Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.583
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(19): 5053-5069.e23, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34390642

RESUMEN

Genetic perturbations of cortical development can lead to neurodevelopmental disease, including autism spectrum disorder (ASD). To identify genomic regions crucial to corticogenesis, we mapped the activity of gene-regulatory elements generating a single-cell atlas of gene expression and chromatin accessibility both independently and jointly. This revealed waves of gene regulation by key transcription factors (TFs) across a nearly continuous differentiation trajectory, distinguished the expression programs of glial lineages, and identified lineage-determining TFs that exhibited strong correlation between linked gene-regulatory elements and expression levels. These highly connected genes adopted an active chromatin state in early differentiating cells, consistent with lineage commitment. Base-pair-resolution neural network models identified strong cell-type-specific enrichment of noncoding mutations predicted to be disruptive in a cohort of ASD individuals and identified frequently disrupted TF binding sites. This approach illustrates how cell-type-specific mapping can provide insights into the programs governing human development and disease.


Asunto(s)
Corteza Cerebral/embriología , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Análisis de la Célula Individual , Astrocitos/citología , Diferenciación Celular , Linaje de la Célula/genética , Análisis por Conglomerados , Aprendizaje Profundo , Epigénesis Genética , Lógica Difusa , Glutamatos/metabolismo , Humanos , Mutación/genética , Neuronas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética
2.
Cell ; 184(21): 5465-5481.e16, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34582787

RESUMEN

In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo.


Asunto(s)
Astrocitos/citología , Diferenciación Celular , Linaje de la Célula , Neuronas/citología , Animales , Astrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/patología , Lesiones Encefálicas/patología , Línea Celular Tumoral , Reprogramación Celular , Dependovirus/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica , Genes Reporteros , Proteína Ácida Fibrilar de la Glía/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Integrasas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo
3.
Cell ; 178(1): 27-43.e19, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31230713

RESUMEN

When a behavior repeatedly fails to achieve its goal, animals often give up and become passive, which can be strategic for preserving energy or regrouping between attempts. It is unknown how the brain identifies behavioral failures and mediates this behavioral-state switch. In larval zebrafish swimming in virtual reality, visual feedback can be withheld so that swim attempts fail to trigger expected visual flow. After tens of seconds of such motor futility, animals became passive for similar durations. Whole-brain calcium imaging revealed noradrenergic neurons that responded specifically to failed swim attempts and radial astrocytes whose calcium levels accumulated with increasing numbers of failed attempts. Using cell ablation and optogenetic or chemogenetic activation, we found that noradrenergic neurons progressively activated brainstem radial astrocytes, which then suppressed swimming. Thus, radial astrocytes perform a computation critical for behavior: they accumulate evidence that current actions are ineffective and consequently drive changes in behavioral states. VIDEO ABSTRACT.


Asunto(s)
Astrocitos/metabolismo , Conducta Animal/fisiología , Larva/fisiología , Pez Cebra/fisiología , Neuronas Adrenérgicas/metabolismo , Animales , Animales Modificados Genéticamente/fisiología , Astrocitos/citología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Calcio/metabolismo , Comunicación Celular/fisiología , Retroalimentación Sensorial/fisiología , Neuronas GABAérgicas/metabolismo , Potenciales de la Membrana/fisiología , Optogenética , Natación/fisiología
4.
Cell ; 174(1): 59-71.e14, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29804835

RESUMEN

Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments.


Asunto(s)
Potenciación a Largo Plazo , Memoria , Neuronas/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Calcio/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Hipocampo/citología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Optogenética , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/metabolismo , Estrés Psicológico , Potenciales Sinápticos/efectos de los fármacos
5.
Cell ; 175(5): 1228-1243.e20, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30392959

RESUMEN

Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.


Asunto(s)
Adenina/análogos & derivados , Neoplasias Encefálicas/patología , Metilación de ADN , Glioblastoma/patología , Adenina/análisis , Adenina/química , Adulto , Anciano , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/antagonistas & inhibidores , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Hipoxia de la Célula , Niño , Epigenómica , Femenino , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
6.
Annu Rev Cell Dev Biol ; 35: 591-613, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31299172

RESUMEN

The vertebrate vasculature displays high organotypic specialization, with the structure and function of blood vessels catering to the specific needs of each tissue. A unique feature of the central nervous system (CNS) vasculature is the blood-brain barrier (BBB). The BBB regulates substance influx and efflux to maintain a homeostatic environment for proper brain function. Here, we review the development and cell biology of the BBB, focusing on the cellular and molecular regulation of barrier formation and the maintenance of the BBB through adulthood. We summarize unique features of CNS endothelial cells and highlight recent progress in and general principles of barrier regulation. Finally, we illustrate why a mechanistic understanding of the development and maintenance of the BBB could provide novel therapeutic opportunities for CNS drug delivery.


Asunto(s)
Transporte Biológico/fisiología , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/crecimiento & desarrollo , Sistema Nervioso Central/citología , Células Endoteliales/citología , Animales , Astrocitos/citología , Membrana Basal/citología , Membrana Basal/metabolismo , Transporte Biológico/genética , Barrera Hematoencefálica/metabolismo , Encéfalo/citología , Encéfalo/fisiología , Sistema Nervioso Central/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Homeostasis , Humanos , Leucocitos , Acoplamiento Neurovascular/fisiología , Pericitos/citología , Uniones Estrechas , Transcitosis/fisiología , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
7.
Nature ; 627(8003): 374-381, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326616

RESUMEN

Memory encodes past experiences, thereby enabling future plans. The basolateral amygdala is a centre of salience networks that underlie emotional experiences and thus has a key role in long-term fear memory formation1. Here we used spatial and single-cell transcriptomics to illuminate the cellular and molecular architecture of the role of the basolateral amygdala in long-term memory. We identified transcriptional signatures in subpopulations of neurons and astrocytes that were memory-specific and persisted for weeks. These transcriptional signatures implicate neuropeptide and BDNF signalling, MAPK and CREB activation, ubiquitination pathways, and synaptic connectivity as key components of long-term memory. Notably, upon long-term memory formation, a neuronal subpopulation defined by increased Penk and decreased Tac expression constituted the most prominent component of the memory engram of the basolateral amygdala. These transcriptional changes were observed both with single-cell RNA sequencing and with single-molecule spatial transcriptomics in intact slices, thereby providing a rich spatial map of a memory engram. The spatial data enabled us to determine that this neuronal subpopulation interacts with adjacent astrocytes, and functional experiments show that neurons require interactions with astrocytes to encode long-term memory.


Asunto(s)
Astrocitos , Comunicación Celular , Perfilación de la Expresión Génica , Memoria a Largo Plazo , Neuronas , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/fisiología , Complejo Nuclear Basolateral/citología , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Memoria a Largo Plazo/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Análisis de Secuencia de ARN , Imagen Individual de Molécula , Análisis de Expresión Génica de una Sola Célula , Ubiquitinación
8.
Nature ; 629(8010): 146-153, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632406

RESUMEN

Astrocytes, the most abundant non-neuronal cell type in the mammalian brain, are crucial circuit components that respond to and modulate neuronal activity through calcium (Ca2+) signalling1-7. Astrocyte Ca2+ activity is highly heterogeneous and occurs across multiple spatiotemporal scales-from fast, subcellular activity3,4 to slow, synchronized activity across connected astrocyte networks8-10-to influence many processes5,7,11. However, the inputs that drive astrocyte network dynamics remain unclear. Here we used ex vivo and in vivo two-photon astrocyte imaging while mimicking neuronal neurotransmitter inputs at multiple spatiotemporal scales. We find that brief, subcellular inputs of GABA and glutamate lead to widespread, long-lasting astrocyte Ca2+ responses beyond an individual stimulated cell. Further, we find that a key subset of Ca2+ activity-propagative activity-differentiates astrocyte network responses to these two main neurotransmitters, and may influence responses to future inputs. Together, our results demonstrate that local, transient neurotransmitter inputs are encoded by broad cortical astrocyte networks over a minutes-long time course, contributing to accumulating evidence that substantial astrocyte-neuron communication occurs across slow, network-level spatiotemporal scales12-14. These findings will enable future studies to investigate the link between specific astrocyte Ca2+ activity and specific functional outputs, which could build a consistent framework for astrocytic modulation of neuronal activity.


Asunto(s)
Astrocitos , Corteza Cerebral , Ácido Glutámico , Red Nerviosa , Neurotransmisores , Ácido gamma-Aminobutírico , Animales , Femenino , Masculino , Ratones , Astrocitos/metabolismo , Astrocitos/citología , Calcio/metabolismo , Señalización del Calcio , Comunicación Celular , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácido Glutámico/metabolismo , Ratones Endogámicos C57BL , Red Nerviosa/citología , Red Nerviosa/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Factores de Tiempo
9.
Nature ; 626(7999): 574-582, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086421

RESUMEN

The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.


Asunto(s)
Astrocitos , Neuroprotección , Adenilil Ciclasas/metabolismo , Astrocitos/citología , Astrocitos/enzimología , Astrocitos/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Supervivencia Celular , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Microglía/metabolismo , Microglía/patología , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/terapia , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Glaucoma/patología , Glaucoma/terapia
10.
Nature ; 627(8004): 604-611, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448582

RESUMEN

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Asunto(s)
Envejecimiento , Astrocitos , Neuronas , Corteza Prefrontal , Esquizofrenia , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Persona de Mediana Edad , Adulto Joven , Envejecimiento/metabolismo , Envejecimiento/patología , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/patología , Colesterol/metabolismo , Cognición , Neuronas GABAérgicas/metabolismo , Predisposición Genética a la Enfermedad , Glutamina/metabolismo , Salud , Individualidad , Inhibición Neural , Plasticidad Neuronal , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología , Análisis de Expresión Génica de una Sola Célula , Sinapsis/genética , Sinapsis/metabolismo , Sinapsis/patología , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
11.
Nat Immunol ; 18(6): 633-641, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28459434

RESUMEN

Microglia and other tissue-resident macrophages within the central nervous system (CNS) have essential roles in neural development, inflammation and homeostasis. However, the molecular pathways underlying their development and function remain poorly understood. Here we report that mice deficient in NRROS, a myeloid-expressed transmembrane protein in the endoplasmic reticulum, develop spontaneous neurological disorders. NRROS-deficient (Nrros-/-) mice show defects in motor functions and die before 6 months of age. Nrros-/- mice display astrogliosis and lack normal CD11bhiCD45lo microglia, but they show no detectable demyelination or neuronal loss. Instead, perivascular macrophage-like myeloid cells populate the Nrros-/- CNS. Cx3cr1-driven deletion of Nrros shows its crucial role in microglial establishment during early embryonic stages. NRROS is required for normal expression of Sall1 and other microglial genes that are important for microglial development and function. Our study reveals a NRROS-mediated pathway that controls CNS-resident macrophage development and affects neurological function.


Asunto(s)
Astrocitos/metabolismo , Sistema Nervioso Central/embriología , Regulación del Desarrollo de la Expresión Génica , Microglía/metabolismo , Células Mieloides/metabolismo , Enfermedades del Sistema Nervioso/genética , Proteínas/genética , Animales , Astrocitos/citología , Western Blotting , Sistema Nervioso Central/citología , Citometría de Flujo , Inmunohistoquímica , Cojera Animal/genética , Proteínas de Unión a TGF-beta Latente , Locomoción , Macrófagos/citología , Macrófagos/metabolismo , Proteínas de la Membrana , Ratones , Ratones Noqueados , Microglía/citología , Células Mieloides/citología , Postura , Factores de Transcripción/genética , Incontinencia Urinaria/genética , Retención Urinaria/genética
12.
Nature ; 617(7960): 369-376, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100909

RESUMEN

Communication between neurons and glia has an important role in establishing and maintaining higher-order brain function1. Astrocytes are endowed with complex morphologies, placing their peripheral processes in close proximity to neuronal synapses and directly contributing to their regulation of brain circuits2-4. Recent studies have shown that excitatory neuronal activity promotes oligodendrocyte differentiation5-7; whether inhibitory neurotransmission regulates astrocyte morphogenesis during development is unclear. Here we show that inhibitory neuron activity is necessary and sufficient for astrocyte morphogenesis. We found that input from inhibitory neurons functions through astrocytic GABAB receptor (GABABR) and that its deletion in astrocytes results in a loss of morphological complexity across a host of brain regions and disruption of circuit function. Expression of GABABR in developing astrocytes is regulated in a region-specific manner by SOX9 or NFIA and deletion of these transcription factors results in region-specific defects in astrocyte morphogenesis, which is conferred by interactions with transcription factors exhibiting region-restricted patterns of expression. Together, our studies identify input from inhibitory neurons and astrocytic GABABR as universal regulators of morphogenesis, while further revealing a combinatorial code of region-specific transcriptional dependencies for astrocyte development that is intertwined with activity-dependent processes.


Asunto(s)
Astrocitos , Forma de la Célula , Inhibición Neural , Neuronas , Receptores de GABA-B , Astrocitos/citología , Astrocitos/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Receptores de GABA-B/metabolismo , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción NFI/metabolismo , Regulación de la Expresión Génica
13.
Nature ; 622(7981): 120-129, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37674083

RESUMEN

Multimodal astrocyte-neuron communications govern brain circuitry assembly and function1. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity2,3 of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions4-7. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca2+-dependent exocytosis similar to neurons8-10. However, the existence of this mechanism has been questioned11-13 owing to inconsistent data14-17 and a lack of direct supporting evidence. Here we revisited the astrocyte glutamate exocytosis hypothesis by considering the emerging molecular heterogeneity of astrocytes18-21 and using molecular, bioinformatic and imaging approaches, together with cell-specific genetic tools that interfere with glutamate exocytosis in vivo. By analysing existing single-cell RNA-sequencing databases and our patch-seq data, we identified nine molecularly distinct clusters of hippocampal astrocytes, among which we found a notable subpopulation that selectively expressed synaptic-like glutamate-release machinery and localized to discrete hippocampal sites. Using GluSnFR-based glutamate imaging22 in situ and in vivo, we identified a corresponding astrocyte subgroup that responds reliably to astrocyte-selective stimulations with subsecond glutamate release events at spatially precise hotspots, which were suppressed by astrocyte-targeted deletion of vesicular glutamate transporter 1 (VGLUT1). Furthermore, deletion of this transporter or its isoform VGLUT2 revealed specific contributions of glutamatergic astrocytes in cortico-hippocampal and nigrostriatal circuits during normal behaviour and pathological processes. By uncovering this atypical subpopulation of specialized astrocytes in the adult brain, we provide insights into the complex roles of astrocytes in central nervous system (CNS) physiology and diseases, and identify a potential therapeutic target.


Asunto(s)
Astrocitos , Sistema Nervioso Central , Ácido Glutámico , Transducción de Señal , Adulto , Humanos , Astrocitos/clasificación , Astrocitos/citología , Astrocitos/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Neuronas/metabolismo , Transmisión Sináptica , Calcio/metabolismo , Exocitosis , Análisis de Expresión Génica de una Sola Célula , Proteína 1 de Transporte Vesicular de Glutamato/deficiencia , Proteína 1 de Transporte Vesicular de Glutamato/genética , Eliminación de Gen , Corteza Cerebral/citología , Corteza Cerebral/metabolismo
14.
Immunity ; 50(2): 317-333.e6, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30683620

RESUMEN

Interleukin-1 (IL-1) signaling is important for multiple potentially pathogenic processes in the central nervous system (CNS), but the cell-type-specific roles of IL-1 signaling are unclear. We used a genetic knockin reporter system in mice to track and reciprocally delete or express IL-1 receptor 1 (IL-1R1) in specific cell types, including endothelial cells, ventricular cells, peripheral myeloid cells, microglia, astrocytes, and neurons. We found that endothelial IL-1R1 was necessary and sufficient for mediating sickness behavior and drove leukocyte recruitment to the CNS and impaired neurogenesis, whereas ventricular IL-1R1 was critical for monocyte recruitment to the CNS. Although microglia did not express IL-1R1, IL-1 stimulation of endothelial cells led to the induction of IL-1 in microglia. Together, these findings describe the structure and functions of the brain's IL-1R1-expressing system and lay a foundation for the dissection and identification of IL-1R1 signaling pathways in the pathogenesis of CNS diseases.


Asunto(s)
Encéfalo/inmunología , Neuroinmunomodulación/inmunología , Receptores Tipo I de Interleucina-1/inmunología , Transducción de Señal/inmunología , Animales , Astrocitos/citología , Astrocitos/inmunología , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Línea Celular , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Interleucina-1/farmacología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/citología , Microglía/inmunología , Microglía/metabolismo , Neuroinmunomodulación/genética , Neuronas/citología , Neuronas/inmunología , Neuronas/metabolismo , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Transducción de Señal/genética
15.
Nature ; 592(7854): 421-427, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731928

RESUMEN

Among primates, humans display a unique trajectory of development that is responsible for the many traits specific to our species. However, the inaccessibility of primary human and chimpanzee tissues has limited our ability to study human evolution. Comparative in vitro approaches using primate-derived induced pluripotent stem cells have begun to reveal species differences on the cellular and molecular levels1,2. In particular, brain organoids have emerged as a promising platform to study primate neural development in vitro3-5, although cross-species comparisons of organoids are complicated by differences in developmental timing and variability of differentiation6,7. Here we develop a new platform to address these limitations by fusing human and chimpanzee induced pluripotent stem cells to generate a panel of tetraploid hybrid stem cells. We applied this approach to study species divergence in cerebral cortical development by differentiating these cells into neural organoids. We found that hybrid organoids provide a controlled system for disentangling cis- and trans-acting gene-expression divergence across cell types and developmental stages, revealing a signature of selection on astrocyte-related genes. In addition, we identified an upregulation of the human somatostatin receptor 2 gene (SSTR2), which regulates neuronal calcium signalling and is associated with neuropsychiatric disorders8,9. We reveal a human-specific response to modulation of SSTR2 function in cortical neurons, underscoring the potential of this platform for elucidating the molecular basis of human evolution.


Asunto(s)
Fusión Celular , Regulación del Desarrollo de la Expresión Génica , Células Híbridas/citología , Células Madre Pluripotentes Inducidas/citología , Neurogénesis/genética , Alelos , Animales , Astrocitos/citología , Señalización del Calcio , Corteza Cerebral/citología , Femenino , Humanos , Masculino , Neuronas/citología , Organoides/citología , Pan troglodytes/genética , Receptores de Somatostatina/genética , Reproducibilidad de los Resultados , Transcripción Genética
16.
Nature ; 590(7847): 612-617, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33361813

RESUMEN

In the adult hippocampus, synapses are constantly formed and eliminated1,2. However, the exact function of synapse elimination in the adult brain, and how it is regulated, are largely unknown. Here we show that astrocytic phagocytosis3 is important for maintaining proper hippocampal synaptic connectivity and plasticity. By using fluorescent phagocytosis reporters, we find that excitatory and inhibitory synapses are eliminated by glial phagocytosis in the CA1 region of the adult mouse hippocampus. Unexpectedly, we found that astrocytes have a major role in the neuronal activity-dependent elimination of excitatory synapses. Furthermore, mice in which astrocytes lack the phagocytic receptor MEGF10 show a reduction in the elimination of excitatory synapses; as a result, excessive but functionally impaired synapses accumulate. Finally, Megf10-knockout mice show defective long-term synaptic plasticity and impaired formation of hippocampal memories. Together, our data provide strong evidence that astrocytes eliminate unnecessary excitatory synaptic connections in the adult hippocampus through MEGF10, and that this astrocytic function is crucial for maintaining circuit connectivity and thereby supporting cognitive function.


Asunto(s)
Envejecimiento , Astrocitos/citología , Región CA1 Hipocampal/citología , Homeostasis , Vías Nerviosas , Fagocitosis , Sinapsis/metabolismo , Animales , Potenciales Postsinápticos Excitadores , Femenino , Potenciales Postsinápticos Inhibidores , Masculino , Proteínas de la Membrana/metabolismo , Memoria/fisiología , Ratones , Plasticidad Neuronal/fisiología
17.
Proc Natl Acad Sci U S A ; 121(28): e2317711121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968101

RESUMEN

Adult neural stem cells (NSCs) reside in the dentate gyrus of the hippocampus, and their capacity to generate neurons and glia plays a role in learning and memory. In addition, neurodegenerative diseases are known to be caused by a loss of neurons and glial cells, resulting in a need to better understand stem cell fate commitment processes. We previously showed that NSC fate commitment toward a neuronal or glial lineage is strongly influenced by extracellular matrix stiffness, a property of elastic materials. However, tissues in vivo are not purely elastic and have varying degrees of viscous character. Relatively little is known about how the viscoelastic properties of the substrate impact NSC fate commitment. Here, we introduce a polyacrylamide-based cell culture platform that incorporates mismatched DNA oligonucleotide-based cross-links as well as covalent cross-links. This platform allows for tunable viscous stress relaxation properties via variation in the number of mismatched base pairs. We find that NSCs exhibit increased astrocytic differentiation as the degree of stress relaxation is increased. Furthermore, culturing NSCs on increasingly stress-relaxing substrates impacts cytoskeletal dynamics by decreasing intracellular actin flow rates and stimulating cyclic activation of the mechanosensitive protein RhoA. Additionally, inhibition of motor-clutch model components such as myosin II and focal adhesion kinase partially or completely reverts cells to lineage distributions observed on elastic substrates. Collectively, our results introduce a unique system for controlling matrix stress relaxation properties and offer insight into how NSCs integrate viscoelastic cues to direct fate commitment.


Asunto(s)
Diferenciación Celular , Células-Madre Neurales , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Animales , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/fisiología , Ratones , Resinas Acrílicas/química , Proteína de Unión al GTP rhoA/metabolismo , Células Cultivadas , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/citología , Matriz Extracelular/metabolismo , Estrés Mecánico
18.
J Cell Sci ; 137(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38639242

RESUMEN

WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of ß1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Astrocitos , Diferenciación Celular , Corteza Cerebral , Proteínas Señalizadoras YAP , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Astrocitos/metabolismo , Astrocitos/citología , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteínas Señalizadoras YAP/metabolismo
19.
J Cell Sci ; 137(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38813860

RESUMEN

WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of ß1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Astrocitos , Diferenciación Celular , Proliferación Celular , Células-Madre Neurales , Transducción de Señal , Transactivadores , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Animales , Astrocitos/metabolismo , Astrocitos/citología , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Morfogenéticas Óseas/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Proteínas Serina-Treonina Quinasas
20.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39129363

RESUMEN

Understanding the intracellular dynamics of brain cells entails performing three-dimensional molecular simulations incorporating ultrastructural models that can capture cellular membrane geometries at nanometer scales. While there is an abundance of neuronal morphologies available online, e.g. from NeuroMorpho.Org, converting those fairly abstract point-and-diameter representations into geometrically realistic and simulation-ready, i.e. watertight, manifolds is challenging. Many neuronal mesh reconstruction methods have been proposed; however, their resulting meshes are either biologically unplausible or non-watertight. We present an effective and unconditionally robust method capable of generating geometrically realistic and watertight surface manifolds of spiny cortical neurons from their morphological descriptions. The robustness of our method is assessed based on a mixed dataset of cortical neurons with a wide variety of morphological classes. The implementation is seamlessly extended and applied to synthetic astrocytic morphologies that are also plausibly biological in detail. Resulting meshes are ultimately used to create volumetric meshes with tetrahedral domains to perform scalable in silico reaction-diffusion simulations for revealing cellular structure-function relationships. Availability and implementation: Our method is implemented in NeuroMorphoVis, a neuroscience-specific open source Blender add-on, making it freely accessible for neuroscience researchers.


Asunto(s)
Simulación por Computador , Neuronas , Neuronas/ultraestructura , Neuronas/citología , Modelos Neurológicos , Humanos , Animales , Astrocitos/citología , Astrocitos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA