Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(6): 1553-1565.e16, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31104841

RESUMEN

Enterovirus B (EV-B), a major proportion of the genus Enterovirus in the family Picornaviridae, is the causative agent of severe human infectious diseases. Although cellular receptors for coxsackievirus B in EV-B have been identified, receptors mediating virus entry, especially the uncoating process of echovirus and other EV-B remain obscure. Here, we found that human neonatal Fc receptor (FcRn) is the uncoating receptor for major EV-B. FcRn binds to the virus particles in the "canyon" through its FCGRT subunit. By obtaining multiple cryo-electron microscopy structures at different stages of virus entry at atomic or near-atomic resolution, we deciphered the underlying mechanisms of enterovirus attachment and uncoating. These structures revealed that different from the attachment receptor CD55, binding of FcRn to the virions induces efficient release of "pocket factor" under acidic conditions and initiates the conformational changes in viral particle, providing a structural basis for understanding the mechanisms of enterovirus entry.


Asunto(s)
Enterovirus Humano B/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/ultraestructura , Receptores Fc/metabolismo , Receptores Fc/ultraestructura , Cápside/metabolismo , Microscopía por Crioelectrón , Enterovirus , Enterovirus Humano B/patogenicidad , Infecciones por Enterovirus/metabolismo , Antígenos de Histocompatibilidad Clase I/fisiología , Humanos , Modelos Moleculares , Filogenia , Receptores Fc/fisiología , Virión , Internalización del Virus
2.
Nature ; 551(7681): 525-528, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29107940

RESUMEN

The peptide-loading complex (PLC) is a transient, multisubunit membrane complex in the endoplasmic reticulum that is essential for establishing a hierarchical immune response. The PLC coordinates peptide translocation into the endoplasmic reticulum with loading and editing of major histocompatibility complex class I (MHC-I) molecules. After final proofreading in the PLC, stable peptide-MHC-I complexes are released to the cell surface to evoke a T-cell response against infected or malignant cells. Sampling of different MHC-I allomorphs requires the precise coordination of seven different subunits in a single macromolecular assembly, including the transporter associated with antigen processing (TAP1 and TAP2, jointly referred to as TAP), the oxidoreductase ERp57, the MHC-I heterodimer, and the chaperones tapasin and calreticulin. The molecular organization of and mechanistic events that take place in the PLC are unknown owing to the heterogeneous composition and intrinsically dynamic nature of the complex. Here, we isolate human PLC from Burkitt's lymphoma cells using an engineered viral inhibitor as bait and determine the structure of native PLC by electron cryo-microscopy. Two endoplasmic reticulum-resident editing modules composed of tapasin, calreticulin, ERp57, and MHC-I are centred around TAP in a pseudo-symmetric orientation. A multivalent chaperone network within and across the editing modules establishes the proofreading function at two lateral binding platforms for MHC-I molecules. The lectin-like domain of calreticulin senses the MHC-I glycan, whereas the P domain reaches over the MHC-I peptide-binding pocket towards ERp57. This arrangement allows tapasin to facilitate peptide editing by clamping MHC-I. The translocation pathway of TAP opens out into a large endoplasmic reticulum lumenal cavity, confined by the membrane entry points of tapasin and MHC-I. Two lateral windows channel the antigenic peptides to MHC-I. Structures of PLC captured at distinct assembly states provide mechanistic insight into the recruitment and release of MHC-I. Our work defines the molecular symbiosis of an ABC transporter and an endoplasmic reticulum chaperone network in MHC-I assembly and provides insight into the onset of the adaptive immune response.


Asunto(s)
Presentación de Antígeno , Microscopía por Crioelectrón , Antígenos de Histocompatibilidad Clase I/metabolismo , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/química , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/ultraestructura , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP/química , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP/metabolismo , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP/ultraestructura , Sitios de Unión , Linfoma de Burkitt/química , Calreticulina/química , Calreticulina/metabolismo , Calreticulina/ultraestructura , Citosol/inmunología , Citosol/metabolismo , Progresión de la Enfermedad , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/ultraestructura , Humanos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/ultraestructura , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/inmunología , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/ultraestructura , Dominios Proteicos
3.
Proc Natl Acad Sci U S A ; 117(34): 20597-20606, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32788370

RESUMEN

The major histocompatibility complex class-I (MHC-I) peptide-loading complex (PLC) is a cornerstone of the human adaptive immune system, being responsible for processing antigens that allow killer T cells to distinguish between healthy and compromised cells. Based on a recent low-resolution cryo-electron microscopy (cryo-EM) structure of this large membrane-bound protein complex, we report an atomistic model of the PLC and study its conformational dynamics on the multimicrosecond time scale using all-atom molecular dynamics (MD) simulations in an explicit lipid bilayer and water environment (1.6 million atoms in total). The PLC has a layered structure, with two editing modules forming a flexible protein belt surrounding a stable, catalytically active core. Tapasin plays a central role in the PLC, stabilizing the MHC-I binding groove in a conformation reminiscent of antigen-loaded MHC-I. The MHC-I-linked glycan steers a tapasin loop involved in peptide editing toward the binding groove. Tapasin conformational dynamics are also affected by calreticulin through a conformational selection mechanism that facilitates MHC-I recruitment into the complex.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Calreticulina/metabolismo , Microscopía por Crioelectrón , Antígenos de Histocompatibilidad Clase I/ultraestructura , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/ultraestructura , Simulación de Dinámica Molecular , Polisacáridos/metabolismo , Proteína Disulfuro Isomerasas/metabolismo
4.
J Immunol ; 191(10): 5268-77, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24108697

RESUMEN

MR1-restricted mucosal-associated invariant T (MAIT) cells represent a subpopulation of αß T cells with innate-like properties and limited TCR diversity. MAIT cells are of interest because of their reactivity against bacterial and yeast species, suggesting that they play a role in defense against pathogenic microbes. Despite the advances in understanding MAIT cell biology, the molecular and structural basis behind their ability to detect MR1-Ag complexes is unclear. In this study, we present our structural and biochemical characterization of MAIT TCR engagement of MR1 presenting an Escherichia coli-derived stimulatory ligand, rRL-6-CH2OH, previously found in Salmonella typhimurium. We show a clear enhancement of MAIT TCR binding to MR1 due to the presentation of this ligand. Our structure of a MAIT TCR/MR1/rRL-6-CH2OH complex shows an evolutionarily conserved binding orientation, with a clear role for both the CDR3α and CDR3ß loops in recognizing the rRL-6-CH2OH stimulatory ligand. We also present two additional xenoreactive MAIT TCR/MR1 complexes that recapitulate the docking orientation documented previously, despite having variation in the CDR2ß and CDR3ß loop sequences. Our data support a model by which MAIT TCRs engage MR1 in a conserved fashion, with their binding affinities modulated by the nature of the MR1-presented Ag or diversity introduced by alternate Vß usage or CDR3ß sequences.


Asunto(s)
Antígenos Bacterianos/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Complejos Multiproteicos/ultraestructura , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Subgrupos de Linfocitos T/inmunología , Presentación de Antígeno/inmunología , Antígenos Bacterianos/ultraestructura , Cristalografía por Rayos X , Escherichia coli/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/ultraestructura , Humanos , Activación de Linfocitos/inmunología , Antígenos de Histocompatibilidad Menor , Unión Proteica/inmunología , Estructura Terciaria de Proteína , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/ultraestructura , Salmonella typhimurium/inmunología , Subgrupos de Linfocitos T/metabolismo
6.
Med Mol Morphol ; 44(2): 71-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21717309

RESUMEN

We investigated the origin of the apical transcytic membrane system in jejunal absorptive cells of neonatal rats using light, electron, and immunofluorescence microscopy. In rats just after birth, intraluminally injected horseradish peroxidase (HRP), used as a macromolecular tracer, was observed only in the apical endocytic membrane system including the lysosomes, of jejunal absorptive cells in vivo. No tracer, however, was found in the intercellular space between the jejunal absorptive cells and the submucosa. Immunoreactive neonatal Fc receptor (FcRn) was localized in the perinuclear region of these absorptive cells whereas immunoglobulin G (IgG) was not found in these absorptive cells. In contrast, in rats 2 h after breast-feeding, intraluminally injected HRP was observed in the apical endocytic membrane system and in the apical transcytic membrane system of the absorptive cells. Moreover, HRP was found in the intercellular space between the jejunal absorptive cells and the submucosa. Furthermore, FcRn and IgG were widely distributed throughout the absorptive cells, and IgG was detected in both the intercellular space and the submucosa. These data suggest that initiation of breast-feeding induces the transportation of membrane-incorporated FcRn from its perinuclear localization to the apical plasma membrane domain. This transportation is achieved through the membrane system, which mediates apical receptor-mediated transcytosis via the trans-Golgi network. Subsequently, the apical plasma membrane containing the FcRn binds to maternal IgG, is endocytosed into the absorptive cells, and is transported to the basolateral membrane domain.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Inmunoglobulina G , Yeyuno , Receptores Fc , Transcitosis/fisiología , Absorción , Animales , Animales Recién Nacidos , Membrana Celular/metabolismo , Femenino , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/ultraestructura , Peroxidasa de Rábano Silvestre , Inmunoglobulina G/metabolismo , Inmunoglobulina G/ultraestructura , Yeyuno/metabolismo , Yeyuno/ultraestructura , Lisosomas/metabolismo , Masculino , Especificidad de Órganos , Unión Proteica , Ratas , Ratas Wistar , Receptores Fc/metabolismo , Receptores Fc/ultraestructura , Red trans-Golgi/metabolismo
7.
Nat Commun ; 12(1): 4236, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244493

RESUMEN

The repertoire of peptides presented by major histocompatibility complex class I (MHC-I) molecules on the cell surface is tailored by the ER-resident peptide loading complex (PLC), which contains the exchange catalyst tapasin. Tapasin stabilizes MHC-I molecules and promotes the formation of stable peptide-MHC-I (pMHC-I) complexes that serve as T cell antigens. Exchange of suboptimal by high-affinity ligands is catalyzed by tapasin, but the underlying mechanism is still elusive. Here we analyze the tapasin-induced changes in MHC-I dynamics, and find the catalyst to exploit two essential features of MHC-I. First, tapasin recognizes a conserved allosteric site underneath the α2-1-helix of MHC-I, 'loosening' the MHC-I F-pocket region that accomodates the C-terminus of the peptide. Second, the scoop loop11-20 of tapasin relies on residue L18 to target the MHC-I F-pocket, enabling peptide exchange. Meanwhile, tapasin residue K16 plays an accessory role in catalysis of MHC-I allotypes bearing an acidic F-pocket. Thus, our results provide an explanation for the observed allele-specificity of catalyzed peptide exchange.


Asunto(s)
Alelos , Presentación de Antígeno/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Regulación Alostérica , Biocatálisis , Cristalografía por Rayos X , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/aislamiento & purificación , Antígenos de Histocompatibilidad Clase I/ultraestructura , Humanos , Inmunoglobulinas/metabolismo , Inmunoglobulinas/ultraestructura , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/aislamiento & purificación , Proteínas de Transporte de Membrana/ultraestructura , Simulación de Dinámica Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica en Hélice alfa , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
8.
Nat Commun ; 12(1): 3174, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039964

RESUMEN

Chaperones Tapasin and TAP-binding protein related (TAPBPR) perform the important functions of stabilizing nascent MHC-I molecules (chaperoning) and selecting high-affinity peptides in the MHC-I groove (editing). While X-ray and cryo-EM snapshots of MHC-I in complex with TAPBPR and Tapasin, respectively, have provided important insights into the peptide-deficient MHC-I groove structure, the molecular mechanism through which these chaperones influence the selection of specific amino acid sequences remains incompletely characterized. Based on structural and functional data, a loop sequence of variable lengths has been proposed to stabilize empty MHC-I molecules through direct interactions with the floor of the groove. Using deep mutagenesis on two complementary expression systems, we find that important residues for the Tapasin/TAPBPR chaperoning activity are located on a large scaffolding surface, excluding the loop. Conversely, loop mutations influence TAPBPR interactions with properly conformed MHC-I molecules, relevant for peptide editing. Detailed biophysical characterization by solution NMR, ITC and FP-based assays shows that the loop hovers above the MHC-I groove to promote the capture of incoming peptides. Our results suggest that the longer loop of TAPBPR lowers the affinity requirements for peptide selection to facilitate peptide loading under conditions and subcellular compartments of reduced ligand concentration, and to prevent disassembly of high-affinity peptide-MHC-I complexes that are transiently interrogated by TAPBPR during editing.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Antígenos/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Técnicas de Inactivación de Genes , Células HEK293 , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/aislamiento & purificación , Antígenos de Histocompatibilidad Clase I/ultraestructura , Humanos , Inmunoglobulinas/genética , Inmunoglobulinas/aislamiento & purificación , Inmunoglobulinas/ultraestructura , Ligandos , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/ultraestructura , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/ultraestructura , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Biblioteca de Péptidos , Unión Proteica/genética , Unión Proteica/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
9.
J Immunol Res ; 2021: 8280925, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34036109

RESUMEN

BACKGROUND: Candida glabrata is a human opportunistic pathogen that can cause life-threatening systemic infections. Although there are multiple effective vaccines against fungal infections and some of these vaccines are engaged in different stages of clinical trials, none of them have yet been approved by the FDA. AIM: Using immunoinformatics approach to predict the most conserved and immunogenic B- and T-cell epitopes from the fructose bisphosphate aldolase (Fba1) protein of C. glabrata. Material and Method. 13 C. glabrata fructose bisphosphate aldolase protein sequences (361 amino acids) were retrieved from NCBI and presented in several tools on the IEDB server for prediction of the most promising epitopes. Homology modeling and molecular docking were performed. RESULT: The promising B-cell epitopes were AYFKEH, VDKESLYTK, and HVDKESLYTK, while the promising peptides which have high affinity to MHC I binding were AVHEALAPI, KYFKRMAAM, QTSNGGAAY, RMAAMNQWL, and YFKEHGEPL. Two peptides, LFSSHMLDL and YIRSIAPAY, were noted to have the highest affinity to MHC class II that interact with 9 alleles. The molecular docking revealed that the epitopes QTSNGGAAY and LFSSHMLDL have the lowest binding energy to MHC molecules. CONCLUSION: The epitope-based vaccines predicted by using immunoinformatics tools have remarkable advantages over the conventional vaccines in that they are more specific, less time consuming, safe, less allergic, and more antigenic. Further in vivo and in vitro experiments are needed to prove the effectiveness of the best candidate's epitopes (QTSNGGAAY and LFSSHMLDL). To the best of our knowledge, this is the first study that has predicted B- and T-cell epitopes from the Fba1 protein by using in silico tools in order to design an effective epitope-based vaccine against C. glabrata.


Asunto(s)
Candida glabrata/inmunología , Candidiasis/terapia , Fructosa-Bifosfato Aldolasa/inmunología , Proteínas Fúngicas/inmunología , Vacunas Fúngicas/inmunología , Secuencia de Aminoácidos/genética , Candida glabrata/enzimología , Candida glabrata/genética , Candidiasis/inmunología , Candidiasis/microbiología , Biología Computacional , Secuencia Conservada/genética , Secuencia Conservada/inmunología , Diseño de Fármacos , Mapeo Epitopo/métodos , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vacunas Fúngicas/administración & dosificación , Vacunas Fúngicas/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/ultraestructura , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/ultraestructura , Humanos , Inmunogenicidad Vacunal/genética , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología
11.
Biophys J ; 95(10): 4963-71, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18708454

RESUMEN

Gaining insights into the dynamic processes of molecular interactions that mediate cell-substrate and cell-cell adhesion is of great significance in the understanding of numerous physiological processes driven by intercellular communication. Here, an acoustic-wave biosensor is used to study and characterize specific interactions between cell-bound membrane proteins and surface-immobilized ligands, using as a model system the binding of major histocompatibility complex class I HLA-A2 proteins to anti-HLA-A2 monoclonal antibodies. The energy of the acoustic signal, measured as amplitude change, was found to depend directly on the number of HLA-A2/antibody complexes formed on the device surface. Real-time acoustic data were used to monitor the surface binding of cell suspensions at a range of 6.0 x 10(4) to 6.0 x 10(5) cells mL(-1). Membrane interactions are governed by two-dimensional chemistry because of the molecules' confinement to the lipid bilayer. The two-dimensional kinetics and affinity constant of the HLA-A2/antibody interaction were calculated (k(a) = 1.15 x 10(-5) mum(2) s(-1) per molecule, k(d) = 2.07 x 10(-5) s(-1), and K(A) = 0.556 mum(2) per molecule, at 25 degrees C), based on a detailed acoustic data analysis. Results indicate that acoustic biosensors can emerge as a significant tool for probing and characterizing cell-membrane interactions in the immune system, and for fast and label-free screening of membrane molecules using whole cells.


Asunto(s)
Acústica/instrumentación , Anticuerpos Monoclonales/química , Antígenos de Histocompatibilidad Clase I/química , Inmunoensayo/instrumentación , Mapeo de Interacción de Proteínas/instrumentación , Anticuerpos Monoclonales/inmunología , Diseño de Equipo , Análisis de Falla de Equipo , Antígenos de Histocompatibilidad Clase I/ultraestructura , Humanos , Células K562 , Unión Proteica
12.
Science ; 358(6366): 1064-1068, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29025991

RESUMEN

Central to CD8+ T cell-mediated immunity is the recognition of peptide-major histocompatibility complex class I (p-MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein-related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of key binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I/química , Inmunoglobulinas/química , Proteínas de la Membrana/química , Microglobulina beta-2/química , Cristalografía por Rayos X , Antígenos de Histocompatibilidad Clase I/ultraestructura , Humanos , Inmunoglobulinas/ultraestructura , Proteínas de la Membrana/ultraestructura , Péptidos/química , Conformación Proteica , Resonancia por Plasmón de Superficie , Microglobulina beta-2/ultraestructura
13.
Science ; 358(6366): 1060-1064, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29025996

RESUMEN

Adaptive immunity is shaped by a selection of peptides presented on major histocompatibility complex class I (MHC I) molecules. The chaperones Tapasin (Tsn) and TAP-binding protein-related (TAPBPR) facilitate MHC I peptide loading and high-affinity epitope selection. Despite the pivotal role of Tsn and TAPBPR in controlling the hierarchical immune response, their catalytic mechanism remains unknown. Here, we present the x-ray structure of the TAPBPR-MHC I complex, which delineates the central step of catalysis. TAPBPR functions as peptide selector by remodeling the MHC I α2-1-helix region, stabilizing the empty binding groove, and inserting a loop into the groove that interferes with peptide binding. The complex explains how mutations in MHC I-specific chaperones cause defects in antigen processing and suggests a unifying mechanism of peptide proofreading.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Inmunoglobulinas/química , Proteínas de la Membrana/química , Microglobulina beta-2/química , Biocatálisis , Cristalografía por Rayos X , Antígenos de Histocompatibilidad Clase I/ultraestructura , Humanos , Inmunoglobulinas/ultraestructura , Proteínas de la Membrana/ultraestructura , Péptidos/química , Conformación Proteica , Microglobulina beta-2/ultraestructura
14.
Crit Rev Immunol ; 14(1): 1-27, 1994.
Artículo en Inglés | MEDLINE | ID: mdl-7741975

RESUMEN

The T region of the mouse major histocompatibility complex (MHC) encodes a relatively large number of nonclassical or nonpolymorphic class I genes. In BALB/c mice, at least five of these genes are likely to encode a functional class I gene product. Some of these T region products are ubiquitously expressed, while others are expressed by just a few tissues. In the second category, the thymus leukemia (TL) antigen, which is encoded in the T region by T3 and T18 genes, is expressed primarily by intestinal epithelial cells and thymocytes. Inspection of the sequences of the alpha 1 and alpha 2 domains, which could encode a peptide binding site in these molecules, indicates that in several cases conserved amino acids important for peptide binding by classical class I molecules are present, suggesting that these nonclassical class I molecules can bind nonamer peptides. On the other hand, analysis of the sequence of the T10d gene product suggests that it can not bind nonamer peptides in a fashion similar to classical class I molecules. Although there are so far no examples of the recognition of defined peptides in the context of T region gene products, there are several examples of T cell recognition of these class I molecules. Both alpha beta and gamma delta T cell receptors are involved in this recognition. Transgenic mice that over express the TL antigen show a variety of abnormalities in thymocyte differentiation and function, providing some support for the hypothesis that this nonclassical class I molecule plays a role in T-cell differentiation. Despite this, the most likely function for T region encoded and other nonclassical class I gene products is a specialized antigen presenting function, perhaps in restricted anatomic sites or to specialized T-cell populations.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Secuencia de Aminoácidos , Animales , Genes MHC Clase I , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/ultraestructura , Complejo Mayor de Histocompatibilidad/genética , Ratones , Ratones Endogámicos , Datos de Secuencia Molecular
15.
Int Rev Immunol ; 13(3): 173-85, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-8782740

RESUMEN

Elucidation of the structure of MHC molecules has provided profound new insights into their function in antigen presentation. In addition, structural studies have implicated certain regions of MHC molecules in specific functions. Although much of MHC biology has concentrated on the extensive polymorphism among these molecules, there is also evolutionary pressure to maintain the relatively monomorphic portions of these molecules. Drs. Krensky and Clayberger have found that synthetic peptides corresponding to linear sequences of HLA molecules have immunomodulatory effects both in vitro and in vivo. In this paper, they review the structure of HLA molecules and their studies of HLA derived peptides as novel immunotherapeutics. Members of the heat shock protein 70 family are implicated in the HLA derived peptide immunosuppressive pathway.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase II/química , Antígenos de Histocompatibilidad Clase II/ultraestructura , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/ultraestructura , Tolerancia Inmunológica , Péptidos/inmunología , Alelos , Proteínas HSP70 de Choque Térmico/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Inmunoterapia , Modelos Moleculares , Estructura Molecular , Péptidos/uso terapéutico , Unión Proteica , Linfocitos T/inmunología , Transcripción Genética
16.
APMIS ; 102(4): 241-8, 1994 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-7516671

RESUMEN

CD4+ T lymphocytes recognize peptide fragments of antigens that lie in the antigen binding pocket of class II major histocompatibility complex (MHC) molecules expressed on antigen-presenting cells. Specificity of T cells is determined by structural features of both the MHC molecule and antigenic peptide. MHC class II amino acid sequences are highly polymorphic within a population, and correlate with individual differences in response to infectious agents, vaccines, tumour antigens, and autoantigens. In the last few years several important breakthroughs and technological advances have made it possible to clarify the role of polymorphism and the molecular events in peptide interaction with major histocompatibility complex (MHC) class II proteins. The X-ray structural analysis of a MHC class II molecule together with the use of peptide libraries has permitted determination of the structural features of the complex between peptide antigen fragments and MHC class II proteins. The purpose of this article is to review our own studies and those of others on the requirements for peptide-class II molecule interaction and discuss possible implications for active immune intervention.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Antígenos HLA-D/metabolismo , Péptidos/inmunología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Epítopos , Antígenos HLA-D/ultraestructura , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/ultraestructura , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Linfocitos T/inmunología
17.
Eur J Immunol ; 36(11): 2875-84, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17072917

RESUMEN

In vitro studies have shown that soluble MHC (sMHC) released by cell lines is bound to nano-vesicles termed exosomes. It is thought that exosomes may represent the major reservoir of sMHC class I and II molecules in biological fluids. However, most studies have been confined to in vitro assays performed with cell lines. We show here that sMHC in the serum or plasma differs from exosome-bound sMHC in five ways: In contrast to exosome-associated sMHC, circulating sMHC is of low density, has a low apparent molecular mass (40-300 kDa) and is not detergent-labile. Moreover, the majority of MHC class II isoforms and MHC class I in blood are not physically linked and circulating HLA-DR is accessible to an antibody specific for the HLA-DR alpha-chain intracellular epitope, which is masked by its association with cellular or exosomal membranes. Finally, utilizing transcriptional activator of murine MHC class II (C2ta) promoter-mutant mice, we showed that the release of sMHC class II into the circulation is dependent on the C2ta pI promoter, but not pIII or pIV. This suggests that myeloid dendritic cells and/or macrophages, which preferentially use promoter pI of the C2ta gene, produce most of the sMHC class II found in the circulation.


Asunto(s)
Antígenos HLA-DR/sangre , Antígenos HLA-DR/metabolismo , Antígenos de Histocompatibilidad Clase I/sangre , Animales , Anticuerpos Monoclonales/inmunología , Línea Celular , Citoplasma/inmunología , Ensayo de Inmunoadsorción Enzimática , Antígenos HLA-DR/ultraestructura , Antígenos de Histocompatibilidad Clase I/ultraestructura , Humanos , Complejo Mayor de Histocompatibilidad , Ratones , Ratones Mutantes , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , Transporte de Proteínas , Solubilidad , Transactivadores/genética
18.
Proc Natl Acad Sci U S A ; 94(14): 7269-74, 1997 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-9207080

RESUMEN

Major histocompatibility complex (MHC) class II molecules displayed clustered patterns at the surfaces of T (HUT-102B2) and B (JY) lymphoma cells characterized by interreceptor distances in the micrometer range as detected by scanning force microscopy of immunogold-labeled antigens. Electron microscopy revealed that a fraction of the MHC class II molecules was also heteroclustered with MHC class I antigens at the same hierarchical level as described by the scanning force microscopy data, after specifically and sequentially labeling the antigens with 30- and 15-nm immunogold beads. On JY cells the estimated fraction of co-clustered HLA II was 0.61, whereas that of the HLA I was 0.24. Clusterization of the antigens was detected by the deviation of their spatial distribution from the Poissonian distribution representing the random case. Fluorescence resonance energy transfer measurements also confirmed partial co-clustering of the HLA class I and II molecules at another hierarchical level characterized by the 2- to 10-nm Förster distance range and providing fine details of the molecular organization of receptors. The larger-scale topological organization of the MHC class I and II antigens may reflect underlying membrane lipid domains and may fulfill significant functions in cell-to-cell contacts and signal transduction.


Asunto(s)
Membrana Celular/inmunología , Antígenos de Histocompatibilidad Clase II/análisis , Antígenos de Histocompatibilidad Clase I/análisis , Linfocitos/inmunología , Membrana Celular/ultraestructura , Antígenos de Histocompatibilidad Clase I/ultraestructura , Antígenos de Histocompatibilidad Clase II/ultraestructura , Humanos , Linfocitos/ultraestructura , Microscopía Electrónica , Células Tumorales Cultivadas
19.
Virology ; 229(1): 295-301, 1997 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-9123874

RESUMEN

We have recently reported that HIV-1 Net down-regulates the cell surface expression of major histocompatibility complex class I (MHC-I) molecules. MHC-I molecules are one of the predominant cellular proteins associated with HIV-1 virions. Wild-type or nef-mutated HIV-1 virions were analyzed by immunoelectronic microscopy and Western blot for particle-associated MHC-I molecules. The number of MHC-I molecules was significantly higher in HIV-1 virions produced in the absence of Nef than in wild-type virions, indicating that Nef affects the incorporation of MHC-I molecules into virions. Wild-type HIV particles have been shown to be more infectious than Nef- viruses. This difference was maintained when Nef+ and Nef virions devoid of MHC-I molecules were produced in Daudi-CD4 cells. Therefore, the enhancement of virion infectivity and the down-regulation of MHC-I represent independent biological properties of Nef.


Asunto(s)
Productos del Gen nef/fisiología , VIH-1/genética , Antígenos de Histocompatibilidad Clase I/fisiología , Virión/fisiología , Regulación hacia Abajo , VIH-1/fisiología , Células HeLa , Antígenos de Histocompatibilidad Clase I/ultraestructura , Humanos , Microscopía Inmunoelectrónica , Virión/ultraestructura , Virulencia/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana
20.
Immunogenetics ; 36(3): 166-74, 1992.
Artículo en Inglés | MEDLINE | ID: mdl-1612650

RESUMEN

The polymerase chain reaction was used to isolate clones with class I major histocompatibility complex sequences from fish (carp), amphibian (axolotl), and two species of reptile (lizard and snake). The lizard and snake clones were used to isolate class I cDNA clones. All the sequences showed the expected evolutionary relatedness. The carp and axolotl clones and one lizard cDNA clone lacked the first cysteine in the alpha 3 domain which in other class I heavy chains forms an intradomain disulfide bond. A small number of amino acid residues are conserved in the class I heavy chain sequences from all five classes of vertebrates. In the first two domains they are symmetrically clustered and contribute to intra- and interdomain contacts. None of these invariant residues are at peptide-binding, T-cell receptor-interacting, or CD8-binding positions.


Asunto(s)
Genes MHC Clase I , Antígenos de Histocompatibilidad Clase I/genética , Complejo Mayor de Histocompatibilidad , Reptiles/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Evolución Biológica , ADN/genética , Antígenos de Histocompatibilidad Clase I/ultraestructura , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/química , Reacción en Cadena de la Polimerasa , Conformación Proteica , Reptiles/inmunología , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA