Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.557
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 669, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004716

RESUMEN

BACKGROUND: Fenugreeks (Trigonella L. spp.), belonging to the legume family (Fabaceae), are well-known multipurpose crops that their materials are currently received much attention in the pharmaceutical and food industries for the production of healthy and functional foods all over the world. Iran is one of the main diversity origins of this valuable plant. Therefore, the aim of the present study was to explore vitamins, minerals, and fatty acids profile, proximate composition, content of diosgenin, trigonelline, phenolic acids, total carotenoids, saponins, phenols, flavonoids, and tannins, mucilage and bitterness value, and antioxidant activity of the seed of thirty populations belonging to the ten different Iranian Trigonella species. RESULTS: We accordingly identified notable differences in the nutrient and bioactive compounds of each population. The highest content (mg/100 g DW) of ascorbic acid (18.67 ± 0.85‒22.48 ± 0.60) and α-tocopherol (31.61 ± 0.15‒38.78 ± 0.67) were found in the populations of T. filipes and T. coerulescens, respectively. Maximum content of catechin was found in the populations of T. teheranica (52.67 ± 0.05‒63.50 ± 0.72 mg/l). Linoleic acid (> 39.11% ± 0.61%) and linolenic acid (> 48.78 ± 0.39%) were the main polyunsaturated fatty acids, with the majority in the populations of T. stellata (54.81 ± 1.39‒63.46 ± 1.21%). The populations of T. stellata were also rich in trigonelline (4.95 ± 0.03‒7.66 ± 0.16 mg/g DW) and diosgenin (9.06 ± 0.06‒11.03 ± 0.17 mg/g DW). CONCLUSIONS: The obtained data provides baseline information to expand the inventory of wild and cultivated Iranian Trigonella species for further exploitation of rich chemotypes in the new foods and specific applications.


Asunto(s)
Alcaloides , Antioxidantes , Diosgenina , Ácidos Grasos , Semillas , Trigonella , Antioxidantes/metabolismo , Alcaloides/análisis , Irán , Semillas/química , Ácidos Grasos/análisis , Trigonella/química , Minerales/análisis , Fenoles/metabolismo , Nutrientes/análisis
2.
Mutagenesis ; 39(1): 32-42, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37877816

RESUMEN

The quinolizidine alkaloids matrine and its N-oxide oxymatrine occur in plants of the genus Sophora. Recently, matrine was sporadically detected in liquorice products. Morphological similarity of the liquorice plant Glycyrrhiza glabra with Sophora species and resulting confusion during harvesting may explain this contamination, but use of matrine as pesticide has also been reported. The detection of matrine in liquorice products raised concern as some studies suggested a genotoxic activity of matrine and oxymatrine. However, these studies are fraught with uncertainties, putting the reliability and robustness into question. Another issue was that Sophora root extracts were usually tested instead of pure matrine and oxymatrine. The aim of this work was therefore to determine whether matrine and oxymatrine have potential for causing gene mutations. In a first step and to support a weight-of-evidence analysis, in silico predictions were performed to improve the database using expert and statistical systems by VEGA, Leadscope (Instem®), and Nexus (Lhasa Limited). Unfortunately, the confidence levels of the predictions were insufficient to either identify or exclude a mutagenic potential. Thus, in order to obtain reliable results, the bacterial reverse mutation assay (Ames test) was carried out in accordance with OECD Test Guideline 471. The test set included the plate incorporation and the preincubation assay. It was performed with five different bacterial strains in the presence or absence of metabolic activation. Neither matrine nor oxymatrine induced a significant increase in the number of revertants under any of the selected experimental conditions. Overall, it can be concluded that matrine and oxymatrine are unlikely to have a gene mutation potential. Any positive findings with Sophora extracts in the Ames test may be related to other components. Notably, the results also indicated a need to extend the application domain of respective (Q)SAR tools to secondary plant metabolites.


Asunto(s)
Alcaloides , Sophora , Matrinas , Reproducibilidad de los Resultados , Alcaloides/toxicidad , Alcaloides/análisis , Quinolizinas/toxicidad , Quinolizinas/análisis , Mutación
3.
Ann Bot ; 133(4): 509-520, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38320313

RESUMEN

BACKGROUND AND AIMS: In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS: We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS: Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS: Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.


Asunto(s)
Alcaloides , Endófitos , Epichloe , Festuca , Lolium , Poliaminas , Alcaloides/metabolismo , Alcaloides/análisis , Endófitos/química , Endófitos/fisiología , Epichloe/química , Epichloe/fisiología , Ergotaminas/metabolismo , Festuca/microbiología , Festuca/fisiología , Herbivoria , Compuestos Heterocíclicos con 2 Anillos , Alcaloides Indólicos/metabolismo , Lolium/microbiología , Lolium/fisiología , Micotoxinas , Defensa de la Planta contra la Herbivoria , Poaceae/microbiología , Poaceae/metabolismo , Simbiosis
4.
Rapid Commun Mass Spectrom ; 38(18): e9857, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022839

RESUMEN

RATIONAL: Aconiti Lateralis Radix Praeparata (AC) is a traditional Chinese medicine with a long history of use. However, the current research on the material basis of AC and its processed products is still not comprehensive, especially the changes in lipo-diterpenoid alkaloids (LDAs) that can be hydrolyzed into diester-diterpenoid alkaloids in AC before and after processing. This study aimed to provide material basis guidance for the clinical use of AC and its processed products by comprehensively analyzing the changes in substances between AC and its processed products. METHODS: An ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS/MS) approach was optimized to chemical profiling. The MS data were processed using molecular networking combined with the in-house library database to fast characterize the compounds. Multivariate statistical methods were adopted to determine the dissimilarities of components in AC and its processed products. RESULTS: A total of 310 compounds were tentatively identified from AC, including 109 potential new alkaloids, of which 98 were potential novel LPAs. A metabolomics approach was applied to find the characteristic marker components. As a result, 52 potential chemical markers were selected to distinguish the AC samples of different extraction methods and 42 potential chemical markers for differentiating between AC and its processed products were selected. CONCLUSION: The results indicate that UHPLC/Q-TOF-MS/MS and Global Natural Products Social Molecular Networking coupled with multivariate analysis strategies was a powerful tool to rapidly identify and screen the chemical markers of alkaloids between the AC samples and its processed products. These results also indicate that the toxicity of water extracts of AC and its processed products were decreased. This research not only guides the clinical safe use of AC and its processed products, but also extends the application of the molecular networking strategy in traditional herbal medicine.


Asunto(s)
Aconitum , Alcaloides , Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Alcaloides/análisis , Alcaloides/química , Espectrometría de Masas en Tándem/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Aconitum/química , Análisis Multivariante , Humanos
5.
Rapid Commun Mass Spectrom ; 38(16): e9833, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38837482

RESUMEN

RATIONALE: This study developed a method for the rapid classification and identification of the chemical composition of Qingyan dropping pills (QDP) to provide the theoretical basis and data foundation for further in-depth research on the pharmacological substance basis of the formula and the selection of quality control indexes. METHODS: Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and data postprocessing technology were used to analyze the chemical composition of QDP. The fragmentation information on possible characteristic fragments and related neutral losses was summarized based on the literature and was compared with the MS data obtained from the assay, and thus a rapid classification and identification of chemical components in QDP could be achieved. RESULTS: A total of 73 compounds were identified, namely 24 flavonoids, 14 terpenoids, 30 organic acids and their esters, 3 alkaloids, and 2 phenylpropanoids. CONCLUSIONS: In this study, UHPLC-Q-TOF-MS and data postprocessing technology were used to realize the rapid classification and identification of the chemical constituents of QDP, which provided a comprehensive, efficient, and fast qualitative analysis method, a basis for further quality control and safe medication of QDP.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Espectrometría de Masas/métodos , Flavonoides/análisis , Flavonoides/química , Alcaloides/análisis , Alcaloides/química , Terpenos/análisis , Terpenos/química
6.
Rapid Commun Mass Spectrom ; 38(13): e9760, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682312

RESUMEN

RATIONALE: The chemical constituents of traditional Tibetan medicines (TTM) can be identified using high-performance liquid chromatography and high-resolution mass spectrometry (HPLC-MS/MS) technique. However, the HPLC-MS/MS technique requires the sample to be pretreated and then separated using the specific liquid chromatography method, which is time consuming. This study developed a ballpoint electrospray ionization (BPESI) technique for analyzing the chemical constituents of Sbyor-bzo-ghi-wang. This technique is a simple and inexpensive method for the rapid identification of the chemical constituents of TTMs. METHODS: After the important parameters of the homemade BPESI device were optimized, the chemical constituents of Sbyor-bzo-ghi-wang were quickly identified without sample pretreatment. The raw data were converted to mzML file using MSConvert and then identified using SIRIUS 5 software. RESULTS: The results showed that 30 compounds were identified from Sbyor-bzo-ghi-wang, namely eight bile acids, six flavonoids, four alkaloids, three amino acids, and nine others. Compared to the ultra-high-performance liquid chromatography-Q/Orbitrap and high-resolution mass spectrometry (UHPLC-Q/Orbitrap HRMS) technique, the BPESI technique identified almost similar types of compounds and also a comparable number of compounds. CONCLUSIONS: Compared with the traditional HPLC-MS/MS methods, the BPESI technique does not require complex sample pretreatment and subsequent chromatographic separation steps; also it consumes a small quantity of samples. Therefore, BPESI can be used for the qualitative analysis of the chemical constituents of Sbyor-bzo-ghi-wang.


Asunto(s)
Medicina Tradicional Tibetana , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Flavonoides/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Alcaloides/análisis , Alcaloides/química , Ácidos y Sales Biliares/análisis , Ácidos y Sales Biliares/química , Aminoácidos/análisis , Aminoácidos/química , Extractos Vegetales/química
7.
Anal Bioanal Chem ; 416(3): 827-837, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37999721

RESUMEN

The opium poppy (Papaver somniferum) is a global commercial crop that has been historically valued for both medicinal and culinary purposes. Naturally occurring opium alkaloids including morphine, codeine, thebaine, noscapine, and papaverine are found primarily in the latex produced by the plant. If the plant is allowed to fully mature, poppy seeds that do not contain the opium alkaloids will form within the pods and may be used in the food industry. It is possible for the seeds to become contaminated with alkaloids by the latex during harvesting, posing a potential health risk for consumers. In the USA, there have been more than 600 reported adverse events including 19 fatalities that may be linked to the consumption of a contaminated poppy-containing product such as home-brewed poppy seed tea. Unwashed poppy seeds and pods may be purchased over the Internet and shipped worldwide. The Forensic Chemistry Center, US Food and Drug Administration (FDA) has evaluated several mass spectrometers (MS) capable of rapid screening to be used for high-throughput analysis of samples such as poppy seeds. These include a direct analysis in real-time (DART) ambient ionization source coupled to a single-quadrupole MS, an atmospheric solids analysis probe (ASAP) ionization source coupled to the same MS, and ion mobility spectrometers (IMS). These instruments have been used to analyze 17 poppy seed samples for the presence of alkaloids, and the results were compared to data obtained using liquid chromatography with mass spectral detection (LC-MS/MS). Results from the 17 poppy seed samples indicate that the DART-MS, ASAP-MS, and IMS devices detect many of the same alkaloids confirmed during the LC-MS/MS analyses, although both the false-positive and false-negative rates are higher, possibly due to the non-homogeneity of the samples and the lack of chromatographic separation.


Asunto(s)
Alcaloides , Papaver , Papaver/química , Opio/análisis , Cromatografía Liquida , Espectrometría de Movilidad Iónica , Látex/análisis , Espectrometría de Masas en Tándem , Morfina , Alcaloides/análisis , Semillas/química
8.
Environ Res ; 242: 117779, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029817

RESUMEN

The present investigation looked into the various biomedical potentials of Andrographis paniculata shoot extracts. The results showed that the methanol extract (Met-E) of A. paniculata contains more phytochemicals than the acetone and petroleum ether extracts, including alkaloids, saponins, tannins, phenolics, flavonoids, glycosides, terpenoids, phytosterol, steroids, and protein. Accordingly, the Met-E alone showed considerable bactericidal activity (through agar well diffusion method) against the bacterial pathogens namely Shigella dysenteriae, Bacillus cereus, Salmonella typhi, Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphlococcus aureus, E. coli, and B. subtilis. This bactericidal activity was found as dose dependent manner, since at 1000 µg ml concentration, the Met-E showed better antibacterial activity. Similarly, at increased concentration (1000 µg ml) it showed notable antidiabetic (α-amylase inhibition: 74.31% and α-glucosidase inhibition: 72.34%), antioxidant (DPPH: 78.24%), and anti-inflammatory (albumin denaturation inhibition: 79.84% and lipoxigenase inhibition: 69.4%) activities. The phytochemical profiling of Met-E was characterized by UV-visible spectrophotometer (UV-vis), Gas Chromatography-Mass Spectrometry (GC/MS), Fourier transform infrared (FTIR), and High Performance Liquid Chromatography (HPLC) analyses. The results showed the Met-E contain bioactive compounds such as gallic acid, epicatechin, catechin, naringin, vitexin-2-rhamnoside, taxifolin, kaempferol, hesperidin, myricetin, rutin, quercetin, phloretin, and ursolic acid compounds. While most of these substances have been recognised for their pharmacological application perspective, the biological properties of particular substances must be studied in the future using in-vivo strategies.


Asunto(s)
Alcaloides , Andrographis paniculata , Escherichia coli , Hojas de la Planta , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/química , Alcaloides/análisis , Fitoquímicos/farmacología , Fitoquímicos/análisis , Fitoquímicos/química , Antioxidantes/farmacología , Antioxidantes/análisis
9.
J Sep Sci ; 47(1): e2300597, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38095454

RESUMEN

Using high-performance liquid chromatography coupled with electrospray ionization-ion mobility spectrometry and mass spectrometry, we proposed a dual-detection method for the identification and profiling of alkaloids in various lotus parts including leaf, plumule, stem, seed epicarp, and receptacle. The eluent from high-performance liquid chromatography was split and conducted to electrospray ionization-ion mobility spectrometry and time-of-flight mass spectrometry separately to facilitate the compound identification. In total, 23 kinds of alkaloids were identified based on m/z, drift time, and retention time, including alkaloid isomers such as lirinidine, N-nornuciferine, and O-nornuciferine with identical m/z that are difficult to differentiate using mass spectrometry alone. Using this method, we investigated the changing dynamics of alkaloid accumulation in lotus leaves and lotus stems at different harvesting periods. The total alkaloid content showed an increasing trend with the growth and development of leave and stem. Overall, the developed dual detection method has the advantages of high peak capacity and high sensitivity compared with the conventional detection method and facilitates the identification of detected compounds.


Asunto(s)
Alcaloides , Extractos Vegetales , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/química , Espectrometría de Movilidad Iónica , Alcaloides/análisis , Espectrometría de Masas/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos
10.
Planta Med ; 90(7-08): 523-533, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843792

RESUMEN

Benzylisoquinoline alkaloids are the major bioactive components in Chelidonium majus, a plant that has a long usage history for the treatment of gastrointestinal ailments in European and Asian phytomedicine. This study reports on the development and application of a supercritical fluid chromatography technique for the simultaneous qualitative and quantitative determination of seven benzylisoquinoline alkaloids in under six minutes using a Viridis BEH 2-EP column and a modifier comprising methanol with 30% acetonitrile and 20 mM ammonium formate. The method was fully validated according to ICH guidelines showing, e.g., excellent linearity (≥ 0.9997) and maximum deviations for intraday and inter-day precision of 2.99 and 2.76%, respectively. The new supercritical fluid chromatography assay was not only employed for the analysis of several C. majus samples but was also used for the subsequent development of a fast centrifugal partition chromatography technique, whereby five benzylisoquinoline alkaloids could be isolated within approximately 2.5 h, with only two of them, protopine and chelidonine, requiring an additional purification step. To achieve this, a solvent system composed of chloroform/methanol/0.3 M hydrochloric acid was used in descending mode. By injecting 500 mg of crude extract, stylopine (1.93 mg), sanguinarine (0.57 mg), chelidonine (1.29 mg), protopine (1.95 mg), and coptisine (7.13 mg) could be obtained. The purity of compounds was confirmed by supercritical fluid chromatography and MS.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Chelidonium , Chelidonium/química , Bencilisoquinolinas/aislamiento & purificación , Bencilisoquinolinas/química , Bencilisoquinolinas/análisis , Alcaloides/aislamiento & purificación , Alcaloides/química , Alcaloides/análisis , Cromatografía con Fluido Supercrítico/métodos , Extractos Vegetales/química , Benzofenantridinas/química , Benzofenantridinas/aislamiento & purificación , Chelidonium majus
11.
Biomed Chromatogr ; 38(7): e5876, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38600635

RESUMEN

The two-step preconcentration technique consisting of large-volume sample stacking (LVSS) and micelle to solvent stacking (MSS) in cyclodextrin-modified electrokinetic chromatography (CDEKC) was developed for the analysis of five cationic alkaloids in complex Chinese herbal prescriptions. Relevant parameters affecting separation and stacking performance were optimized separately. Under the optimal LVSS-MSS-CDEKC conditions, less analysis time and organic solvent were required, and the enhancement factors of analytes ranged from 12 to 15 compared with the normal CDEKC separation mode. Further, all validation results demonstrated good applicability and multiple alkaloids (epiberberine, dehydrocorydaline, jatrorrhizine, coptisine and berberine) in Yangxinshi tablet (YXST) have been simultaneously determined. This approach presents powerful potential for the determination of multiple components in complex preparations of Chinese medicine.


Asunto(s)
Alcaloides , Cromatografía Capilar Electrocinética Micelar , Medicamentos Herbarios Chinos , Comprimidos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Cromatografía Capilar Electrocinética Micelar/métodos , Comprimidos/química , Alcaloides/análisis , Alcaloides/química , Reproducibilidad de los Resultados , Micelas , Modelos Lineales , Ciclodextrinas/química , Límite de Detección
12.
Ecotoxicol Environ Saf ; 271: 115940, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218103

RESUMEN

Coptis chinensis Franch is a perennial herb from the Ranunculaceae family with a long history of medicinal use. As the medicinal part, the rhizome of coptis often accumulates excessive cadmium (Cd) even at low concentrations in the soil, which not only compromises its medicinal safety but also raises concerns about adverse effects on human health. Therefore, effective strategies are needed to mitigate this accumulation and ensure its safe use in traditional medicine. This study utilized transcriptome profiling and physiological analysis to explore molecular mechanisms associated with ecological significance and the active accumulation of Cd in C. chinensis. The response to Cd in C. chinensis was assessed through RNA sequencing, Cd determination and isoquinoline alkaloid measurement using its roots, stems, and leaves. The transcriptome revealed, a total of 2667, 2998, or 2815 up-regulated deferentially expressed genes in roots, stems or leaves in response to Cd exposure. Furthermore, we identified phenylpropanoid and isoquinoline alkaloid biosynthesis as the key pathways response to Cd exposure, which suggests that C. chinensis may improve its tolerance to Cd through regulating the phenylpropanoid biosynthesis pathway. Under Cd exposure, plant-pathogen interaction in leaves was identified as the key pathway, which indicates that upregulation of genes involved in plant-pathogen interaction could enhance disease resistance in C. chinensis. WGCNA analysis identified WRKY8 (Cluster-55763.31419) and WRKY47 (Cluster-55763.221590) as potential regulators of secondary metabolic synthesis and plant-pathogen interaction pathway in C. chinensis triggered by Cd. The measurement of berberine, coptisine, palmatine, and epiberberine also demonstrated that Cd simulated the four isoquinoline alkaloids in roots. Therefore, our study not only presented a transcriptome expression profiles that revealed significant upregulation of genes involved in metal transport and detoxification pathways but also suggested a possible mechanism to cope with Cd accumulation. This knowledge provides a new insight into gene manipulation for controlling Cd accumulation, enhancing resistance and promoting synthesis of secondary metabolites with potential medicinal properties in other medicinal plant species.


Asunto(s)
Alcaloides , Cadmio , Humanos , Cadmio/toxicidad , Coptis chinensis , Resistencia a la Enfermedad , Alcaloides/análisis , Perfilación de la Expresión Génica , Transcriptoma , Isoquinolinas
13.
Chem Biodivers ; 21(3): e202302123, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253808

RESUMEN

Three previously undescribed compounds named rauvolphyllas A-C (1-3), along with thirteen known compounds, 18ß-hydroxy-3-epi-α-yohimbine (4), yohimbine (5), α-yohimbine (6), 17-epi-α-yohimbine (7), (E)-vallesiachotamine (8), (Z)-vallesiachotamine (9), 16S-E-isositsirikine (10), Nb -methylisoajimaline (11), Nb -methylajimaline (12), ajimaline (13), (+)-lyoniresinol 3α-O-ß-D-glucopyranoside (14), (+)-isolarisiresinol 3α-O-ß-D-glucopyranoside (15), and (-)-lyoniresinol 3α-O-ß-D-glucopyranoside (16) were isolated from the aerial parts of Rauvolfia tetraphylla L. Their chemical structures were elucidated based on the extensive spectroscopic interpretation of HR-ESI-MS, 1D and 2D NMR spectra. The absolute configurations of 2 and 3 were determined by experimental ECD spectra. Compounds 5, 6, 7, and 11-13 exhibited nitric oxide production inhibition activity in LPS-activated RAW 264.7 cells with the IC50 values of 79.10, 44.34, 51.28, 33.54, 37.67, and 28.56 µM, respectively, compared to that of the positive control, dexamethasone, which showed IC50 value of 13.66 µM. The other isolates were inactive with IC50 values over 100 µM.


Asunto(s)
Alcaloides , Anisoles , Lignanos , Naftalenos , Rauwolfia , Animales , Ratones , Lignanos/química , Células RAW 264.7 , Lipopolisacáridos/farmacología , Óxido Nítrico , Alcaloides/análisis , Espectroscopía de Resonancia Magnética , Componentes Aéreos de las Plantas/química , Yohimbina , Estructura Molecular
14.
Mikrochim Acta ; 191(5): 286, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652378

RESUMEN

A perennial challenge in harnessing the rich biological activity of medicinal and edible plants is the accurate identification and sensitive detection of their active compounds. In this study, an innovative, ultra-sensitive detection platform for plant chemical profiling is created using surface-enhanced Raman spectroscopy (SERS) technology. The platform uses silver nanoparticles as the enhancing substrate, excess sodium borohydride prevents substrate oxidation, and methanol enables the tested molecules to be better adsorbed onto the silver nanoparticles. Subsequently, nanoparticle aggregation to form stable "hot spots" is induced by Ca2+, and the Raman signal of the target molecule is strongly enhanced. At the same time, deuterated methanol was used as the internal standard for quantitative determination. The method has excellent reproducibility, RSD ≤ 1.79%, and the enhancement factor of this method for the detection of active ingredients in the medicinal plant Coptis chinensis was 1.24 × 109, with detection limits as low as 3 fM. The platform successfully compared the alkaloid distribution in different parts of Coptis chinensis: root > leaf > stem, and the difference in content between different batches of Coptis chinensis decoction was successfully evaluated. The analytical technology adopted by the platform can speed up the determination of Coptis chinensis and reduce the cost of analysis, not only making better use of these valuable resources but also promoting development and innovation in the food and pharmaceutical industries. This study provides a new method for the development, evaluation, and comprehensive utilization of both medicinal and edible plants. It is expected that this method will be extended to the modern rapid detection of other medicinal and edible plants and will provide technical support for the vigorous development of the medicinal and edible plants industry.


Asunto(s)
Nanopartículas del Metal , Plantas Comestibles , Plantas Medicinales , Plata , Espectrometría Raman , Espectrometría Raman/métodos , Nanopartículas del Metal/química , Plantas Medicinales/química , Plata/química , Plantas Comestibles/química , Límite de Detección , Fitoquímicos/análisis , Fitoquímicos/química , Reproducibilidad de los Resultados , Alcaloides/análisis
15.
J Basic Microbiol ; 64(8): e2400016, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922741

RESUMEN

Taxus contorta (family Taxaceae) is a native plant of temperate region of western Himalaya. The current study investigated the effect of altitude on the phytochemical composition and mycorrhizal diversity, associated with distribution of T. contorta in Shimla district, Himachal Pradesh, India. Quantitative phytochemical analysis of the leaf extracts indicated that alkaloid levels decreased with altitude, with the highest value in Himri's methanol extracts (72.79 ± 1.08 mg/g) while phenol content increased with altitude, peaking in Nankhari's methanol extracts (118.83 ± 5.90 mg/g). Saponin content was higher in methanol extracts (78.13 ± 1.66 mg/g in Nankhari, 68.06 ± 1.92 mg/g in Pabbas, and 56.32 ± 1.93 mg/g in Himri). Flavonoid levels were notably higher in chloroform extracts, particularly in Nankhari (219.97 ± 2.99 mg/g), and positively correlated with altitude. Terpenoids were higher in chloroform extracts at Himri (11.34 ± 0.10 mg/g) and decreased with altitude. Taxol content showed minimal variation between solvents and altitudes (4.53-6.98 ppm), while rutin was only detected in methanol extracts (1.31-1.46 ppm). Mycorrhizal spore counts in T. contorta's rhizosphere varied with altitude: highest at Himri (77.83 ± 2.20 spores/50 g soil), decreasing to Pabbas (68.06 ± 1.96 spores/50 g soil) and lowest at Nankhari (66.00 ± 2.77 spores/50 g soil), with 17 AMF species identified overall, showing significant altitudinal influence on spore density. The rhizosphere of T. contorta was shown to be dominated by the Glomus species. The rhizospheric soil of the plant was found to be slightly acidic. Organic carbon and available potassium content decreased contrasting with increasing available nitrogen and phosphorus with altitude. Correlation data showed strong negative links between organic carbon (-0.83), moderate positive for nitrogen (0.46) and phosphorus (0.414), and moderate negative for potassium (-0.56) with the altitude. This study provides a comprehensive insight into changes in phytochemical constituents, mycorrhizal diversity and soil composition of T. contorta along a range of altitude.


Asunto(s)
Altitud , Bosques , Micorrizas , Fitoquímicos , Hojas de la Planta , Taxus , Taxus/microbiología , Taxus/química , Micorrizas/química , Micorrizas/clasificación , Fitoquímicos/análisis , Fitoquímicos/química , India , Hojas de la Planta/química , Hojas de la Planta/microbiología , Biodiversidad , Microbiología del Suelo , Alcaloides/análisis , Alcaloides/química , Flavonoides/análisis , Terpenos/análisis , Extractos Vegetales/química , Raíces de Plantas/microbiología , Raíces de Plantas/química , Saponinas/análisis , Saponinas/química
16.
Molecules ; 29(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338327

RESUMEN

Quinolizidine alkaloids (QAs) are toxic secondary metabolites of the Lupinus species, the presence of which limits the expansion of lupin beans consumption, despite their high protein content. Evaluation of the level of alkaloids in edible Lupinus species is crucial from a food safety point of view. However, quantitation of QAs is complicated by the fact that not all important alkaloids used for quantitation are commercially available. In this context, we developed a method for the simultaneous quantitation of eight major lupin alkaloids using quantitative NMR spectroscopy (qNMR). Quantitation and analysis were performed in 15 different seed extracts of 11 Lupinus spp. some of which belonged to the same species, with different geographical origins and time of harvest, as well as in all aerial parts of L. pilosus. The mature seeds of L. pilosus were found to be a uniquely rich source of multiflorine. Additionally, we developed a protocol using adsorption or ionic resins for easy, fast, and efficient debittering of the lupine seeds. The protocol was applied to L. albus, leading to a decrease of the time required for alkaloids removal as well as water consumption and to a method for QA isolation from the debittering wastewater.


Asunto(s)
Alcaloides , Lupinus , Alcaloides de Quinolizidina , Lupinus/química , Alcaloides/análisis , Semillas/química
17.
Molecules ; 29(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338336

RESUMEN

Some South American countries have ancient traditions that may pose legal problems, such as the consumption of coca leaves, as this can provide positive results for cocaine use after the analysis of biological samples. For this reason, it is necessary to find specific markers that help differentiate legal from illegal consumption, such as tropacocaine, cinnamoylcocaine, and especially hygrine and cuscohygrine. In this work, two techniques for collecting biological samples are compared: the Quantisal® Oral Fluid collection device and passive drooling. Once the samples were collected, they were subjected to solid-phase extraction for subsequent injection into GC-MS. Different validation parameters included in international guides have been studied to evaluate whether the proposed method is valid for the defined purpose, placing special emphasis on the study of the matrix effect and little value on GC-MS analyses. With respect to this parameter, an increase in the signal was found for CUS and t-CIN, but it was not significant for the rest of the substances studied. The recoveries have varied significantly depending on the way of working, being higher when working with standardized areas. After carrying out work with the oral fluid samples collected from laboratory volunteers, the method was applied to two real samples. The results obtained support the need for further research to overcome certain limitations presented by the device.


Asunto(s)
Alcaloides , Coca , Cocaína , Humanos , Coca/química , Cromatografía de Gases y Espectrometría de Masas , Alcaloides/análisis , Hojas de la Planta/química
18.
Molecules ; 29(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38338442

RESUMEN

(1) Background: The effect of Dendrobium nobile Lindl. (D. nobile) on hyperglycemic syndrome has only been recently known for several years. Materials of D. nobile were always collected from the plants cultivated in various growth ages. However, regarding the efficacy of D. nobile on hyperglycemic syndrome, it was still unknown as to which cultivation age would be selected. On the other hand, with the lack of quality markers, it is difficult to control the quality of D. nobile to treat hyperglycemic syndrome. (2) Methods: The effects of D. nobile cultivated at year 1 and year 3 were checked on alloxan-induced diabetic mice while their body weight, diet, water intake, and urinary output were monitored. Moreover, levels of glycosylated serum protein and insulin were measured using Elisa kits. The constituents of D. nobile were identified and analyzed by using UPLC-Q/trap. Quality markers were screened out by integrating the data from UPLC-Q/trap into a network pharmacology model. (3) Results: The D. nobile cultivated at both year 1 and year 3 showed a significant effect on hyperglycemic syndrome at the high dosage level; however, regarding the significant level, D. nobile from year 1 showed the better effect. In D. nobile, most of the metabolites were identified as alkaloids and sesquiterpene glycosides. Alkaloids, represented by dendrobine, were enriched in D. nobile from year 1, while sesquiterpene glycosides were enriched in D. nobile from year 3. Twenty one metabolites were differentially expressed between D. nobile from year 1 and year 3. The aforementioned 21 metabolites were enriched to 34 therapeutic targets directly related to diabetes. (4) Conclusions: Regarding the therapy for hyperglycemic syndrome, D. nobile cultivated at year 1 was more recommended than that at year 3. Alkaloids were recommended to be used as markers to control the quality of D. nobile for hyperglycemic syndrome treatment.


Asunto(s)
Alcaloides , Dendrobium , Diabetes Mellitus Experimental , Sesquiterpenos , Animales , Ratones , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Alcaloides/análisis , Glicósidos
19.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675582

RESUMEN

Piper betle leaf powder is increasingly utilised as a health supplement. In this study, P. betle leaves were subjected to four different drying methods: convective air-drying, oven-drying, sun-drying, and no drying, with fresh leaves as control. Their antioxidant properties were then evaluated using colourimetric assays and GC-MS. Results showed that the sun-dried leaves had the highest (p < 0.05) total antioxidant capacity (66.23 ± 0.10 mg AAE/g), total polyphenol content (133.93 ± 3.76 mg GAE/g), total flavonoid content (81.25 ± 3.26 mg CE/g) and DPPH radical scavenging activity (56.48 ± 0.11%), and the lowest alkaloid content (45.684 ± 0.265 mg/gm). GC-MS analysis revealed that major constituents of aqueous extracts of fresh and sun-dried P. betle leaves were hydrazine 1,2-dimethyl-; ethyl aminomethylformimidate; glycerin; propanoic acid, 2-hydroxy-, methyl ester, (+/-)-; and 1,2-Cyclopentanedione. In conclusion, sun-dried leaves exhibited overall better antioxidant properties, and their aqueous extracts contained biologically active phytoconstituents that have uses in various fields.


Asunto(s)
Antioxidantes , Desecación , Piper betle , Extractos Vegetales , Hojas de la Planta , Hojas de la Planta/química , Antioxidantes/química , Antioxidantes/farmacología , Piper betle/química , Extractos Vegetales/química , Desecación/métodos , Flavonoides/química , Flavonoides/análisis , Polifenoles/química , Polifenoles/análisis , Cromatografía de Gases y Espectrometría de Masas , Alcaloides/química , Alcaloides/análisis
20.
Molecules ; 29(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998918

RESUMEN

The Brassicaceae family, commonly referred to as cruciferous plants, is globally cultivated and consumed, with the Brassica genus being particularly renowned for its functional components. These vegetables are rich sources of nutrients and health-promoting phytochemicals, garnering increased attention in recent years. This study presents a comprehensive microscopic, chromatographic, and spectroscopic characterization of Brassica napus L. seeds from Kazakhstan aimed at elucidating their morphological features and chemical composition. Microscopic analysis revealed distinct localization of flavonoids, total lipids, and alkaloids. High-performance thin-layer chromatography (HPTLC) analysis of seed extracts demonstrated a complex chemical profile with significant quantities of non-polar compounds in the hexane extracts. Additionally, methanolic extracts revealed the presence of diverse chemical compounds, including alkaloids, flavonoids, and glucosinolates. The chemical composition exhibited varietal differences across different Brassica species, with B. napus L. seeds showing higher concentrations of bioactive compounds. Furthermore, liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QToF-MS) analysis provided insights into the chemical composition, with sinapine isomers, feruloyl, and sinapoyl choline derivatives as major compounds in the seeds. This study contributes to a better understanding of the chemical diversity and quality control methods' approximations of B. napus L. seeds, highlighting their importance in functional food and nutraceutical applications.


Asunto(s)
Brassica napus , Semillas , Brassica napus/química , Semillas/química , Extractos Vegetales/química , Extractos Vegetales/análisis , Fitoquímicos/análisis , Fitoquímicos/química , Cromatografía en Capa Delgada/métodos , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Flavonoides/química , Alcaloides/análisis , Alcaloides/química , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Glucosinolatos/análisis , Glucosinolatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA