño , Estabilidad de Enzimas/genética , Femenino , Humanos , Metionina-ARNt Ligasa/metabolismo , Síndromes de Tricotiodistrofia/enzimología , Síndromes de Tricotiodistrofia/patología , Secuenciación Completa del Genoma
11.
Nucleic Acids Res ; 49(17): 9953-9964, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500470

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that provide the ribosome with aminoacyl-tRNA substrates for protein synthesis. Mutations in aaRSs lead to various neurological disorders in humans. Many aaRSs utilize editing to prevent error propagation during translation. Editing defects in alanyl-tRNA synthetase (AlaRS) cause neurodegeneration and cardioproteinopathy in mice and are associated with microcephaly in human patients. The cellular impact of AlaRS editing deficiency in eukaryotes remains unclear. Here we use yeast as a model organism to systematically investigate the physiological role of AlaRS editing. Our RNA sequencing and quantitative proteomics results reveal that AlaRS editing defects surprisingly activate the general amino acid control pathway and attenuate the heatshock response. We have confirmed these results with reporter and growth assays. In addition, AlaRS editing defects downregulate carbon metabolism and attenuate protein synthesis. Supplying yeast cells with extra carbon source partially rescues the heat sensitivity caused by AlaRS editing deficiency. These findings are in stark contrast with the cellular effects caused by editing deficiency in other aaRSs. Our study therefore highlights the idiosyncratic role of AlaRS editing compared with other aaRSs and provides a model for the physiological impact caused by the lack of AlaRS editing.


Asunto(s)
Alanina-ARNt Ligasa/genética , Edición Génica , Biosíntesis de Proteínas/genética , Saccharomyces cerevisiae/genética , Animales , Metabolismo Energético/genética , Escherichia coli/genética , Respuesta al Choque Térmico/genética , Humanos , Ratones , Microcefalia/genética , Enfermedades Neurodegenerativas/genética , Aminoacil-ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
BMC Neurol ; 22(1): 214, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676634

RESUMEN

BACKGROUND: Missense mutations in the mitochondrial alanyl-tRNA synthetase 2 (AARS2) gene are clinically associated with infantile mitochondrial cardiomyopathy or adult-onset leukoencephalopathy with early ovarian failure. To date, approximately 40 cases have been reported related to AARS2 mutations, while its genetic and phenotypic spectrum remains to be defined. CASE PRESENTATION: We identified a 24-year-old Chinese female patient with adult-onset leukoencephalopathy carrying novel compound heterozygous pathogenic mutations in the AARS2 gene (c.718C > T and c.1040 + 1G > A) using a whole-exome sequencing approach. CONCLUSIONS: Our findings further extend the mutational spectrum of AARS2-related leukoencephalopathy and highlight the importance of the whole-exome sequencing in precisely diagnosing adult-onset leukoencephalopathies.


Asunto(s)
Alanina-ARNt Ligasa , Leucoencefalopatías , Adulto , Alanina-ARNt Ligasa/genética , China , Femenino , Humanos , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Imagen por Resonancia Magnética , Mutación/genética , Adulto Joven
13.
BMC Neurol ; 22(1): 299, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35971119

RESUMEN

BACKGROUND: Aminoacyl tRNA-synthetases are ubiquitously-expressed enzymes that attach amino acids to their cognate tRNA molecules. Mutations in several genes encoding aminoacyl tRNA-synthetases, have been associated with peripheral neuropathy, i.e. AARS1, GARS1, HARS1, YARS1 and WARS1. The pathogenic mechanism underlying AARS1-related neuropathy is not known. METHODS: From 2012 onward, all probands presenting at Telemark Hospital (Skien, Norway) with peripheral neuropathy were screened for variants in AARS1 using an "in-house" next-generation sequencing panel. DNA from patient's family members was examined by Sanger sequencing. Blood from affected family members and healthy controls were used for quantification of AARS1 mRNA and alanine. Proteomic analyses were conducted in peripheral blood mononuclear cells (PBMC) from four affected family members and five healthy controls. RESULTS: Seventeen individuals in two Norwegian families affected by Charcot-Marie-Tooth disease (CMT) were characterized in this study. The heterozygous NM_001605.2:c.976C > T p.(Arg326Trp) AARS1 mutation was identified in ten affected family members. All living carriers had a mild to severe length-dependent sensorimotor neuropathy. Three deceased obligate carriers aged 74-98 were reported to be unaffected, but were not examined in the clinic. Proteomic studies in PBMC from four affected individuals suggest an effect on the immune system mediated by components of a systemic response to chronic injury and inflammation. Furthermore, altered expression of proteins linked to mitochondrial function/dysfunction was observed. Proteomic data are available via ProteomeXchange using identifier PXD023842. CONCLUSION: This study describes clinical and neurophysiological features linked to the p.(Arg326Trp) variant of AARS1 in CMT-affected members of two Norwegian families. Proteomic analyses based on of PBMC from four CMT-affected individuals suggest that involvement of inflammation and mitochondrial dysfunction might contribute to AARS1 variant-associated peripheral neuropathy.


Asunto(s)
Alanina-ARNt Ligasa , Enfermedad de Charcot-Marie-Tooth , Alanina-ARNt Ligasa/genética , Enfermedad de Charcot-Marie-Tooth/genética , Humanos , Inflamación , Leucocitos Mononucleares/metabolismo , Mutación , Linaje , Proteoma/genética , Proteómica
14.
Clin Neuropathol ; 41(6): 271-276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278300

RESUMEN

To report a new genetic cause of distal hereditary motor neuropathy (dHMN), which is likely associated with worsening during pregnancy. We collected the clinical data of a patient with severe weakness of the lower limbs induced by repeated pregnancy and performed relevant experimental examinations, including neuromuscular electrophysiological examination, neuromuscular biopsy, and genetic testing. The patient reported weakness of the right lower extremity after delivery of the first child. Initially, the right foot was weak during lifting, and symptoms gradually progressed to weakness when landing on the toe during walking. She then developed weakness of the right lower extremity and thinning of the right leg. After an interval of 2.5 years, after delivery of the second child, her left lower extremity developed asthenia, with the same symptoms as previously reported for the right lower extremity. Subsequently, weakness of both lower extremities became progressively worse, and she developed difficulty sitting up, getting out of bed, and walking. Physical examination showed that both upper limb vertebral tracts were damaged and both lower extremity motor nerves were damaged. Electrophysiology suggested motor axonal neurogenic damage. Brain magnetic resonance imaging demonstrated leukodystrophy. Sural nerve biopsy suggested mild axonal damage. Skeletal muscle biopsy suggested neurogenic skeletal muscle damage. Genetic testing suggested that there was a heterozygous mutation at the shear site of the AARS gene. An AARS mutation may cause dHMN associated with pyramidal tract signs.


Asunto(s)
Alanina-ARNt Ligasa , Aminoacil-ARNt Sintetasas , Enfermedad de Charcot-Marie-Tooth , Femenino , Humanos , Alanina-ARNt Ligasa/genética , Aminoacil-ARNt Sintetasas/genética , Enfermedad de Charcot-Marie-Tooth/genética , Heterocigoto , Mutación , Embarazo
15.
J Biol Chem ; 295(5): 1402-1410, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31862734

RESUMEN

ß-N-methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS-purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine codons, following a screen for amino acid activation in ATP/PPi exchange assays, we observed that BMAA is not a substrate for human seryl-tRNA synthetase (SerRS). Instead, we observed that BMAA is a substrate for human alanyl-tRNA synthetase (AlaRS) and can form BMAA-tRNAAla by escaping from the intrinsic AlaRS proofreading activity. Furthermore, we found that BMAA inhibits both the cognate amino acid activation and the editing functions of AlaRS. Our results reveal that, in addition to being misincorporated during translation, BMAA may be able to disrupt the integrity of protein synthesis through multiple different mechanisms.


Asunto(s)
Alanina-ARNt Ligasa/metabolismo , Aminoácidos Diaminos/metabolismo , Aminoacilación de ARN de Transferencia , Alanina/química , Alanina/metabolismo , Aminoácidos Diaminos/química , Cromatografía Liquida , Toxinas de Cianobacterias , Expresión Génica , Humanos , Cinética , Espectrometría de Masas , Serina/química , Serina/metabolismo , Serina-ARNt Ligasa/metabolismo
16.
Hum Mol Genet ; 28(2): 258-268, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30285085

RESUMEN

Recessively inherited variants in AARS2 (NM_020745.2) encoding mitochondrial alanyl-tRNA synthetase (mt-AlaRS) were first described in patients presenting with fatal infantile cardiomyopathy and multiple oxidative phosphorylation defects. To date, all described patients with AARS2-related fatal infantile cardiomyopathy are united by either a homozygous or compound heterozygous c.1774C>T (p.Arg592Trp) missense founder mutation that is absent in patients with other AARS2-related phenotypes. We describe the clinical, biochemical and molecular investigations of two unrelated boys presenting with fatal infantile cardiomyopathy, lactic acidosis and respiratory failure. Oxidative histochemistry showed cytochrome c oxidase-deficient fibres in skeletal and cardiac muscle. Biochemical studies showed markedly decreased activities of mitochondrial respiratory chain complexes I and IV with a mild decrease of complex III activity in skeletal and cardiac muscle. Using next-generation sequencing, we identified a c.1738C>T (p.Arg580Trp) AARS2 variant shared by both patients that was in trans with a loss-of-function heterozygous AARS2 variant; a c.1008dupT (p.Asp337*) nonsense variant or an intragenic deletion encompassing AARS2 exons 5-7. Interestingly, our patients did not harbour the p.Arg592Trp AARS2 founder mutation. In silico modelling of the p.Arg580Trp substitution suggested a deleterious impact on protein stability and folding. We confirmed markedly decreased mt-AlaRS protein levels in patient fibroblasts, skeletal and cardiac muscle, although mitochondrial protein synthesis defects were confined to skeletal and cardiac muscle. In vitro data showed that the p.Arg580Trp variant had a minimal effect on activation, aminoacylation or misaminoacylation activities relative to wild-type mt-AlaRS, demonstrating that instability of mt-AlaRS is the biological mechanism underlying the fatal cardiomyopathy phenotype in our patients.


Asunto(s)
Alanina-ARNt Ligasa/metabolismo , Cardiomiopatías/enzimología , Alanina-ARNt Ligasa/genética , Cardiomiopatías/genética , Enfermedades en Gemelos/genética , Estabilidad de Enzimas , Fibroblastos/metabolismo , Genes Recesivos , Humanos , Lactante , Ácido Láctico , Masculino , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Linaje , Insuficiencia Respiratoria/enzimología
17.
Mol Genet Metab ; 133(2): 222-229, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33972171

RESUMEN

BACKGROUND AND PURPOSE: Mitochondrial aminoacyl-tRNA synthetases-encoded by ARS2 genes-are evolutionarily conserved enzymes that catalyse the attachment of amino acids to their cognate tRNAs, ensuring the accuracy of the mitochondrial translation process. ARS2 gene mutations are associated with a wide range of clinical presentations affecting the CNS. METHODS: Two senior neuroradiologists analysed brain MRI of 25 patients (age range: 3 d-25 yrs.; 11 males; 14 females) with biallelic pathogenic variants of 11 ARS2 genes in a retrospective study conducted between 2002 and 2019. RESULTS: Though several combinations of brain MRI anomalies were highly suggestive of specific aetiologies (DARS2, EARS2, AARS2 and RARS2 mutations), our study detected no MRI pattern common to all patients. Stroke-like lesions were associated with pathogenic SARS2 and FARS2 variants. We also report early onset cerebellar atrophy and calcifications in AARS2 mutations, early white matter involvement in RARS2 mutations, and absent involvement of thalami in EARS2 mutations. Finally, our findings show that normal brain MRI results do not exclude the presence of ARS2 mutations: 5 patients with normal MRI images were carriers of pathogenic IARS2, YARS2, and FARS2 variants. CONCLUSION: Our study extends the spectrum of brain MRI anomalies associated with pathogenic ARS2 variants and suggests ARS2 mutations are largely underdiagnosed.


Asunto(s)
Alanina-ARNt Ligasa/genética , Arginino-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/genética , Encéfalo/diagnóstico por imagen , Proteínas Mitocondriales/genética , Fenilalanina-ARNt Ligasa/genética , Adolescente , Adulto , Aminoacil-ARNt Sintetasas/clasificación , Aminoacil-ARNt Sintetasas/genética , Encéfalo/patología , Niño , Preescolar , Femenino , Variación Genética , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Mutación/genética , Fenotipo , Adulto Joven
18.
RNA Biol ; 18(11): 1501-1511, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33317386

RESUMEN

Among the 20 cytoplasmic aminoacyl-tRNA synthetases (aaRSs), alanyl-tRNA synthetase (AlaRS) has unique features. AlaRS is the only aaRS that exclusively recognizes a single G3:U70 wobble base pair in the acceptor stem of tRNA, which serves as the identity element for both the synthetic and the proofreading activities of the synthetase. The recognition is relaxed during evolution and eukaryotic AlaRS can mis-aminoacylate noncognate tRNAs with a G4:U69 base pair seemingly as a deliberate gain of function for unknown reasons. Unlike other class II aaRSs, dimerization of AlaRS is not necessarily required for aminoacylation possibly due to functional compensations from the C-terminal domain (C-Ala). In contrast to other 19 cytoplasmic aaRSs that append additional domains or motifs to acquire new functions during evolution, the functional expansion of AlaRS is likely achieved through transformations of the existing C-Ala. Given both essential canonical and diverse non-canonical roles of AlaRS, dysfunction of AlaRS leads to neurodegenerative disorders in human and various pathological phenotypes in mouse models. In this review, the uniqueness of AlaRS in both physiological and pathological events is systematically discussed, with a particular focus on its novel functions gained in evolution.


Asunto(s)
Alanina-ARNt Ligasa/metabolismo , Aminoacilación , Enfermedades Neurodegenerativas/patología , Animales , Humanos , Enfermedades Neurodegenerativas/enzimología
19.
Nucleic Acids Res ; 47(6): 3072-3085, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30952159

RESUMEN

Alanyl-tRNA synthetases (AlaRSs) from three domains of life predominantly rely on a single wobble base pair, G3-U70, of tRNAAla as a major determinant. However, this base pair is divergent in human mitochondrial tRNAAla, but instead with a translocated G5-U68. How human mitochondrial AlaRS (hmtAlaRS) recognizes tRNAAla, in particular, in the acceptor stem region, remains unknown. In the present study, we found that hmtAlaRS is a monomer and recognizes mitochondrial tRNAAla in a G3-U70-independent manner, requiring several elements in the acceptor stem. In addition, we found that hmtAlaRS misactivates noncognate Gly and catalyzes strong transfer RNA (tRNA)-independent pre-transfer editing for Gly. A completely conserved residue outside of the editing active site, Arg663, likely functions as a tRNA translocation determinant to facilitate tRNA entry into the editing domain during editing. Finally, we investigated the effects of the severe infantile-onset cardiomyopathy-associated R592W mutation of hmtAlaRS on the canonical enzymatic activities of hmtAlaRS. Overall, our results provide fundamental information about tRNA recognition and deepen our understanding of translational quality control mechanisms by hmtAlaRS.


Asunto(s)
Conformación de Ácido Nucleico , ARN Mitocondrial/genética , ARN de Transferencia de Alanina/genética , ARN de Transferencia/genética , Alanina-ARNt Ligasa/genética , Emparejamiento Base/genética , Dominio Catalítico , Escherichia coli/genética , Humanos , Cinética , Modelos Moleculares , Especificidad por Sustrato
20.
Nucleic Acids Res ; 47(18): 9777-9788, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31504788

RESUMEN

The homochirality of amino acids is vital for the functioning of the translation apparatus. l-Amino acids predominate in proteins and d-amino acids usually represent diverse regulatory functional physiological roles in both pro- and eukaryotes. Aminoacyl-tRNA-synthetases (aaRSs) ensure activation of proteinogenic or nonproteinogenic amino acids and attach them to cognate or noncognate tRNAs. Although many editing mechanisms by aaRSs have been described, data about the protective role of aaRSs in d-amino acids incorporation remained unknown. Tyrosyl- and alanyl-tRNA-synthetases were represented as distinct members of this enzyme family. To study the potential to bind and edit noncognate substrates, Thermus thermophilus alanyl-tRNA-synthetase (AlaRS) and tyrosyl-tRNA-synthetase were investigated in the context of d-amino acids recognition. Here, we showed that d-alanine was effectively activated by AlaRS and d-Ala-tRNAAla, formed during the erroneous aminoacylation, was edited by AlaRS. On the other hand, it turned out that d-aminoacyl-tRNA-deacylase (DTD), which usually hydrolyzes d-aminoacyl-tRNAs, was inactive against d-Ala-tRNAAla. To support the finding about DTD, computational docking and molecular dynamics simulations were run. Overall, our work illustrates the novel function of the AlaRS editing domain in stereospecificity control during translation together with trans-editing factor DTD. Thus, we propose different evolutionary strategies for the maintenance of chiral selectivity during translation.


Asunto(s)
Alanina-ARNt Ligasa/genética , ARN de Transferencia/genética , Thermus thermophilus/enzimología , Tirosina-ARNt Ligasa/genética , Alanina/genética , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/genética , Aminoacilación/genética , Escherichia coli/genética , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA