Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.618
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(16): 4299-4314.e12, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34297923

RESUMEN

Retinal ganglion cells (RGCs) are the sole output neurons that transmit visual information from the retina to the brain. Diverse insults and pathological states cause degeneration of RGC somas and axons leading to irreversible vision loss. A fundamental question is whether manipulation of a key regulator of RGC survival can protect RGCs from diverse insults and pathological states, and ultimately preserve vision. Here, we report that CaMKII-CREB signaling is compromised after excitotoxic injury to RGC somas or optic nerve injury to RGC axons, and reactivation of this pathway robustly protects RGCs from both injuries. CaMKII activity also promotes RGC survival in the normal retina. Further, reactivation of CaMKII protects RGCs in two glaucoma models where RGCs degenerate from elevated intraocular pressure or genetic deficiency. Last, CaMKII reactivation protects long-distance RGC axon projections in vivo and preserves visual function, from the retina to the visual cortex, and visually guided behavior.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Citoprotección , Células Ganglionares de la Retina/patología , Visión Ocular , Animales , Axones/efectos de los fármacos , Axones/patología , Encéfalo/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Glaucoma/genética , Glaucoma/patología , Ratones Endogámicos C57BL , Neurotoxinas/toxicidad , Traumatismos del Nervio Óptico/patología , Transducción de Señal
2.
Cell ; 164(1-2): 219-232, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26771493

RESUMEN

Although a number of repair strategies have been shown to promote axon outgrowth following neuronal injury in the mammalian CNS, it remains unclear whether regenerated axons establish functional synapses and support behavior. Here, in both juvenile and adult mice, we show that either PTEN and SOCS3 co-deletion, or co-overexpression of osteopontin (OPN)/insulin-like growth factor 1 (IGF1)/ciliary neurotrophic factor (CNTF), induces regrowth of retinal axons and formation of functional synapses in the superior colliculus (SC) but not significant recovery of visual function. Further analyses suggest that regenerated axons fail to conduct action potentials from the eye to the SC due to lack of myelination. Consistent with this idea, administration of voltage-gated potassium channel blockers restores conduction and results in increased visual acuity. Thus, enhancing both regeneration and conduction effectively improves function after retinal axon injury.


Asunto(s)
Axones/fisiología , Colículos Superiores/fisiología , 4-Aminopiridina/farmacología , Animales , Axones/efectos de los fármacos , Factor Neurotrófico Ciliar/metabolismo , Fenómenos Electrofisiológicos , Ojo/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Vaina de Mielina/metabolismo , Nervio Óptico , Osteopontina/metabolismo , Fosfohidrolasa PTEN/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Regeneración/efectos de los fármacos , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Sinapsis
3.
Nature ; 607(7919): 585-592, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732737

RESUMEN

The regenerative potential of mammalian peripheral nervous system neurons after injury is critically limited by their slow axonal regenerative rate1. Regenerative ability is influenced by both injury-dependent and injury-independent mechanisms2. Among the latter, environmental factors such as exercise and environmental enrichment have been shown to affect signalling pathways that promote axonal regeneration3. Several of these pathways, including modifications in gene transcription and protein synthesis, mitochondrial metabolism and the release of neurotrophins, can be activated by intermittent fasting (IF)4,5. However, whether IF influences the axonal regenerative ability remains to be investigated. Here we show that IF promotes axonal regeneration after sciatic nerve crush in mice through an unexpected mechanism that relies on the gram-positive gut microbiome and an increase in the gut bacteria-derived metabolite indole-3-propionic acid (IPA) in the serum. IPA production by Clostridium sporogenes is required for efficient axonal regeneration, and delivery of IPA after sciatic injury significantly enhances axonal regeneration, accelerating the recovery of sensory function. Mechanistically, RNA sequencing analysis from sciatic dorsal root ganglia suggested a role for neutrophil chemotaxis in the IPA-dependent regenerative phenotype, which was confirmed by inhibition of neutrophil chemotaxis. Our results demonstrate the ability of a microbiome-derived metabolite, such as IPA, to facilitate regeneration and functional recovery of sensory axons through an immune-mediated mechanism.


Asunto(s)
Indoles , Regeneración Nerviosa , Propionatos , Cicatrización de Heridas , Animales , Ratones , Axones/efectos de los fármacos , Axones/fisiología , Quimiotaxis de Leucocito , Clostridium/metabolismo , Ayuno , Ganglios Espinales/metabolismo , Microbioma Gastrointestinal , Indoles/sangre , Indoles/metabolismo , Indoles/farmacología , Compresión Nerviosa , Factores de Crecimiento Nervioso/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Neutrófilos/citología , Neutrófilos/inmunología , Propionatos/sangre , Propionatos/metabolismo , Propionatos/farmacología , Recuperación de la Función , Nervio Ciático/lesiones , Análisis de Secuencia de ARN , Cicatrización de Heridas/efectos de los fármacos
4.
Nature ; 599(7886): 650-656, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34732887

RESUMEN

Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease1. Yet, whether this change contributes to Parkinson's disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism-which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson's disease paradigm3,4.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Muerte Celular , Dendritas/metabolismo , Dendritas/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Femenino , Levodopa/farmacología , Levodopa/uso terapéutico , Masculino , Ratones , Destreza Motora/efectos de los fármacos , NADH Deshidrogenasa/deficiencia , NADH Deshidrogenasa/genética , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/fisiopatología , Fenotipo , Sustancia Negra/citología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
5.
Nature ; 587(7835): 613-618, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33029008

RESUMEN

Spinal cord injury in mammals is thought to trigger scar formation with little regeneration of axons1-4. Here we show that a crush injury to the spinal cord in neonatal mice leads to scar-free healing that permits the growth of long projecting axons through the lesion. Depletion of microglia in neonatal mice disrupts this healing process and stalls the regrowth of axons, suggesting that microglia are critical for orchestrating the injury response. Using single-cell RNA sequencing and functional analyses, we find that neonatal microglia are transiently activated and have at least two key roles in scar-free healing. First, they transiently secrete fibronectin and its binding proteins to form bridges of extracellular matrix that ligate the severed ends of the spinal cord. Second, neonatal-but not adult-microglia express several extracellular and intracellular peptidase inhibitors, as well as other molecules that are involved in resolving inflammation. We transplanted either neonatal microglia or adult microglia treated with peptidase inhibitors into spinal cord lesions of adult mice, and found that both types of microglia significantly improved healing and axon regrowth. Together, our results reveal the cellular and molecular basis of the nearly complete recovery of neonatal mice after spinal cord injury, and suggest strategies that could be used to facilitate scar-free healing in the adult mammalian nervous system.


Asunto(s)
Microglía/fisiología , Traumatismos de la Médula Espinal/terapia , Regeneración de la Medula Espinal , Médula Espinal/citología , Médula Espinal/fisiología , Animales , Animales Recién Nacidos , Axones/efectos de los fármacos , Axones/fisiología , Cicatriz , Fibronectinas/metabolismo , Homeostasis , Ratones , Microglía/efectos de los fármacos , Inhibidores de Proteasas/farmacología , RNA-Seq , Análisis de la Célula Individual , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Regeneración de la Medula Espinal/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
6.
J Neurosci ; 44(44)2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39266301

RESUMEN

Neuroinflammation can positively influence axon regeneration following injury in the central nervous system. Inflammation promotes the release of neurotrophic molecules and stimulates intrinsic proregenerative molecular machinery in neurons, but the detailed mechanisms driving this effect are not fully understood. We evaluated how microRNAs are regulated in retinal neurons in response to intraocular inflammation to identify their potential role in axon regeneration. We found that miR-383-5p is downregulated in retinal ganglion cells in response to zymosan-induced intraocular inflammation. MiR-383-5p downregulation in neurons is sufficient to promote axon growth in vitro, and the intravitreal injection of a miR-383-5p inhibitor into the eye promotes axon regeneration following optic nerve crush. MiR-383-5p directly targets ciliary neurotrophic factor (CNTF) receptor components, and miR-383-5p inhibition sensitizes adult retinal neurons to the outgrowth-promoting effects of CNTF. Interestingly, we also demonstrate that CNTF treatment is sufficient to reduce miR-383-5p levels in neurons, constituting a positive-feedback module, whereby initial CNTF treatment reduces miR-383-5p levels, which then disinhibits CNTF receptor components to sensitize neurons to the ligand. Additionally, miR-383-5p inhibition derepresses the mitochondrial antioxidant protein peroxiredoxin-3 (PRDX3) which was required for the proregenerative effects associated with miR-383-5p loss-of-function in vitro. We have thus identified a positive-feedback mechanism that facilitates neuronal CNTF sensitivity in neurons and a new molecular signaling module that promotes inflammation-induced axon regeneration.


Asunto(s)
Axones , MicroARNs , Regeneración Nerviosa , Células Ganglionares de la Retina , Transducción de Señal , Animales , MicroARNs/metabolismo , MicroARNs/genética , Regeneración Nerviosa/fisiología , Regeneración Nerviosa/efectos de los fármacos , Axones/fisiología , Axones/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Transducción de Señal/fisiología , Transducción de Señal/efectos de los fármacos , Ratones , Inflamación/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/farmacología , Ratones Endogámicos C57BL , Traumatismos del Nervio Óptico/metabolismo , Masculino , Zimosan/farmacología , Células Cultivadas
7.
Cell Mol Life Sci ; 81(1): 315, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066803

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of cancer chemotherapy that can often limit treatment options for cancer patients or have life-long neurodegenerative consequences that reduce the patient's quality of life. CIPN is caused by the detrimental actions of various chemotherapeutic agents on peripheral axons. Currently, there are no approved preventative measures or treatment options for CIPN, highlighting the need for the discovery of novel therapeutics and improving our understanding of disease mechanisms. In this study, we utilized human-induced pluripotent stem cell (hiPSC)-derived motor neurons as a platform to mimic axonal damage after treatment with vincristine, a chemotherapeutic used for the treatment of breast cancers, osteosarcomas, and leukemia. We screened a total of 1902 small molecules for neuroprotective properties in rescuing vincristine-induced axon growth deficits. From our primary screen, we identified 38 hit compounds that were subjected to secondary dose response screens. Six compounds showed favorable pharmacological profiles - AZD7762, A-674563, Blebbistatin, Glesatinib, KW-2449, and Pelitinib, all novel neuroprotectants against vincristine toxicity to neurons. In addition, four of these six compounds also showed efficacy against vincristine-induced growth arrest in human iPSC-derived sensory neurons. In this study, we utilized high-throughput screening of a large library of compounds in a therapeutically relevant assay. We identified several novel compounds that are efficacious in protecting different neuronal subtypes from the toxicity induced by a common chemotherapeutic agent, vincristine which could have therapeutic potential in the clinic.


Asunto(s)
Células Madre Pluripotentes Inducidas , Fármacos Neuroprotectores , Vincristina , Vincristina/farmacología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Fármacos Neuroprotectores/farmacología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Neuronas Motoras/metabolismo , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Células Cultivadas , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico
8.
Neurobiol Dis ; 199: 106611, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032797

RESUMEN

Ultrastructural studies of contusive spinal cord injury (SCI) in mammals have shown that the most prominent acute changes in white matter are periaxonal swelling and separation of myelin away from their axon, axonal swelling, and axonal spheroid formation. However, the underlying cellular and molecular mechanisms that cause periaxonal swelling and the functional consequences are poorly understood. We hypothesized that periaxonal swelling and loss of connectivity between the axo-myelinic interface impedes neurological recovery by disrupting conduction velocity, and glial to axonal trophic support resulting in axonal swelling and spheroid formation. Utilizing in vivo longitudinal imaging of Thy1YFP+ axons and myelin labeled with Nile red, we reveal that periaxonal swelling significantly increases acutely following a contusive SCI (T13, 30 kdyn, IH Impactor) versus baseline recordings (laminectomy only) and often precedes axonal spheroid formation. In addition, using longitudinal imaging to determine the fate of myelinated fibers acutely after SCI, we show that ∼73% of myelinated fibers present with periaxonal swelling at 1 h post SCI and âˆ¼ 51% of those fibers transition to axonal spheroids by 4 h post SCI. Next, we assessed whether cation-chloride cotransporters present within the internode contributed to periaxonal swelling and whether their modulation would increase white matter sparing and improve neurological recovery following a moderate contusive SCI (T9, 50 kdyn). Mechanistically, activation of the cation-chloride cotransporter KCC2 did not improve neurological recovery and acute axonal survival, but did improve chronic tissue sparing. In distinction, the NKKC1 antagonist bumetanide improved neurological recovery, tissue sparing, and axonal survival, in part through preventing periaxonal swelling and disruption of the axo-myelinic interface. Collectively, these data reveal a novel neuroprotective target to prevent periaxonal swelling and improve neurological recovery after SCI.


Asunto(s)
Axones , Recuperación de la Función , Miembro 2 de la Familia de Transportadores de Soluto 12 , Traumatismos de la Médula Espinal , Sustancia Blanca , Animales , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Axones/efectos de los fármacos , Axones/patología , Femenino , Vaina de Mielina/patología , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Ratones , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Bumetanida/farmacología
9.
Synapse ; 78(4): e22304, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38896000

RESUMEN

The goal of this report is to explore how K2P channels modulate axonal excitability by using the crayfish ventral superficial flexor preparation. This preparation allows for simultaneous recording of motor nerve extracellular action potentials (eAP) and intracellular excitatory junctional potential (EJP) from a muscle fiber. Previous pharmacological studies have demonstrated the presence of K2P-like channels in crayfish. Fluoxetine (50 µM) was used to block K2P channels in this study. The blocker caused a gradual decline, and eventually complete block, of motor axon action potentials. At an intermediate stage of the block, when the peak-to-peak amplitude of eAP decreased to ∼60%-80% of the control value, the amplitude of the initial positive component of eAP declined at a faster rate than that of the negative peak representing sodium influx. Furthermore, the second positive peak following this sodium influx, which corresponds to the after-hyperpolarizing phase of intracellularly recorded action potentials (iAP), became larger during the intermediate stage of eAP block. Finally, EJP recorded simultaneously with eAP showed no change in amplitude, but did show a significant increase in synaptic delay. These changes in eAP shape and EJP delay are interpreted as the consequence of depolarized resting membrane potential after K2P channel block. In addition to providing insights to possible functions of K2P channels in unmyelinated axons, results presented here also serve as an example of how changes in eAP shape contain information that can be used to infer alterations in intracellular events. This type of eAP-iAP cross-inference is valuable for gaining mechanistic insights here and may also be applicable to other model systems.


Asunto(s)
Potenciales de Acción , Astacoidea , Axones , Fluoxetina , Neuronas Motoras , Animales , Astacoidea/efectos de los fármacos , Astacoidea/fisiología , Fluoxetina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Axones/efectos de los fármacos , Axones/fisiología
10.
Cell Commun Signal ; 22(1): 236, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650003

RESUMEN

BACKGROUND: The preservation of retinal ganglion cells (RGCs) and the facilitation of axon regeneration are crucial considerations in the management of various vision-threatening disorders. Therefore, we investigate the efficacy of interleukin-4 (IL-4), a potential therapeutic agent, in promoting neuroprotection and axon regeneration of retinal ganglion cells (RGCs) as identified through whole transcriptome sequencing in an in vitro axon growth model. METHODS: A low concentration of staurosporine (STS) was employed to induce in vitro axon growth. Whole transcriptome sequencing was utilized to identify key target factors involved in the molecular mechanism underlying axon growth. The efficacy of recombinant IL-4 protein on promoting RGC axon growth was validated through in vitro experiments. The protective effect of recombinant IL-4 protein on somas of RGCs was assessed using RBPMS-specific immunofluorescent staining in mouse models with optic nerve crush (ONC) and N-methyl-D-aspartic acid (NMDA) injury. The protective effect on RGC axons was evaluated by anterograde labeling of cholera toxin subunit B (CTB), while the promotion of RGC axon regeneration was assessed through both anterograde labeling of CTB and immunofluorescent staining for growth associated protein-43 (GAP43). RESULTS: Whole-transcriptome sequencing of staurosporine-treated 661 W cells revealed a significant upregulation in intracellular IL-4 transcription levels during the process of axon regeneration. In vitro experiments demonstrated that recombinant IL-4 protein effectively stimulated axon outgrowth. Subsequent immunostaining with RBPMS revealed a significantly higher survival rate of RGCs in the rIL-4 group compared to the vehicle group in both NMDA and ONC injury models. Axonal tracing with CTB confirmed that recombinant IL-4 protein preserved long-distance projection of RGC axons, and there was a notably higher number of surviving axons in the rIL-4 group compared to the vehicle group following NMDA-induced injury. Moreover, intravitreal delivery of recombinant IL-4 protein substantially facilitated RGC axon regeneration after ONC injury. CONCLUSION: The recombinant IL-4 protein exhibits the potential to enhance the survival rate of RGCs, protect RGC axons against NMDA-induced injury, and facilitate axon regeneration following ONC. This study provides an experimental foundation for further investigation and development of therapeutic agents aimed at protecting the optic nerve and promoting axon regeneration.


Asunto(s)
Axones , Interleucina-4 , Regeneración Nerviosa , Células Ganglionares de la Retina , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Animales , Interleucina-4/farmacología , Axones/efectos de los fármacos , Axones/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/tratamiento farmacológico , N-Metilaspartato/farmacología , Estaurosporina/farmacología , Fármacos Neuroprotectores/farmacología , Proteínas Recombinantes/farmacología
11.
Eur J Neurol ; 31(7): e16305, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38651498

RESUMEN

BACKGROUND: To evaluate whether ongoing axonal loss can be prevented in multifocal motor neuropathy (MMN) treated with immunoglobulin G (IgG), a group of patients with a median disease duration of 15.7 years (range: 8.3-37.8), treated with titrated dosages of immunoglobulins, was studied electrophysiologically at time of diagnosis and at follow-up. RESULTS: At follow-up, the Z-score of the compound motor action potential amplitude of the median, fibular, and tibial nerves and the neurological performances were determined. In seven patients with a treatment-free period of 0.3 years (0.2-0.4), there was no progression of axonal loss (p = 0.2), whereas a trend toward further axonal loss by 1.3 Z-scores (0.9-17.0, p = 0.06) was observed in five patients with a treatment-free period of 4.0 years (0.9-9.0). The axonal loss in the group with a short treatment delay was significantly smaller than in the group with a longer treatment delay (p = 0.02). Also, there was an association between treatment delay and ongoing axonal loss (p = 0.004). The electrophysiological findings at follow-up were associated with the isokinetic strength performance, the neurological impairment score, and the disability, supporting the clinical relevance of the electrophysiological estimate of axonal loss. CONCLUSION: Swift initiation of an immediately titrated IgG dosage can prevent further axonal loss and disability in continuously treated MMN patients.


Asunto(s)
Axones , Polineuropatías , Humanos , Masculino , Femenino , Persona de Mediana Edad , Axones/patología , Axones/efectos de los fármacos , Adulto , Anciano , Polineuropatías/tratamiento farmacológico , Conducción Nerviosa/efectos de los fármacos , Conducción Nerviosa/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Inmunoglobulina G/administración & dosificación , Enfermedad de la Neurona Motora/tratamiento farmacológico , Estudios de Seguimiento , Inmunoglobulinas Intravenosas/administración & dosificación , Inmunoglobulinas Intravenosas/uso terapéutico
12.
BMC Neurol ; 24(1): 366, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342135

RESUMEN

BACKGROUND: Approximately 70% of patients receiving neurotoxic chemotherapy (e.g., paclitaxel or vincristine) will develop chemotherapy-induced peripheral neuropathy. Despite the known negative effects of CIPN on physical functioning and chemotherapy dosing, little is known about how to prevent CIPN. The development of efficacious CIPN prevention interventions is hindered by the lack of knowledge surrounding CIPN mechanisms. Nicotinamide adenine dinucleotide (NAD+) and cyclic-adenosine diphosphate ribose (cADPR) are potential markers of axon degeneration following neurotoxic chemotherapy, however, such markers have been exclusively measured in preclinical models of chemotherapy-induced peripheral neuropathy (CIPN). The overall objective of this longitudinal, observational study was to determine the association between plasma NAD+, cADPR, and ADPR with CIPN severity in young adults receiving vincristine or paclitaxel. METHODS: Young adults (18-39 years old) beginning vincristine or paclitaxel were recruited from Dana-Farber Cancer Institute. Young adults completed the QLQ-CIPN20 sensory and motor subscales and provided a blood sample prior to starting chemotherapy (T1) and at increasing cumulative vincristine (T2: 3-5 mg, T3: 7-9 mg) and paclitaxel (T2: 300-500 mg/m2, T3: 700-900 mg/m2) dosages. NAD+, cADPR, and ADPR were quantified from plasma using mass spectrometry. Metabolite levels and QLQ-CIPN20 scores over time were compared using mixed-effects linear regression models and/or paired two-sample tests. RESULTS: Participants (N = 50) were mainly female (88%), white (80%), and receiving paclitaxel (78%). Sensory and motor CIPN severity increased from T1-T3 (p < 0.001). NAD+ (p = 0.28), cADPR (p = 0.62), and ADPR (p = 0.005) values decreased, while cADPR/NAD+ ratio increased from T1-T3 (p = 0.50). There were no statistically significant associations between NAD + and QLQ-CIPN20 scores over time. CONCLUSIONS: To our knowledge, this is the first study to measure plasma NAD+, cADPR, and ADPR among patients receiving neurotoxic chemotherapy. Although, no meaningful changes in NAD+, cADPR, or cADPR/NAD+ were observed among young adults receiving paclitaxel or vincristine. Future research in an adequately powered sample is needed to explore the clinical utility of biomarkers of axon degeneration among patients receiving neurotoxic chemotherapy to guide mechanistic research and novel CIPN treatments.


Asunto(s)
Paclitaxel , Enfermedades del Sistema Nervioso Periférico , Vincristina , Humanos , Vincristina/efectos adversos , Femenino , Paclitaxel/efectos adversos , Adulto , Masculino , Adulto Joven , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/sangre , Adolescente , Axones/efectos de los fármacos , Axones/patología , Estudios Longitudinales , NAD/metabolismo , NAD/sangre , Biomarcadores/sangre , Antineoplásicos Fitogénicos/efectos adversos , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Degeneración Nerviosa/sangre
13.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099564

RESUMEN

Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by myelin damage followed by axonal and ultimately neuronal loss. The etiology and physiopathology of MS are still elusive, and no fully effective therapy is yet available. We investigated the role in MS of autophagy (physiologically, a controlled intracellular pathway regulating the degradation of cellular components) and of mitophagy (a specific form of autophagy that removes dysfunctional mitochondria). We found that the levels of autophagy and mitophagy markers are significantly increased in the biofluids of MS patients during the active phase of the disease, indicating activation of these processes. In keeping with this idea, in vitro and in vivo MS models (induced by proinflammatory cytokines, lysolecithin, and cuprizone) are associated with strongly impaired mitochondrial activity, inducing a lactic acid metabolism and prompting an increase in the autophagic flux and in mitophagy. Multiple structurally and mechanistically unrelated inhibitors of autophagy improved myelin production and normalized axonal myelination, and two such inhibitors, the widely used antipsychotic drugs haloperidol and clozapine, also significantly improved cuprizone-induced motor impairment. These data suggest that autophagy has a causal role in MS; its inhibition strongly attenuates behavioral signs in an experimental model of the disease. Therefore, haloperidol and clozapine may represent additional therapeutic tools against MS.


Asunto(s)
Antipsicóticos/uso terapéutico , Autofagia , Mitofagia , Esclerosis Múltiple/tratamiento farmacológico , Animales , Antipsicóticos/farmacología , Autofagia/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/sangre , Proteínas Relacionadas con la Autofagia/líquido cefalorraquídeo , Axones/efectos de los fármacos , Axones/metabolismo , Biomarcadores/metabolismo , Clozapina/farmacología , Citocinas/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Glucosa/metabolismo , Haloperidol/farmacología , Inflamación/patología , Interleucina-1beta/metabolismo , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Modelos Biológicos , Actividad Motora/efectos de los fármacos , Esclerosis Múltiple/sangre , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/fisiopatología , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Estrés Fisiológico/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468672

RESUMEN

The pathogenesis of chemotherapy-induced peripheral neuropathy (CIPN) is poorly understood. Here, we report that the CIPN-causing drug bortezomib (Bort) promotes delta 2 tubulin (D2) accumulation while affecting microtubule stability and dynamics in sensory neurons in vitro and in vivo and that the accumulation of D2 is predominant in unmyelinated fibers and a hallmark of bortezomib-induced peripheral neuropathy (BIPN) in humans. Furthermore, while D2 overexpression was sufficient to cause axonopathy and inhibit mitochondria motility, reduction of D2 levels alleviated both axonal degeneration and the loss of mitochondria motility induced by Bort. Together, our data demonstrate that Bort, a compound structurally unrelated to tubulin poisons, affects the tubulin cytoskeleton in sensory neurons in vitro, in vivo, and in human tissue, indicating that the pathogenic mechanisms of seemingly unrelated CIPN drugs may converge on tubulin damage. The results reveal a previously unrecognized pathogenic role for D2 in BIPN that may occur through altered regulation of mitochondria motility.


Asunto(s)
Bortezomib/efectos adversos , Neoplasias/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/genética , Tubulina (Proteína)/genética , Animales , Antineoplásicos/efectos adversos , Axones/efectos de los fármacos , Axones/patología , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Larva/efectos de los fármacos , Larva/genética , Microtúbulos/efectos de los fármacos , Microtúbulos/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/genética , Neoplasias/genética , Neoplasias/patología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/patología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/patología , Pez Cebra/genética
15.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000515

RESUMEN

Advanced glycation end-products (AGEs) form through non-enzymatic glycation of various proteins. Optic nerve degeneration is a frequent complication of diabetes, and retinal AGE accumulation is strongly linked to the development of diabetic retinopathy. Type 2 diabetes mellitus is a major risk factor for Alzheimer's disease (AD), with patients often exhibiting optic axon degeneration in the nerve fiber layer. Notably, a gap exists in our understanding of how AGEs contribute to neuronal degeneration in the optic nerve within the context of both diabetes and AD. Our previous work demonstrated that glyceraldehyde (GA)-derived toxic advanced glycation end-products (TAGE) disrupt neurite outgrowth through TAGE-ß-tubulin aggregation and tau phosphorylation in neural cultures. In this study, we further illustrated GA-induced suppression of optic nerve axonal elongation via abnormal ß-tubulin aggregation in mouse retinas. Elucidating this optic nerve degeneration mechanism holds promise for bridging the knowledge gap regarding vision loss associated with diabetes mellitus and AD.


Asunto(s)
Axones , Productos Finales de Glicación Avanzada , Nervio Óptico , Tubulina (Proteína) , Animales , Tubulina (Proteína)/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Ratones , Nervio Óptico/metabolismo , Nervio Óptico/patología , Nervio Óptico/efectos de los fármacos , Axones/metabolismo , Axones/efectos de los fármacos , Axones/patología , Ratones Endogámicos C57BL , Agregado de Proteínas/efectos de los fármacos
16.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673871

RESUMEN

Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20-30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma.


Asunto(s)
Ketamina , Microglía , Ratas Sprague-Dawley , Sinapsis , Animales , Ketamina/administración & dosificación , Ketamina/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Ratas , Masculino , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología , Traumatismos Cerrados de la Cabeza/patología , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Cuerpos Geniculados/patología , Cuerpos Geniculados/efectos de los fármacos , Conmoción Encefálica/patología , Conmoción Encefálica/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Sinapsinas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación
17.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39000003

RESUMEN

Peripheral nerve injuries (PNIs) represent a significant clinical challenge, particularly in elderly populations where axonal remyelination and regeneration are impaired. Developing therapies to enhance these processes is crucial for improving PNI repair outcomes. Glutamate carboxypeptidase II (GCPII) is a neuropeptidase that plays a pivotal role in modulating glutamate signaling through its enzymatic cleavage of the abundant neuropeptide N-acetyl aspartyl glutamate (NAAG) to liberate glutamate. Within the PNS, GCPII is expressed in Schwann cells and activated macrophages, and its expression is amplified with aging. In this study, we explored the therapeutic potential of inhibiting GCPII activity following PNI. We report significant GCPII protein and activity upregulation following PNI, which was normalized by the potent and selective GCPII inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In vitro, 2-PMPA robustly enhanced myelination in dorsal root ganglion (DRG) explants. In vivo, using a sciatic nerve crush injury model in aged mice, 2-PMPA accelerated remyelination, as evidenced by increased myelin sheath thickness and higher numbers of remyelinated axons. These findings suggest that GCPII inhibition may be a promising therapeutic strategy to enhance remyelination and potentially improve functional recovery after PNI, which is especially relevant in elderly PNI patients where this process is compromised.


Asunto(s)
Glutamato Carboxipeptidasa II , Traumatismos de los Nervios Periféricos , Remielinización , Animales , Ratones , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/metabolismo , Remielinización/efectos de los fármacos , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ratones Endogámicos C57BL , Regeneración Nerviosa/efectos de los fármacos , Nervio Ciático/lesiones , Nervio Ciático/efectos de los fármacos , Masculino , Axones/efectos de los fármacos , Axones/metabolismo
18.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273121

RESUMEN

Traumatic spinal cord injury (tSCI) has complex pathophysiological events that begin after the initial trauma. One such event is fibroglial scar formation by fibroblasts and reactive astrocytes. A strong inhibition of axonal growth is caused by the activated astroglial cells as a component of fibroglial scarring through the production of inhibitory molecules, such as chondroitin sulfate proteoglycans or myelin-associated proteins. Here, we used neural precursor cells (aldynoglia) as promoters of axonal growth and a fibrin hydrogel gelled under alkaline conditions to support and guide neuronal cell growth, respectively. We added Tol-51 sulfoglycolipid as a synthetic inhibitor of astrocyte and microglia in order to test its effect on the axonal growth-promoting function of aldynoglia precursor cells. We obtained an increase in GFAP expression corresponding to the expected glial phenotype for aldynoglia cells cultured in alkaline fibrin. In co-cultures of dorsal root ganglia (DRG) and aldynoglia, the axonal growth promotion of DRG neurons by aldynoglia was not affected. We observed that the neural precursor cells first clustered together and then formed niches from which aldynoglia cells grew and connected to groups of adjacent cells. We conclude that the combination of alkaline fibrin with synthetic sulfoglycolipid Tol-51 increased cell adhesion, cell migration, fasciculation, and axonal growth capacity, promoted by aldynoglia cells. There was no negative effect on the behavior of aldynoglia cells after the addition of sulfoglycolipid Tol-51, suggesting that a combination of aldynoglia plus alkaline fibrin and Tol-51 compound could be useful as a therapeutic strategy for tSCI repair.


Asunto(s)
Axones , Fibrina , Ganglios Espinales , Animales , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Axones/metabolismo , Axones/efectos de los fármacos , Fibrina/metabolismo , Hidrogeles/química , Hidrogeles/farmacología , Ratas , Glucolípidos/farmacología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/citología , Movimiento Celular/efectos de los fármacos
19.
Development ; 147(12)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32414936

RESUMEN

Cell ablation is a powerful method for elucidating the contributions of individual cell populations to embryonic development and tissue regeneration. Targeted cell loss in whole organisms has been typically achieved through expression of a cytotoxic or prodrug-activating gene product in the cell type of interest. This approach depends on the availability of tissue-specific promoters, and it does not allow further spatial selectivity within the promoter-defined region(s). To address this limitation, we have used the light-inducible GAVPO transactivator in combination with two genetically encoded cell-ablation technologies: the nitroreductase/nitrofuran system and a cytotoxic variant of the M2 ion channel. Our studies establish ablative methods that provide the tissue specificity afforded by cis-regulatory elements and the conditionality of optogenetics. Our studies also demonstrate differences between the nitroreductase and M2 systems that influence their efficacies for specific applications. Using this integrative approach, we have ablated cells in zebrafish embryos with both spatial and temporal control.


Asunto(s)
Optogenética/métodos , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Axones/efectos de los fármacos , Axones/fisiología , Axones/efectos de la radiación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Expresión Génica/efectos de la radiación , Genes Reporteros , Luz , Mutagénesis Sitio-Dirigida , Neuronas/metabolismo , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , Regiones Promotoras Genéticas , Rimantadina/farmacología , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Pez Cebra/crecimiento & desarrollo
20.
PLoS Biol ; 18(3): e3000296, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32163401

RESUMEN

The steady increase in the prevalence of obesity and associated type II diabetes mellitus is a major health concern, particularly among children. Maternal obesity represents a risk factor that contributes to metabolic perturbations in the offspring. Endoplasmic reticulum (ER) stress has emerged as a critical mechanism involved in leptin resistance and type 2 diabetes in adult individuals. Here, we used a mouse model of maternal obesity to investigate the importance of early life ER stress in the nutritional programming of this metabolic disease. Offspring of obese dams developed glucose intolerance and displayed increased body weight, adiposity, and food intake. Moreover, maternal obesity disrupted the development of melanocortin circuits associated with neonatal hyperleptinemia and leptin resistance. ER stress-related genes were up-regulated in the hypothalamus of neonates born to obese mothers. Neonatal treatment with the ER stress-relieving drug tauroursodeoxycholic acid improved metabolic and neurodevelopmental deficits and reversed leptin resistance in the offspring of obese dams.


Asunto(s)
Estrés del Retículo Endoplásmico , Hipotálamo/crecimiento & desarrollo , Obesidad Materna/metabolismo , Animales , Animales Recién Nacidos , Axones/efectos de los fármacos , Axones/metabolismo , Composición Corporal , Peso Corporal , Dieta/efectos adversos , Estrés del Retículo Endoplásmico/genética , Femenino , Hipotálamo/efectos de los fármacos , Hipotálamo/embriología , Hipotálamo/metabolismo , Masculino , Ratones Endogámicos C57BL , Páncreas/crecimiento & desarrollo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Proopiomelanocortina/metabolismo , Ácido Tauroquenodesoxicólico/farmacología , alfa-MSH/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA