Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.895
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 593(7858): 261-265, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33911281

RESUMEN

Several enteric pathogens can gain specific metabolic advantages over other members of the microbiota by inducing host pathology and inflammation. The pathogen Clostridium difficile is responsible for a toxin-mediated colitis that causes 450,000 infections and 15,000 deaths in the United States each year1; however, the molecular mechanisms by which C. difficile benefits from this pathology remain unclear. To understand how the metabolism of C. difficile adapts to the inflammatory conditions that its toxins induce, here we use RNA sequencing to define, in a mouse model, the metabolic states of wild-type C. difficile and of an isogenic mutant that lacks toxins. By combining bacterial and mouse genetics, we demonstrate that C. difficile uses sorbitol derived from both diet and host. Host-derived sorbitol is produced by the enzyme aldose reductase, which is expressed by diverse immune cells and is upregulated during inflammation-including during toxin-mediated disease induced by C. difficile. This work highlights a mechanism by which C. difficile can use a host-derived nutrient that is generated during toxin-induced disease by an enzyme that has not previously been associated with infection.


Asunto(s)
Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/metabolismo , Infecciones por Clostridium/microbiología , Interacciones Huésped-Patógeno , Sorbitol/metabolismo , Aldehído Reductasa/metabolismo , Animales , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Infecciones por Clostridium/enzimología , Colitis/enzimología , Colitis/metabolismo , Colitis/microbiología , Femenino , Regulación Bacteriana de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación
2.
J Biol Chem ; 300(2): 105598, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159859

RESUMEN

Cofactor imbalance obstructs the productivities of metabolically engineered cells. Herein, we employed a minimally perturbing system, xylose reductase and lactose (XR/lactose), to increase the levels of a pool of sugar phosphates which are connected to the biosynthesis of NAD(P)H, FAD, FMN, and ATP in Escherichia coli. The XR/lactose system could increase the amounts of the precursors of these cofactors and was tested with three different metabolically engineered cell systems (fatty alcohol biosynthesis, bioluminescence light generation, and alkane biosynthesis) with different cofactor demands. Productivities of these cells were increased 2-4-fold by the XR/lactose system. Untargeted metabolomic analysis revealed different metabolite patterns among these cells, demonstrating that only metabolites involved in relevant cofactor biosynthesis were altered. The results were also confirmed by transcriptomic analysis. Another sugar reducing system (glucose dehydrogenase) could also be used to increase fatty alcohol production but resulted in less yield enhancement than XR. This work demonstrates that the approach of increasing cellular sugar phosphates can be a generic tool to increase in vivo cofactor generation upon cellular demand for synthetic biology.


Asunto(s)
Ingeniería Metabólica , Redes y Vías Metabólicas , Aldehído Reductasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Alcoholes Grasos/metabolismo , Fermentación , Lactosa/metabolismo , Ingeniería Metabólica/métodos , Fosfatos de Azúcar/metabolismo , Xilosa/metabolismo
3.
J Biol Chem ; 300(7): 107479, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879006

RESUMEN

Glucoselysine (GL) is an unique advanced glycation end-product derived from fructose. The main source of fructose in vivo is the polyol pathway, and an increase in its activity leads to diabetic complications. Here, we aimed to demonstrate that GL can serve as an indicator of the polyol pathway activity. Additionally, we propose a novel approach for detecting GL in peripheral blood samples using liquid chromatography-tandem mass spectrometry and evaluate its clinical usefulness. We successfully circumvent interference from fructoselysine, which shares the same molecular weight as GL, by performing ultrafiltration and hydrolysis without reduction, successfully generating adequate peaks for quantification in serum. Furthermore, using immortalized aldose reductase KO mouse Schwann cells, we demonstrate that GL reflects the downstream activity of the polyol pathway and that GL produced intracellularly is released into the extracellular space. Clinical studies reveal that GL levels in patients with type 2 diabetes are significantly higher than those in healthy participants, while Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1) levels are significantly lower. Both GL and MG-H1 show higher values among patients with vascular complications; however, GL varies more markedly than MG-H1 as well as hemoglobin A1c, fasting plasma glucose, and estimated glomerular filtration rate. Furthermore, GL remains consistently stable under various existing drug treatments for type 2 diabetes, whereas MG-H1 is impacted. To the best of our knowledge, we provide important insights in predicting diabetic complications caused by enhanced polyol pathway activity via assessment of GL levels in peripheral blood samples from patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Productos Finales de Glicación Avanzada , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Animales , Productos Finales de Glicación Avanzada/metabolismo , Ratones , Masculino , Persona de Mediana Edad , Femenino , Lisina/metabolismo , Ornitina/metabolismo , Ornitina/sangre , Ornitina/análogos & derivados , Aldehído Reductasa/metabolismo , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/sangre , Polímeros/química , Anciano , Ratones Noqueados , Imidazoles
4.
Nature ; 565(7737): 96-100, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30487609

RESUMEN

Endothelial nitric oxide synthase (eNOS) is protective against kidney injury, but the molecular mechanisms of this protection are poorly understood1,2. Nitric oxide-based cellular signalling is generally mediated by protein S-nitrosylation, the oxidative modification of Cys residues to form S-nitrosothiols (SNOs). S-nitrosylation regulates proteins in all functional classes, and is controlled by enzymatic machinery that includes S-nitrosylases and denitrosylases, which add and remove SNO from proteins, respectively3,4. In Saccharomyces cerevisiae, the classic metabolic intermediate co-enzyme A (CoA) serves as an endogenous source of SNOs through its conjugation with nitric oxide to form S-nitroso-CoA (SNO-CoA), and S-nitrosylation of proteins by SNO-CoA is governed by its cognate denitrosylase, SNO-CoA reductase (SCoR)5. Mammals possess a functional homologue of yeast SCoR, an aldo-keto reductase family member (AKR1A1)5 with an unknown physiological role. Here we report that the SNO-CoA-AKR1A1 system is highly expressed in renal proximal tubules, where it transduces the activity of eNOS in reprogramming intermediary metabolism, thereby protecting kidneys against acute kidney injury. Specifically, deletion of Akr1a1 in mice to reduce SCoR activity increased protein S-nitrosylation, protected against acute kidney injury and improved survival, whereas this protection was lost when Enos (also known as Nos3) was also deleted. Metabolic profiling coupled with unbiased mass spectrometry-based SNO-protein identification revealed that protection by the SNO-CoA-SCoR system is mediated by inhibitory S-nitrosylation of pyruvate kinase M2 (PKM2) through a novel locus of regulation, thereby balancing fuel utilization (through glycolysis) with redox protection (through the pentose phosphate shunt). Targeted deletion of PKM2 from mouse proximal tubules recapitulated precisely the protective and mechanistic effects of S-nitrosylation in Akr1a1-/- mice, whereas Cys-mutant PKM2, which is refractory to S-nitrosylation, negated SNO-CoA bioactivity. Our results identify a physiological function of the SNO-CoA-SCoR system in mammals, describe new regulation of renal metabolism and of PKM2 in differentiated tissues, and offer a novel perspective on kidney injury with therapeutic implications.


Asunto(s)
Lesión Renal Aguda/enzimología , Lesión Renal Aguda/prevención & control , Coenzima A/metabolismo , Ingeniería Metabólica , Oxidorreductasas/metabolismo , Aldehído Reductasa/deficiencia , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Animales , Línea Celular , Femenino , Glucólisis , Células HEK293 , Humanos , Túbulos Renales Proximales/enzimología , Masculino , Ratones , Mutación , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxidación-Reducción , Vía de Pentosa Fosfato , Multimerización de Proteína , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo
5.
Am J Physiol Renal Physiol ; 327(3): F489-F503, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991008

RESUMEN

Fate mapping and genetic manipulation of renin cells have relied on either noninducible Cre lines that can introduce the developmental effects of gene deletion or bacterial artificial chromosome transgene-based inducible models that may be prone to spurious and/or ectopic gene expression. To circumvent these problems, we generated an inducible mouse model in which CreERT2 is under the control of the endogenous Akr1b7 gene, an independent marker of renin cells that is expressed in a few extrarenal tissues. We confirmed the proper expression of Cre using Akr1b7CreERT2/+;R26RmTmG/+ mice in which Akr1b7+/renin+ cells become green fluorescent protein (GFP)+ upon tamoxifen administration. In embryos and neonates, GFP was found in juxtaglomerular cells, along the arterioles, and in the mesangium, and in adults, GFP was present mainly in juxtaglomerular cells. In mice treated with captopril and a low-salt diet to induce recruitment of renin cells, GFP extended along the afferent arterioles and in the mesangium. We generated Akr1b7CreERT2/+;Ren1cFl/-;R26RmTmG/+ mice to conditionally delete renin in adult mice and found a marked reduction in kidney renin mRNA and protein and mean arterial pressure in mutant animals. When subjected to a homeostatic threat, mutant mice were unable to recruit renin+ cells. Most importantly, these mice developed concentric vascular hypertrophy ruling out potential developmental effects on the vasculature due to the lack of renin. We conclude that Akr1b7CreERT2 mice constitute an excellent model for the fate mapping of renin cells and for the spatial and temporal control of gene expression in renin cells.NEW & NOTEWORTHY Fate mapping and genetic manipulation are important tools to study the identity of renin cells. Here, we report on a novel Cre mouse model, Akr1b7CreERT2, for the spatial and temporal regulation of gene expression in renin cells. Cre is properly expressed in renin cells during development and in the adult under basal conditions and under physiological stress. Moreover, renin can be efficiently deleted in the adult, leading to the development of concentric vascular hypertrophy.


Asunto(s)
Ratones Transgénicos , Renina , Animales , Renina/metabolismo , Renina/genética , Ratones , Aparato Yuxtaglomerular/metabolismo , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Captopril/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Regulación de la Expresión Génica , Integrasas/genética , Integrasas/metabolismo
6.
Appl Environ Microbiol ; 90(4): e0015024, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38551341

RESUMEN

Avilamycins, which possess potent inhibitory activity against Gram-positive bacteria, are a group of oligosaccharide antibiotics produced by Streptomyces viridochromogenes. Among these structurally related oligosaccharide antibiotics, avilamycin A serves as the main bioactive component in veterinary drugs and animal feed additives, which differs from avilamycin C only in the redox state of the two-carbon branched-chain of the terminal octose moiety. However, the mechanisms underlying assembly and modification of the oligosaccharide chain to diversify individual avilamycins remain poorly understood. Here, we report that AviZ1, an aldo-keto reductase in the avilamycin pathway, can catalyze the redox conversion between avilamycins A and C. Remarkably, the ratio of these two components produced by AviZ1 depends on the utilization of specific redox cofactors, namely NADH/NAD+ or NADPH/NADP+. These findings are inspired by gene disruption and complementation experiments and are further supported by in vitro enzymatic activity assays, kinetic analyses, and cofactor affinity studies on AviZ1-catalyzed redox reactions. Additionally, the results from sequence analysis, structure prediction, and site-directed mutagenesis of AviZ1 validate it as an NADH/NAD+-favored aldo-keto reductase that primarily oxidizes avilamycin C to form avilamycin A by utilizing abundant NAD+ in vivo. Building upon the biological function and catalytic activity of AviZ1, overexpressing AviZ1 in S. viridochromogenes is thus effective to improve the yield and proportion of avilamycin A in the fermentation profile of avilamycins. This study represents, to our knowledge, the first characterization of biochemical reactions involved in avilamycin biosynthesis and contributes to the construction of high-performance strains with industrial value.IMPORTANCEAvilamycins are a group of oligosaccharide antibiotics produced by Streptomyces viridochromogenes, which can be used as veterinary drugs and animal feed additives. Avilamycin A is the most bioactive component, differing from avilamycin C only in the redox state of the two-carbon branched-chain of the terminal octose moiety. Currently, the biosynthetic pathway of avilamycins is not clear. Here, we report that AviZ1, an aldo-keto reductase in the avilamycin pathway, can catalyze the redox conversion between avilamycins A and C. More importantly, AviZ1 exhibits a unique NADH/NAD+ preference, allowing it to efficiently catalyze the oxidation of avilamycin C to form avilamycin A using abundant NAD+ in cells. Thus, overexpressing AviZ1 in S. viridochromogenes is effective to improve the yield and proportion of avilamycin A in the fermentation profile of avilamycins. This study serves as an enzymological guide for rational strain design, and the resulting high-performance strains have significant industrial value.


Asunto(s)
NAD , Streptomyces , Drogas Veterinarias , NAD/metabolismo , Aldo-Ceto Reductasas/metabolismo , Oligosacáridos , Oxidación-Reducción , Antibacterianos , Carbono/metabolismo , NADP/metabolismo , Aldehído Reductasa/metabolismo
7.
FEMS Yeast Res ; 242024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-39009031

RESUMEN

Lignocellulose (dry plant biomass) is an abundant cheap inedible residue of agriculture and wood industry with great potential as a feedstock for biotechnological processes. Lignocellulosic substrates can serve as valuable resources in fermentation processes, allowing the production of a wide array of chemicals, fuels, and food additives. The main obstacle for cost-effective conversion of lignocellulosic hydrolysates to target products is poor metabolism of the major pentoses, xylose and L-arabinose, which are the second and third most abundant sugars of lignocellulose after glucose. We study the oversynthesis of riboflavin in the flavinogenic yeast Candida famata and found that all major lignocellulosic sugars, including xylose and L-arabinose, support robust growth and riboflavin synthesis in the available strains of C. famata. To further increase riboflavin production from xylose and lignocellulose hydrolysate, genes XYL1 and XYL2 coding for xylose reductase and xylitol dehydrogenase were overexpressed. The resulting strains exhibited increased riboflavin production in both shake flasks and bioreactors using diluted hydrolysate, reaching 1.5 g L-1.


Asunto(s)
Candida , Lignina , Ingeniería Metabólica , Riboflavina , Xilosa , Lignina/metabolismo , Riboflavina/metabolismo , Riboflavina/biosíntesis , Candida/metabolismo , Candida/genética , Xilosa/metabolismo , Aldehído Reductasa/metabolismo , Aldehído Reductasa/genética , Fermentación , Reactores Biológicos/microbiología , D-Xilulosa Reductasa/metabolismo , D-Xilulosa Reductasa/genética , Arabinosa/metabolismo
8.
Phys Chem Chem Phys ; 26(12): 9295-9308, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38469695

RESUMEN

Understanding selectivity mechanisms of inhibitors towards highly homologous proteins is of paramount importance in the design of selective candidates. Human aldo-keto reductases (AKRs) pertain to a superfamily of monomeric oxidoreductases, which serve as NADPH-dependent cytosolic enzymes to catalyze the reduction of carbonyl groups to primary and secondary alcohols using electrons from NADPH. Among AKRs, AKR1B1 is emerging as a promising target for cancer treatment and diabetes, despite its high structural similarity with AKR1B10, which leads to severe adverse events. Therefore, it is crucial to understand the selectivity mechanisms of AKR1B1 and AKR1B10 to discover safe anticancer candidates with optimal therapeutic efficacy. In this study, multiple computational strategies, including sequence alignment, structural comparison, Protein Contacts Atlas analysis, molecular docking, molecular dynamics simulation, MM-GBSA calculation, alanine scanning mutagenesis and pharmacophore modeling analysis were employed to comprehensively understand the selectivity mechanisms of AKR1B1/10 inhibition based on selective inhibitor lidorestat and HAHE. This study would provide substantial evidence in the design of potent and highly selective AKR1B1/10 inhibitors in future.


Asunto(s)
Inhibidores Enzimáticos , Simulación de Dinámica Molecular , Humanos , Simulación del Acoplamiento Molecular , NADP/metabolismo , Aldo-Ceto Reductasas/metabolismo , Inhibidores Enzimáticos/farmacología , Aldehído Reductasa/metabolismo
9.
Dig Dis Sci ; 69(7): 2502-2521, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38662158

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) have been shown to be related to the occurrence and development of a variety of cancers including hepatocellular carcinoma (HCC). However, a large number of potential HCC-related lncRNAs remain undiscovered and are yet to be fully understood. METHODS: Differentially expressed lncRNAs were first obtained from the tumor tissues and adjacent normal tissues of five HCC patients using high-throughput microarray chips. Then the expression levels of 10 differentially expressed lncRNAs were verified in 50 pairs of tissue samples from patients with HCC by quantitative real-time PCR (qRT-PCR). The oncogenic effects of lncRNA-4045 (ENST00000524045.6) in HCC cell lines were verified through a series of in vitro experiments including CCK-8 assay, plate clone formation assay, transwell assay, scratch assay, and flow cytometry. Subsequently, the potential target genes of lncRNA-4045 were predicted by bioinformatics analysis, fluorescence in situ hybridization assay, and RNA sequencing. The mechanism of lncRNA-4045 in HCC was explored by WB assay as well as rescue and enhancement experiments. RESULTS: The results from microarray chips showed 1,708 lncRNAs to have been significantly upregulated and 2725 lncRNAs to have been significantly downregulated in HCC tissues. Via validation in 50 HCC patients, a novel lncRNA lncRNA-4045 was found significantly upregulated in HCC tissues. Additionally, a series of in vitro experiments showed that lncRNA-4045 promoted the proliferation, invasion, and migration of HCC cell lines, and inhibited the apoptosis of HCC cell lines. The results of qRT-PCR in HCC tissues showed that the expression levels of AKR1B10 were significantly positively correlated with lncRNA-4045. LncRNA-4045 knockdown significantly down-regulated AKR1B10 protein expression, and overexpression of lncRNA-4045 led to significant up-regulation of AKR1B10 protein in HCC cell lines. Lastly, down-regulation of AKR1B10 could partially eliminate the enhancement of cell proliferation induced by lncRNA-4045 overexpression, while up-regulation of AKR1B10 was shown to enhance those effects. CONCLUSION: LncRNA-4045 may promote HCC via enhancement of the expression of AKR1B10 protein.


Asunto(s)
Aldo-Ceto Reductasas , Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , ARN Largo no Codificante , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
10.
Lipids Health Dis ; 23(1): 201, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937844

RESUMEN

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a prevalent chronic liver condition. However, the potential therapeutic benefits and underlying mechanism of nicotinate-curcumin (NC) in the treatment of NASH remain uncertain. METHODS: A rat model of NASH induced by a high-fat and high-fructose diet was treated with nicotinate-curcumin (NC, 20, 40 mg·kg- 1), curcumin (Cur, 40 mg·kg- 1) and metformin (Met, 50 mg·kg- 1) for a duration of 4 weeks. The interaction between NASH, Cur and Aldo-Keto reductase family 1 member B10 (AKR1B10) was filter and analyzed using network pharmacology. The interaction of Cur, NC and AKR1B10 was analyzed using molecular docking techniques, and the binding energy of Cur and NC with AKR1B10 was compared. HepG2 cells were induced by Ox-LDL (25 µg·ml- 1, 24 h) in high glucose medium. NC (20µM, 40µM), Cur (40µM) Met (150µM) and epalrestat (Epa, 75µM) were administered individually. The activities of ALT, AST, ALP and the levels of LDL, HDL, TG, TC and FFA in serum were quantified using a chemiluminescence assay. Based on the changes in the above indicators, score according to NAS standards. The activities of Acetyl-CoA and Malonyl-CoA were measured using an ELISA assay. And the expression and cellular localization of AKR1B10 and Acetyl-CoA carboxylase (ACCα) in HepG2 cells were detected by Western blotting and immunofluorescence. RESULTS: The results of the animal experiments demonstrated that NASH rat model induced by a high-fat and high-fructose diet exhibited pronounced dysfunction in liver function and lipid metabolism. Additionally, there was a significant increase in serum levels of FFA and TG, as well as elevated expression of AKR1B10 and ACCα, and heightened activity of Acetyl-CoA and Malonyl-CoA in liver tissue. The administration of NC showed to enhance liver function in rats with NASH, leading to reductions in ALT, AST and ALP levels, and decrease in blood lipid and significant inhibition of FFA and TG synthesis in the liver. Network pharmacological analysis identified AKR1B10 and ACCα as potential targets for NASH treatment. Molecular docking studies revealed that both Cur and NC are capable of binding to AKR1B10, with NC exhibiting a stronger binding energy to AKR1B10. Western blot analysis demonstrated an upregulation in the expression of AKR1B10 and ACCα in the liver tissue of NASH rats, accompanied by elevated Acetyl-CoA and Malonyl-CoA activity, and increased levels of FFA and TG. The results of the HepG2 cell experiments induced by Ox-LDL suggest that NC significantly inhibited the expression and co-localization of AKR1B10 and ACCα, while also reduced levels of TC and LDL-C and increased level of HDL-C. These effects are accompanied by a decrease in the activities of ACCα and Malonyl-CoA, and levels of FFA and TG. Furthermore, the impact of NC appears to be more pronounced compared to Cur. CONCLUSION: NC could effectively treat NASH and improve liver function and lipid metabolism disorder. The mechanism of NC is related to the inhibition of AKR1B10/ACCα pathway and FFA/TG synthesis of liver.


Asunto(s)
Aldo-Ceto Reductasas , Curcumina , Enfermedad del Hígado Graso no Alcohólico , Triglicéridos , Curcumina/farmacología , Curcumina/análogos & derivados , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Humanos , Células Hep G2 , Aldo-Ceto Reductasas/metabolismo , Ratas , Masculino , Triglicéridos/sangre , Triglicéridos/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Aldehído Reductasa/metabolismo , Aldehído Reductasa/antagonistas & inhibidores , Dieta Alta en Grasa/efectos adversos , Simulación del Acoplamiento Molecular , Hígado/efectos de los fármacos , Hígado/metabolismo , Metformina/farmacología , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Rodanina/análogos & derivados , Tiazolidinas
11.
Arch Pharm (Weinheim) ; 357(8): e2300634, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772694

RESUMEN

Novel synthesized pyrimidine derivatives were investigated against carbonic anhydrase isoenzymes I and II (hCA I and II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glycosidase, and aldose reductase (AR) enzymes associated with some common diseases such as epilepsy, glaucoma, Alzheimer's disease, diabetes, and neuropathy. When the results were examined, novel synthesized pyrimidine derivatives were found to have effective inhibition abilities toward the metabolic enzymes. IC50 values and Ki values were calculated for each pyrimidine derivative and compared to positive controls. The synthesized novel pyrimidine derivatives exhibited Ki values in the range of 39.16 ± 7.70-144.62 ± 26.98 nM against hCA I, 18.21 ± 3.66-136.35 ± 21.48 nM toward hCA II, which is associated with different pathological and physiological processes, 33.15 ± 4.85-52.98 ± 19.86 nM on AChE, and 31.96 ± 8.24-69.57 ± 21.27 nM on BChE. Also, Ki values were determined in the range of 17.37 ± 1.11-253.88 ± 39.91 nM against α-glycosidase and 648.82 ± 53.74-1902.58 ± 98.90 nM toward AR enzymes. Within the scope of the study, the inhibition types of the novel synthesized pyrimidine derivatives were evaluated.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Pirimidinas , Pirimidinas/farmacología , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Humanos , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Estructura Molecular , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/metabolismo , Anhidrasa Carbónica I/antagonistas & inhibidores , Anhidrasa Carbónica I/metabolismo , Relación Dosis-Respuesta a Droga , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/metabolismo , Concentración 50 Inhibidora
12.
Am Heart J ; 256: 25-36, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36372245

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DbCM) is a specific form of heart muscle disease that may result in substantial morbidity and mortality in individuals with type 2 diabetes mellitus (T2DM). Hyperactivation of the polyol pathway is one of the primary mechanisms in the pathogenesis of diabetic complications, including development of DbCM. There is an unmet need for therapies targeting the underlying metabolic abnormalities that drive this form of Stage B heart failure (HF). METHODS: Aldose reductase (AR) catalyzes the first and rate-limiting step in the polyol pathway, and AR inhibition has been shown to reduce diabetic complications, including DbCM in animal models and in patients with DbCM. Previous AR inhibitors (ARIs) were limited by poor specificity resulting in unacceptable tolerability and safety profile. AT-001 is a novel investigational highly specific ARI with higher binding affinity and greater selectivity than previously studied ARIs. ARISE-HF (NCT04083339) is an ongoing Phase 3 randomized, placebo-controlled, double blind, global clinical study to investigate the efficacy of AT-001 (1000 mg twice daily [BID] and 1500 mg BID) in 675 T2DM patients with DbCM at high risk of progression to overt HF. ARISE-HF assesses the ability of AT-001 to improve or prevent decline in exercise capacity as measured by functional capacity (changes in peak oxygen uptake [peak VO2]) over 15 (and possibly 27) months of treatment. Additional endpoints include percentage of patients progressing to overt HF, health status metrics, echocardiographic measurements, and changes in cardiacbiomarkers. RESULTS: The ARISE-HF Trial is fully enrolled. CONCLUSIONS: This report describes the rationale and study design of ARISE-HF.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Animales , Humanos , Cardiomiopatías Diabéticas/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Aldehído Reductasa/metabolismo , Aldehído Reductasa/uso terapéutico , Tolerancia al Ejercicio , Complicaciones de la Diabetes/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Método Doble Ciego
13.
Planta ; 258(6): 107, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37897513

RESUMEN

MAIN CONCLUSION: The present investigation profoundly asserted the catalytic potential of plant-based aldo-ketoreductase, postulating its role in polyketide biosynthesis and providing new insights for tailored biosynthesis of vital plant polyketides for therapeutics. Plants hold great potential as a future source of innovative biocatalysts, expanding the possibilities within chemical reactions and generating a variety of benefits. The aldo-keto reductase (AKR) superfamily includes a huge collection of NAD(P)H-dependent oxidoreductases that carry out a variety of redox reactions essential for biosynthesis, detoxification, and intermediary metabolism. The present study involved the isolation, cloning, and purification of a novel aldo-ketoreductase (AvAKR) from the leaves of Aloe vera (Aloe barbadensis Miller) by heterologous gene expression in Escherichia coli based on the unigene sequences of putative ketoreductase and cDNA library screening by oligonucleotide hybridization. The in-silico structural analysis, phylogenetic relationship, and molecular modeling were outranged to approach the novelty of the sequence. Additionally, agroinfiltration of the candidate gene tagged with a green fluorescent protein (GFP) was employed for transient expression in the Nicotiana benthamiana to evaluate the sub-cellular localization of the candidate gene. The AvAKR preferred cytoplasmic localization and shared similarities with the known plant AKRs, keeping the majority of the conserved active-site residues in the AKR superfamily enzymes. The enzyme facilitated the NADPH-dependent reduction of various carbonyl substrates, including benzaldehyde and sugars, proclaiming a broad spectrum range. Our study successfully isolated and characterized a novel aldo-ketoreductase (AvAKR) from Aloe vera, highlighting its versatile NADPH-dependent carbonyl reduction proficiency therewith showcasing its potential as a versatile biocatalyst in diverse redox reactions.


Asunto(s)
Aldehído Reductasa , Aloe , Aldo-Ceto Reductasas/genética , Aldehído Reductasa/genética , Aldehído Reductasa/química , Aldehído Reductasa/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aloe/genética , Aloe/metabolismo , Filogenia , NADP/genética , Plantas/metabolismo
14.
Drug Metab Dispos ; 51(12): 1569-1577, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37722844

RESUMEN

Enzymes catalyzing the reduction reaction of xenobiotics are mainly members of the aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase (SDR) superfamilies. The intestine, together with the liver, is responsible for first-pass effects and is an organ that determines the bioavailability of orally administered drugs. In this study, we evaluated the mRNA and protein expression levels of 12 AKR isoforms (AKR1A1, AKR1B1, AKR1B10, AKR1B15, AKR1C1, AKR1C2, AKR1C3, AKR1C4, AKR1D1, AKR1E2, AKR7A2, and AKR7A3) and 7 SDR isoforms (CBR1, CBR3, CBR4, DCXR, DHRS4, HSD11B1, and HSD17B12) in each region of the human intestine using next-generation sequencing and data-independent acquisition proteomics. At both the mRNA and protein levels, most AKR isoforms were highly expressed in the upper regions of the intestine, namely the duodenum and jejunum, and then declined toward the rectum. Among the members in the SDR superfamily, CBR1 and DHRS4 were highly expressed in the upper regions, whereas the expression levels of the other isoforms were almost uniform in all regions. Significant positive correlations between mRNA and protein levels were observed in AKR1A1, AKR1B1, AKR1B10, AKR1C3, AKR7A2, AKR7A3, CBR1, and CBR3. The mRNA level of AKR1B10 was highest, followed by AKR7A3 and CBR1, each accounting for more than 10% of the sum of all AKR and SDR levels in the small intestine. This expression profile in the human intestine was greatly different from that in the human liver, where AKR1C isoforms are predominantly expressed. SIGNIFICANCE STATEMENT: In this study comprehensively determined the mRNA and protein expression profiles of aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase isoforms involved in xenobiotic metabolism in the human intestine and found that most of them are highly expressed in the upper region, where AKR1B10, AKR7A3, and CBR1 are predominantly expressed. Since the intestine is significantly involved in the metabolism of orally administered drugs, the information provided here is valuable for pharmacokinetic studies in drug development.


Asunto(s)
Deshidrogenasas-Reductasas de Cadena Corta , Humanos , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Isoformas de Proteínas/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Intestinos
15.
Cardiovasc Diabetol ; 22(1): 73, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978133

RESUMEN

BACKGROUND: Cardiovascular diseases, including diabetic cardiomyopathy, are major causes of death in people with type 2 diabetes. Aldose reductase activity is enhanced in hyperglycemic conditions, leading to altered cardiac energy metabolism and deterioration of cardiac function with adverse remodeling. Because disturbances in cardiac energy metabolism can promote cardiac inefficiency, we hypothesized that aldose reductase inhibition may mitigate diabetic cardiomyopathy via normalization of cardiac energy metabolism. METHODS: Male C57BL/6J mice (8-week-old) were subjected to experimental type 2 diabetes/diabetic cardiomyopathy (high-fat diet [60% kcal from lard] for 10 weeks with a single intraperitoneal injection of streptozotocin (75 mg/kg) at 4 weeks), following which animals were randomized to treatment with either vehicle or AT-001, a next-generation aldose reductase inhibitor (40 mg/kg/day) for 3 weeks. At study completion, hearts were perfused in the isolated working mode to assess energy metabolism. RESULTS: Aldose reductase inhibition by AT-001 treatment improved diastolic function and cardiac efficiency in mice subjected to experimental type 2 diabetes. This attenuation of diabetic cardiomyopathy was associated with decreased myocardial fatty acid oxidation rates (1.15 ± 0.19 vs 0.5 ± 0.1 µmol min-1 g dry wt-1 in the presence of insulin) but no change in glucose oxidation rates compared to the control group. In addition, cardiac fibrosis and hypertrophy were also mitigated via AT-001 treatment in mice with diabetic cardiomyopathy. CONCLUSIONS: Inhibiting aldose reductase activity ameliorates diastolic dysfunction in mice with experimental type 2 diabetes, which may be due to the decline in myocardial fatty acid oxidation, indicating that treatment with AT-001 may be a novel approach to alleviate diabetic cardiomyopathy in patients with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Animales , Masculino , Ratones , Aldehído Reductasa/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/prevención & control , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Miocardio/metabolismo , Modelos Animales de Enfermedad , Distribución Aleatoria
16.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36731871

RESUMEN

D-xylose utilization by yeasts is an essential feature for improving second-generation ethanol production. However, industrial yeast strains are incapable of consuming D-xylose. Previous analyzes of D-xylose-consuming or fermenting yeast species reveal that the genomic features associated with this phenotype are complex and still not fully understood. Here we present a previously neglected yeast enzyme related to D-xylose metabolism, D-xylose dehydrogenase (XylDH), which is found in at least 105 yeast genomes. By analyzing the XylDH gene family, we brought evidence of gene evolution marked by purifying selection on codons and positive selection evidence in D-xylose-consuming and fermenting species, suggesting the importance of XylDH for D-xylose-related phenotypes in yeasts. Furthermore, although we found no putative metabolic pathway for XylDH in yeast genomes, namely the absence of three bacterial known pathways for this enzyme, we also provide its expression profile on D-xylose media following D-xylose reductase for two yeasts with publicly available transcriptomes. Based on these results, we suggest that XylDH plays an important role in D-xylose usage by yeasts, likely being involved in a cofactor regeneration system by reducing cofactor imbalance in the D-xylose reductase pathway.


Asunto(s)
Aldehído Reductasa , Xilosa , Xilosa/metabolismo , Fermentación , Aldehído Reductasa/metabolismo , Levaduras/genética
17.
Microb Cell Fact ; 22(1): 213, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37840127

RESUMEN

Enantio-pure α-hydroxy amides are valuable intermediates for the synthesis of chiral pharmaceuticals. The asymmetric reduction of α-keto amides to generate chiral α-hydroxy amides is a difficult and challenging task in biocatalysis. In this study, iolS, an aldo-keto reductase from Bacillus subtilis 168 was exhibited as a potential biocatalyst, which could catalyze the reduction of diaryl α-keto amide such as 2-oxo-N, 2-diphenyl-acetamide (ONDPA) with moderate S-selectivity (76.1%, ee) and 60.5% conversion. Through semi-rational engineering, two stereocomplementary variants (I57F/F126L and N21A/F126A) were obtained with ee value of 97.6% (S) and 99.9% (R) toward ONDPA (1a), respectively, delivering chiral α-hydroxy amide with > 98% conversions. Moreover, the excellent S- and R-preference variants displayed improved stereoselectivities toward the other α-keto amide compounds. Molecular dynamic and docking analysis revealed that the two key residues at 21 and 126 were identified as the "switch", which specifically controlled the stereopreference of iolS by regulating the shape of substrate binding pocket as well as the substrate orientation. Our results offer an effective strategy to obtain α-hydroxy amides with high optical purity and provide structural insights into altering the stereoselectivity of AKRs.


Asunto(s)
Aldehído Reductasa , Amidas , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/química , Aldo-Ceto Reductasas/metabolismo , Especificidad por Sustrato , Biocatálisis , Catálisis , Aldehído Reductasa/metabolismo
18.
J Chem Inf Model ; 63(20): 6261-6282, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37788831

RESUMEN

Aldose reductase (ALR2) is a notable enzyme of the polyol pathway responsible for aggravating diabetic neuropathy complications. The first step begins when it catalyzes the reduction of glucose to sorbitol with NADPH as a coenzyme. Elevated concentrations of sorbitol damage the tissues, leading to complications like neuropathy. Though considerable effort has been pushed toward the successful discovery of potent inhibitors, its discovery still remains an elusive task. To this end, we present a 3D convolutional neural network (3D-CNN) based ALR2 inhibitor classification technique by dealing with snapshots of images captured from 3D chemical structures with multiple rotations as input data. The CNN-based architecture was trained on the 360 sets of image data along each axis and further prediction on the Maybridge library by each of the models. Subjecting the retrieved hits to molecular docking leads to the identification of the top 10 molecules with high binding affinity. The hits displayed a better blood-brain barrier penetration (BBB) score (90% with more than four scores) as compared to standard inhibitors (38%), reflecting the superior BBB penetrating efficiency of the hits. Followed by molecular docking, the biological evaluation spotlighted five compounds as promising ALR2 inhibitors and can be considered as a likely prospect for further structural optimization with medicinal chemistry efforts to improve their inhibition efficacy and consolidate them as new ALR2 antagonists in the future. In addition, the study also demonstrated the usefulness of scaffold analysis of the molecules as a method for investigating the significance of structurally diverse compounds in data-driven studies. For reproducibility and accessibility purposes, all of the source codes used in our study are publicly available.


Asunto(s)
Aldehído Reductasa , Complicaciones de la Diabetes , Humanos , Simulación del Acoplamiento Molecular , Aldehído Reductasa/química , Aldehído Reductasa/metabolismo , Reproducibilidad de los Resultados , Inhibidores Enzimáticos/metabolismo , Redes Neurales de la Computación , Sorbitol/farmacología
19.
Cell Mol Biol (Noisy-le-grand) ; 69(5): 156-162, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37571887

RESUMEN

Numerous studies have proved that epithelial-mesenchymal transition (EMT) of lung epithelial cells is one of the important causes of radiation-induced pulmonary fibrosis (RIPF). Aldose reductase (AR) is a monomer enzyme in the polyglycolic metabolic pathway and belongs to the aldo-keno reductase protein superfamily. Our previous studies have found that AR as one of the most significantly up-regulated genes was associated with the development of bleomycin-induced PF in rats. It is not clear whether aldose reductase is related to the regulation of radiation-induced EMT and mediates RIPF. AR-knockout mice, wild-type mice and lung epithelial cells were induced by radiation to establish a RIPF animal model and EMT system, to explore whether AR is mediation to RIPF through the EMT pathway. In vivo, AR deficiency significantly alleviated radiation-induced histopathological changes, reduced collagen deposition and inhibited collagen I, matrix metalloproteinase 2 (MMP2) and Twist1 expression. In addition, AR knockout up-regulated E-cadherin expression and up-regulated α-SMA and Vimentin expression. In vitro, AR, collagen I and MMP2 expression were increased in lung epithelial cells after radiation, which was accompanied by Twist1 expression up-regulation and EMT changes evidenced by decreased E-cadherin expression and increased α-SMA and Vimentin expression. Knockdown or inhibition of AR inhibited the expressions of Twist1, MMP2 and collagen I, and reduced cell migration and reversed radiation-induced EMT. These results indicated that aldose reductase may be related to radiation-induced lung epithelial cells EMT, and that inhibition of aldose reductase might be a promising treatment for RIPF.


Asunto(s)
Fibrosis Pulmonar , Ratones , Ratas , Animales , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/inducido químicamente , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Vimentina/metabolismo , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Pulmón/patología , Colágeno/genética , Colágeno/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Transición Epitelial-Mesenquimal/genética
20.
Mol Divers ; 27(4): 1713-1733, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36103032

RESUMEN

In the polyol pathway, aldose reductase (AR) catalyzes the formation of sorbitol from glucose. In order to detoxify some dangerous aldehydes, AR is essential. However, due to the effects of the active polyol pathway, AR overexpression in the hyperglycemic state leads to microvascular and macrovascular diabetic problems. As a result, AR inhibition has been recognized as a potential treatment for issues linked to diabetes and has been studied by numerous researchers worldwide. In the present study, a series of acyl hydrazones were obtained from the reaction of vanillin derivatized with acyl groups and phenolic Mannich bases with hydrazides containing pharmacological groups such as morpholine, piperazine, and tetrahydroisoquinoline. The resulting 21 novel acyl hydrazone compounds were investigated as an inhibitor of the AR enzyme. All the novel acyl hydrazones derived from vanillin demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 94.21 ± 2.33 to 430.00 ± 2.33 nM and 49.22 ± 3.64 to 897.20 ± 43.63 nM, respectively. Compounds 11c and 10b against AR enzyme activity were identified as highly potent inhibitors and showed 17.38 and 10.78-fold more effectiveness than standard drug epalrestat. The synthesized molecules' absorption, distribution, metabolism, and excretion (ADME) effects were also assessed. The probable-binding mechanisms of these inhibitors against AR were investigated using molecular-docking simulations.


Asunto(s)
Aldehído Reductasa , Hidrazonas , Aldehído Reductasa/química , Aldehído Reductasa/metabolismo , Hidrazonas/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Benzaldehídos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA