Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.036
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 163(4): 854-65, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26522594

RESUMEN

CRISPR-Cas adaptive immune systems protect bacteria and archaea against foreign genetic elements. In Escherichia coli, Cascade (CRISPR-associated complex for antiviral defense) is an RNA-guided surveillance complex that binds foreign DNA and recruits Cas3, a trans-acting nuclease helicase for target degradation. Here, we use single-molecule imaging to visualize Cascade and Cas3 binding to foreign DNA targets. Our analysis reveals two distinct pathways dictated by the presence or absence of a protospacer-adjacent motif (PAM). Binding to a protospacer flanked by a PAM recruits a nuclease-active Cas3 for degradation of short single-stranded regions of target DNA, whereas PAM mutations elicit an alternative pathway that recruits a nuclease-inactive Cas3 through a mechanism that is dependent on the Cas1 and Cas2 proteins. These findings explain how target recognition by Cascade can elicit distinct outcomes and support a model for acquisition of new spacer sequences through a mechanism involving processive, ATP-dependent Cas3 translocation along foreign DNA.


Asunto(s)
Bacteriófago lambda/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN Helicasas/metabolismo , ADN Viral/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/virología , Escherichia coli/inmunología , Escherichia coli/metabolismo , Modelos Biológicos , Secuencias Repetitivas de Ácidos Nucleicos
2.
Mol Cell ; 77(4): 723-733.e6, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31932164

RESUMEN

Bacteria possess an array of defenses against foreign invaders, including a broadly distributed bacteriophage defense system termed CBASS (cyclic oligonucleotide-based anti-phage signaling system). In CBASS systems, a cGAS/DncV-like nucleotidyltransferase synthesizes cyclic di- or tri-nucleotide second messengers in response to infection, and these molecules activate diverse effectors to mediate bacteriophage immunity via abortive infection. Here, we show that the CBASS effector NucC is related to restriction enzymes but uniquely assembles into a homotrimer. Binding of NucC trimers to a cyclic tri-adenylate second messenger promotes assembly of a NucC homohexamer competent for non-specific double-strand DNA cleavage. In infected cells, NucC activation leads to complete destruction of the bacterial chromosome, causing cell death prior to completion of phage replication. In addition to CBASS systems, we identify NucC homologs in over 30 type III CRISPR/Cas systems, where they likely function as accessory nucleases activated by cyclic oligoadenylate second messengers synthesized by these systems' effector complexes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Desoxirribonucleasa I/química , Desoxirribonucleasa I/metabolismo , Escherichia coli/virología , Regulación Alostérica , Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , Sistemas CRISPR-Cas , División del ADN , Enzimas de Restricción del ADN/química , Escherichia coli/enzimología , Escherichia coli/inmunología , Genoma Viral , Multimerización de Proteína , Sistemas de Mensajero Secundario
3.
Mol Cell ; 74(1): 143-157.e5, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30795892

RESUMEN

Bacteriophage λN protein, a model anti-termination factor, binds nascent RNA and host Nus factors, rendering RNA polymerase resistant to all pause and termination signals. A 3.7-Å-resolution cryo-electron microscopy structure and structure-informed functional analyses reveal a multi-pronged strategy by which the intrinsically unstructured λN directly modifies RNA polymerase interactions with the nucleic acids and subverts essential functions of NusA, NusE, and NusG to reprogram the transcriptional apparatus. λN repositions NusA and remodels the ß subunit flap tip, which likely precludes folding of pause or termination RNA hairpins in the exit tunnel and disrupts termination-supporting interactions of the α subunit C-terminal domains. λN invades and traverses the RNA polymerase hybrid cavity, likely stabilizing the hybrid and impeding pause- or termination-related conformational changes of polymerase. λN also lines upstream DNA, seemingly reinforcing anti-backtracking and anti-swiveling by NusG. Moreover, λN-repositioned NusA and NusE sequester the NusG C-terminal domain, counteracting ρ-dependent termination. Other anti-terminators likely utilize similar mechanisms to enable processive transcription.


Asunto(s)
Bacteriófago lambda/metabolismo , Escherichia coli/metabolismo , ARN Bacteriano/biosíntesis , Factores de Transcripción/metabolismo , Terminación de la Transcripción Genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Bacteriófago lambda/genética , Sitios de Unión , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/virología , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , ARN Bacteriano/química , ARN Bacteriano/genética , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/genética
4.
Nucleic Acids Res ; 52(2): 831-843, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38084901

RESUMEN

The large dsDNA viruses replicate their DNA as concatemers consisting of multiple covalently linked genomes. Genome packaging is catalyzed by a terminase enzyme that excises individual genomes from concatemers and packages them into preassembled procapsids. These disparate tasks are catalyzed by terminase alternating between two distinct states-a stable nuclease that excises individual genomes and a dynamic motor that translocates DNA into the procapsid. It was proposed that bacteriophage λ terminase assembles as an anti-parallel dimer-of-dimers nuclease complex at the packaging initiation site. In contrast, all characterized packaging motors are composed of five terminase subunits bound to the procapsid in a parallel orientation. Here, we describe biophysical and structural characterization of the λ holoenzyme complex assembled in solution. Analytical ultracentrifugation, small angle X-ray scattering, and native mass spectrometry indicate that 5 subunits assemble a cone-shaped terminase complex. Classification of cryoEM images reveals starfish-like rings with skewed pentameric symmetry and one special subunit. We propose a model wherein nuclease domains of two subunits alternate between a dimeric head-to-head arrangement for genome maturation and a fully parallel arrangement during genome packaging. Given that genome packaging is strongly conserved in both prokaryotic and eukaryotic viruses, the results have broad biological implications.


Asunto(s)
Empaquetamiento del Genoma Viral , Ensamble de Virus , Ensamble de Virus/genética , Bacteriófago lambda/genética , Endodesoxirribonucleasas/metabolismo , ADN , ADN Viral/metabolismo , Empaquetamiento del ADN
5.
Nucleic Acids Res ; 52(14): 8399-8418, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38943349

RESUMEN

TMPyP is a porphyrin capable of DNA binding and used in photodynamic therapy and G-quadruplex stabilization. Despite its broad applications, TMPyP's effect on DNA nanomechanics is unknown. Here we investigated, by manipulating λ-phage DNA with optical tweezers combined with microfluidics in equilibrium and perturbation kinetic experiments, how TMPyP influences DNA nanomechanics across wide ranges of TMPyP concentration (5-5120 nM), mechanical force (0-100 pN), NaCl concentration (0.01-1 M) and pulling rate (0.2-20 µm/s). Complex responses were recorded, for the analysis of which we introduced a simple mathematical model. TMPyP binding, which is a highly dynamic process, leads to dsDNA lengthening and softening. dsDNA stability increased at low (<10 nM) TMPyP concentrations, then decreased progressively upon increasing TMPyP concentration. Overstretch cooperativity decreased, due most likely to mechanical roadblocks of ssDNA-bound TMPyP. TMPyP binding increased ssDNA's contour length. The addition of NaCl at high (1 M) concentration competed with the TMPyP-evoked nanomechanical changes. Because the largest amplitude of the changes is induced by the pharmacologically relevant TMPyP concentration range, this porphyrin derivative may be used to tune DNA's structure and properties, hence control the wide array of biomolecular DNA-dependent processes including replication, transcription, condensation and repair.


Asunto(s)
ADN , Pinzas Ópticas , Porfirinas , Bacteriófago lambda/genética , ADN/química , ADN/metabolismo , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/química , ADN Viral/metabolismo , ADN Viral/química , Cinética , Nanotecnología/métodos , Porfirinas/química , Cloruro de Sodio/química , Cloruro de Sodio/farmacología
6.
Nucleic Acids Res ; 52(8): 4659-4675, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38554102

RESUMEN

RexA and RexB function as an exclusion system that prevents bacteriophage T4rII mutants from growing on Escherichia coli λ phage lysogens. Recent data established that RexA is a non-specific DNA binding protein that can act independently of RexB to bias the λ bistable switch toward the lytic state, preventing conversion back to lysogeny. The molecular interactions underlying these activities are unknown, owing in part to a dearth of structural information. Here, we present the 2.05-Å crystal structure of the λ RexA dimer, which reveals a two-domain architecture with unexpected structural homology to the recombination-associated protein RdgC. Modelling suggests that our structure adopts a closed conformation and would require significant domain rearrangements to facilitate DNA binding. Mutagenesis coupled with electromobility shift assays, limited proteolysis, and double electron-electron spin resonance spectroscopy support a DNA-dependent conformational change. In vivo phenotypes of RexA mutants suggest that DNA binding is not a strict requirement for phage exclusion but may directly contribute to modulation of the bistable switch. We further demonstrate that RexA homologs from other temperate phages also dimerize and bind DNA in vitro. Collectively, these findings advance our mechanistic understanding of Rex functions and provide new evolutionary insights into different aspects of phage biology.


Asunto(s)
Bacteriófago lambda , Proteínas de Unión al ADN , Modelos Moleculares , Proteínas Virales , Bacteriófago lambda/genética , Cristalografía por Rayos X , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Unión Proteica , Multimerización de Proteína , ADN Viral/genética , ADN Viral/metabolismo , Mutación , Lisogenia , Escherichia coli/virología , Escherichia coli/genética , Escherichia coli/metabolismo , ADN/metabolismo , ADN/química
7.
Proc Natl Acad Sci U S A ; 120(11): e2212121120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36881631

RESUMEN

The most significant difference between bacteriophages functionally and ecologically is whether they are purely lytic (virulent) or temperate. Virulent phages can only be transmitted horizontally by infection, most commonly with the death of their hosts. Temperate phages can also be transmitted horizontally, but upon infection of susceptible bacteria, their genomes can be incorporated into that of their host's as a prophage and be transmitted vertically in the course of cell division by their lysogenic hosts. From what we know from studies with the temperate phage Lambda and other temperate phages, in laboratory culture, lysogenic bacteria are protected from killing by the phage coded for by their prophage by immunity; where upon infecting lysogens, the free temperate phage coded by their prophage is lost. Why are lysogens not only resistant but also immune to the phage coded by their prophage since immunity does not confer protection against virulent phages? To address this question, we used a mathematical model and performed experiments with temperate and virulent mutants of the phage Lambda in laboratory culture. Our models predict and experiments confirm that selection would favor the evolution of resistant and immune lysogens, particularly if the environment includes virulent phage that shares the same receptors as the temperate. To explore the validity and generality of this prediction, we examined 10 lysogenic Escherichia coli from natural populations. All 10 were capable of forming immune lysogens, but their original hosts were resistant to the phage coded by their prophage.


Asunto(s)
Bacteriófago lambda , Profagos , Profagos/genética , Bacteriófago lambda/genética , Libros , Lisogenia , Escherichia coli
8.
Proc Natl Acad Sci U S A ; 120(45): e2220518120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903276

RESUMEN

Structural details of a genome packaged in a viral capsid are essential for understanding how the structural arrangement of a viral genome in a capsid controls its release dynamics during infection, which critically affects viral replication. We previously found a temperature-induced, solid-like to fluid-like mechanical transition of packaged λ-genome that leads to rapid DNA ejection. However, an understanding of the structural origin of this transition was lacking. Here, we use small-angle neutron scattering (SANS) to reveal the scattering form factor of dsDNA packaged in phage λ capsid by contrast matching the scattering signal from the viral capsid with deuterated buffer. We used small-angle X-ray scattering and cryoelectron microscopy reconstructions to determine the initial structural input parameters for intracapsid DNA, which allows accurate modeling of our SANS data. As result, we show a temperature-dependent density transition of intracapsid DNA occurring between two coexisting phases-a hexagonally ordered high-density DNA phase in the capsid periphery and a low-density, less-ordered DNA phase in the core. As the temperature is increased from 20 °C to 40 °C, we found that the core-DNA phase undergoes a density and volume transition close to the physiological temperature of infection (~37 °C). The transition yields a lower energy state of DNA in the capsid core due to lower density and reduced packing defects. This increases DNA mobility, which is required to initiate rapid genome ejection from the virus capsid into a host cell, causing infection. These data reconcile our earlier findings of mechanical DNA transition in phage.


Asunto(s)
Bacteriófago lambda , Cápside , Bacteriófago lambda/genética , Cápside/química , Temperatura , Microscopía por Crioelectrón , ADN Viral/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/análisis
9.
Mol Microbiol ; 122(4): 491-503, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39233649

RESUMEN

DNA viruses recognize viral DNA and package it into virions. Specific recognition is needed to distinguish viral DNA from host cell DNA. The λ-like Escherichia coli phages are interesting and good models to examine genome packaging by large DNA viruses. Gifsy-1 is a λ-like Salmonella phage. Gifsy-1's DNA packaging specificity was compared with those of closely related phages λ, 21, and N15. In vivo packaging studies showed that a Gifsy-1-specific phage packaged λ DNA at ca. 50% efficiency and λ packages Gifsy-1-specific DNA at ~30% efficiency. The results indicate that Gifsy-1 and λ share the same DNA packaging specificity. N15 is also shown to package Gifsy-1 DNA. Phage 21 fails to package λ, N15, and Gifsy-1-specific DNAs; the efficiencies are 0.01%, 0.01%, and 1%, respectively. A known incompatibility between the 21 helix-turn-helix motif and cosBλ is proposed to account for the inability of 21 to package Gifsy-1 DNA. A model is proposed to explain the 100-fold difference in packaging efficiency between λ and Gifsy-1-specific DNAs by phage 21. Database sequences of enteric prophages indicate that phages with Gifsy-1's DNA packaging determinants are confined to Salmonella species. Similarly, prophages with λ DNA packaging specificity are rarely found in Salmonella. It is proposed that λ and Gifsy-1 have diverged from a common ancestor phage, and that the differences may reflect adaptation of their packaging systems to host cell differences.


Asunto(s)
Bacteriófago lambda , Empaquetamiento del ADN , ADN Viral , Fagos de Salmonella , ADN Viral/genética , Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , Fagos de Salmonella/genética , Fagos de Salmonella/fisiología , Escherichia coli/virología , Escherichia coli/genética , Ensamble de Virus
10.
Mol Microbiol ; 121(5): 895-911, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38372210

RESUMEN

The site-specific recombination pathway of bacteriophage λ encompasses isoenergetic but highly directional and tightly regulated integrative and excisive reactions that integrate and excise the vial chromosome into and out of the bacterial chromosome. The reactions require 240 bp of phage DNA and 21 bp of bacterial DNA comprising 16 protein binding sites that are differentially used in each pathway by the phage-encoded Int and Xis proteins and the host-encoded integration host factor and factor for inversion stimulation proteins. Structures of higher-order protein-DNA complexes of the four-way Holliday junction recombination intermediates provided clarifying insights into the mechanisms, directionality, and regulation of these two pathways, which are tightly linked to the physiology of the bacterial host cell. Here we review our current understanding of the mechanisms responsible for regulating and executing λ site-specific recombination, with an emphasis on key studies completed over the last decade.


Asunto(s)
Bacteriófago lambda , Recombinación Genética , Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , ADN Viral/genética , ADN Viral/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Sitios de Unión , Factores de Integración del Huésped/metabolismo , Factores de Integración del Huésped/genética
11.
J Virol ; 98(5): e0006824, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38661364

RESUMEN

The portal protein of tailed bacteriophage plays essential roles in various aspects of capsid assembly, motor assembly, genome packaging, connector formation, and infection processes. After DNA packaging is complete, additional proteins are assembled onto the portal to form the connector complex, which is crucial as it bridges the mature head and tail. In this study, we report high-resolution cryo-electron microscopy (cryo-EM) structures of the portal vertex from bacteriophage lambda in both its prohead and mature virion states. Comparison of these structures shows that during head maturation, in addition to capsid expansion, the portal protein undergoes conformational changes to establish interactions with the connector proteins. Additionally, the independently assembled tail undergoes morphological alterations at its proximal end, facilitating its connection to the head-tail joining protein and resulting in the formation of a stable portal-connector-tail complex. The B-DNA molecule spirally glides through the tube, interacting with the nozzle blade region of the middle-ring connector protein. These insights elucidate a mechanism for portal maturation and DNA translocation within the phage lambda system. IMPORTANCE: The tailed bacteriophages possess a distinct portal vertex that consists of a ring of 12 portal proteins associated with a 5-fold capsid shell. This portal protein is crucial in multiple stages of virus assembly and infection. Our research focused on examining the structures of the portal vertex in both its preliminary prohead state and the fully mature virion state of bacteriophage lambda. By analyzing these structures, we were able to understand how the portal protein undergoes conformational changes during maturation, the mechanism by which it prevents DNA from escaping, and the process of DNA spirally gliding.


Asunto(s)
Bacteriófago lambda , Proteínas de la Cápside , Cápside , Ensamble de Virus , Bacteriófago lambda/fisiología , Bacteriófago lambda/genética , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Microscopía por Crioelectrón , Empaquetamiento del ADN , ADN Viral/genética , ADN Viral/metabolismo , Modelos Moleculares , Conformación Proteica , Virión/metabolismo , Virión/ultraestructura
12.
Annu Rev Microbiol ; 74: 1-19, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32453973

RESUMEN

Two strains of good fortune in my career were to stumble upon the Watson-Gilbert laboratory at Harvard when I entered graduate school in 1964, and to study gene regulation in bacteriophage λ when I was there. λ was almost entirely a genetic item a few years before, awaiting biochemical incarnation. Throughout my career I was a relentless consumer of the work of previous and current generations of λ geneticists. Empowered by this background, my laboratory made contributions in two areas. The first was regulation of early gene transcription in λ, the study of which began with the discovery of the Rho transcription termination factor, and the regulatory mechanism of transcription antitermination by the λ N protein, subjects of my thesis work. This was developed into a decades-long program during my career at Cornell, studying the mechanism of transcription termination and antitermination. The second area was the classic problem of prophage induction in response to cellular DNA damage, the study of which illuminated basic cellular processes to survive DNA damage.


Asunto(s)
Bacteriófago lambda/genética , Daño del ADN , ADN , Transcripción Genética , Bacteriófago lambda/fisiología , Regulación de la Expresión Génica , Historia del Siglo XX , Humanos , Masculino , ARN Viral/genética , Investigación/historia , Factores de Transcripción
13.
Proc Natl Acad Sci U S A ; 119(14): e2106005119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344423

RESUMEN

SignificanceSome viruses that infect bacteria, temperate bacteriophages, can confer immunity to infection by the same virus. Here we report λ-immune bacteria could protect λ-sensitive bacteria from killing by phage λ in mixed culture. The protection depended on the extent to which the immune bacteria were able to adsorb the phage. Reconciling modeling with experiment led to identifying a decline in protection as bacteria stopped growing. Adsorption of λ was compromised by inhibition of bacterial energy metabolism, explaining the loss of protection as bacterial growth ceased.


Asunto(s)
Bacteriófagos , Bacteriófago lambda/genética , Escherichia coli/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(33): e2205278119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35951650

RESUMEN

Lambdoid bacteriophage Q proteins are transcription antipausing and antitermination factors that enable RNA polymerase (RNAP) to read through pause and termination sites. Q proteins load onto RNAP engaged in promoter-proximal pausing at a Q binding element (QBE) and adjacent sigma-dependent pause element to yield a Q-loading complex, and they translocate with RNAP as a pausing-deficient, termination-deficient Q-loaded complex. In previous work, we showed that the Q protein of bacteriophage 21 (Q21) functions by forming a nozzle that narrows and extends the RNAP RNA-exit channel, preventing formation of pause and termination RNA hairpins. Here, we report atomic structures of four states on the pathway of antitermination by the Q protein of bacteriophage λ (Qλ), a Q protein that shows no sequence similarity to Q21 and that, unlike Q21, requires the transcription elongation factor NusA for efficient antipausing and antitermination. We report structures of Qλ, the Qλ-QBE complex, the NusA-free pre-engaged Qλ-loading complex, and the NusA-containing engaged Qλ-loading complex. The results show that Qλ, like Q21, forms a nozzle that narrows and extends the RNAP RNA-exit channel, preventing formation of RNA hairpins. However, the results show that Qλ has no three-dimensional structural similarity to Q21, employs a different mechanism of QBE recognition than Q21, and employs a more complex process for loading onto RNAP than Q21, involving recruitment of Qλ to form a pre-engaged loading complex, followed by NusA-facilitated refolding of Qλ to form an engaged loading complex. The results establish that Qλ and Q21 are not structural homologs and are solely functional analogs.


Asunto(s)
Bacteriófago lambda , Proteínas de Escherichia coli , Replegamiento Proteico , Terminación de la Transcripción Genética , Factores de Elongación Transcripcional , Proteínas Virales , Bacteriófago lambda/genética , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Conformación Proteica , Factores de Elongación Transcripcional/química , Proteínas Virales/química
15.
J Bacteriol ; 206(6): e0002224, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38771038

RESUMEN

Phage-induced lysis of Gram-negative bacterial hosts usually requires a set of phage lysis proteins, a holin, an endopeptidase, and a spanin system, to disrupt each of the three cell envelope layers. Genome annotations and previous studies identified a gene region in the Shewanella oneidensis prophage LambdaSo, which comprises potential holin- and endolysin-encoding genes but lacks an obvious spanin system. By a combination of candidate approaches, mutant screening, characterization, and microscopy, we found that LambdaSo uses a pinholin/signal-anchor-release (SAR) endolysin system to induce proton leakage and degradation of the cell wall. Between the corresponding genes, we found that two extensively nested open-reading frames encode a two-component spanin module Rz/Rz1. Unexpectedly, we identified another factor strictly required for LambdaSo-induced cell lysis, the phage protein Lcc6. Lcc6 is a transmembrane protein of 65 amino acid residues with hitherto unknown function, which acts at the level of holin in the cytoplasmic membrane to allow endolysin release. Thus, LambdaSo-mediated cell lysis requires at least four protein factors (pinholin, SAR endolysin, spanin, and Lcc6). The findings further extend the known repertoire of phage proteins involved in host lysis and phage egress. IMPORTANCE: Lysis of bacteria can have multiple consequences, such as the release of host DNA to foster robust biofilm. Phage-induced lysis of Gram-negative cells requires the disruption of three layers, the outer and inner membranes and the cell wall. In most cases, the lysis systems of phages infecting Gram-negative cells comprise holins to disrupt or depolarize the membrane, thereby releasing or activating endolysins, which then degrade the cell wall. This, in turn, allows the spanins to become active and fuse outer and inner membranes, completing cell envelope disruption and allowing phage egress. Here, we show that the presence of these three components may not be sufficient to allow cell lysis, implicating that also in known phages, further factors may be required.


Asunto(s)
Bacteriólisis , Endopeptidasas , Shewanella , Shewanella/virología , Shewanella/genética , Endopeptidasas/metabolismo , Endopeptidasas/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Bacteriófago lambda/fisiología , Bacteriófago lambda/genética
16.
J Biol Chem ; 299(1): 102721, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410432

RESUMEN

Site-specific recombinase Int mediates integration of the bacteriophage λ genome into the Escherichia coli chromosome. Integration occurs once the Int tetramer, assisted by the integration host factor IHF, forms the intasome, a higher order structure, within which Int, a heterobivalent protein, interacts with two nonhomologous DNA sequences: the core recombination sites and the accessory arm sites. The binding to these sites is mediated by the catalytic C-terminal domain (CTD) and the regulatory N-terminal domain (NTD) of Int, respectively. Within Int, the NTD can activate or inhibit the recombination activity of the CTD depending on whether the NTD is bound to the arm sites. The CTD alone cannot mediate recombination, and even when the NTD and the CTD are mixed together as individual polypeptides, the NTD cannot trigger recombination in the CTD. In this work, we set to determine what modifications can unlock the recombination activity in the CTD alone and how the CTD can be modified to respond to recombination-triggering signals from the NTD. For this, we performed a series of genetic analyses, which showed that a single mutation that stabilizes the CTD on DNA, E174K, allows the CTD to recombine the core DNA sequences. When the NTD is paired with the CTD (E174K) that also bears a short polypeptide from the C terminus of the NTD, the resulting binary Int can recombine arm-bearing substrates. Our results provide insights into the molecular basis of the regulation of the Int activity and suggest how binary recombinases of the integrase type can be engineered.


Asunto(s)
Bacteriófago lambda , Integrasas , Integrasas/metabolismo , Bacteriófago lambda/genética , Recombinasas/genética , Dominio Catalítico , Sitios de Unión , Recombinación Genética , Escherichia coli/genética , Escherichia coli/metabolismo
17.
Mol Microbiol ; 120(6): 783-790, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37770255

RESUMEN

In physiology and synthetic biology, it can be advantageous to introduce a gene into a naive bacterial host under conditions in which all cells receive the gene and remain fully functional. This cannot be done by the usual chemical transformation and electroporation methods due to low efficiency and cell death, respectively. However, in vivo packaging of plasmids (called cosmids) that contain the 223 bp cos site of phage λ results in phage particles that contain concatemers of the cosmid that can be transduced into all cells of a culture. An historical shortcoming of in vivo packaging of cosmids was inefficient packaging and contamination of the particles containing cosmid DNA with a great excess of infectious λ phage. Manipulation of the packaging phage and the host has eliminated these shortcomings resulting in particles that contain only cosmid DNA. Plasmids have the drawback that they can be difficult to remove from cells. Plasmids with conditional replication provide a means to "cure" plasmids from cells. The prevalent conditional replication plasmids are temperature-sensitive plasmids, which are cured at high growth temperature. However, inducible replication plasmids are in some cases more useful, especially since this approach has been applied to plasmids having diverse replication and compatibility properties.


Asunto(s)
Bacteriófago lambda , Escherichia coli , Cósmidos , Escherichia coli/genética , Escherichia coli/metabolismo , Plásmidos/genética , Bacteriófago lambda/genética , ADN/metabolismo , ADN Viral/genética , Replicación del ADN/genética
18.
Anal Biochem ; 693: 115592, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38871161

RESUMEN

In numerous malignancies, miRNA-155 is overexpressed and has oncogenic activity because it is one of the most efficient microRNAs for inhibiting apoptosis in human cancer cells. As a result, the highest sensitive detection of the miRNA-155 gene is a technological instrument that can enable early cancer screening. In this study, a miRNA-155 biosensor was created to create a hairpin probe that can bind to the miRNA-155 gene using lambda nucleic acid exonuclease, which can cut the 5' phosphorylated double strand, and by the DNA probe is recognized by the Cas12a enzyme, which then activates Cas12a to catalyze trans-cutting produces strong fluorescence. Research finding, the target concentration's logarithm and corresponding fluorescence intensity have a strong linear connection, and the limit of detection (LOD) of the sensing system was determined to be 8.3 pM. In addition, the biosensor displayed exceptional specificity, low false-positive signal, and high sensitivity in detecting the miRNA-155 gene in serum samples. This study's creation of a biosensor that has high sensitivity, good selectivity, and is simple to operate provides promising opportunities for research into biosensor design and early cancer detection.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , MicroARNs , MicroARNs/genética , MicroARNs/sangre , MicroARNs/análisis , Humanos , Técnicas Biosensibles/métodos , Sistemas CRISPR-Cas/genética , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Límite de Detección , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófago lambda/genética , Endodesoxirribonucleasas
19.
Analyst ; 149(21): 5213-5224, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39324338

RESUMEN

Droplet digital PCR (ddPCR) is recognized as a high-precision method for nucleic acid quantification, extensively utilized in biomedical research and clinical diagnostics. This technique employs microfluidic technology to partition the nucleic acid-containing reaction mixture into discrete droplets for amplification, achieving absolute quantification by identifying and enumerating the number of fluorescent droplets. The accuracy of droplet quantification is pivotal to the success of the assay. However, current image-processing tools are operationally complex, and commercial instruments are costly. Moreover, the designed algorithms exhibit a need for enhanced accuracy and are often restricted to use by trained personnel with specific microscopy equipment. In response to these challenges, we introduce an automated device (A-MMD), capable of detecting fluorescent droplets in ddPCR images captured by multiple microscopes. The device integrates three distinct algorithms tailored for the image processing of Laser Scanning Confocal Microscopy (LSCM), inverted microscopy, and self-assembled microscopy. Experimental validation using λ DNA demonstrated a 100.00% identification rate for positive droplets across all three image types, and the average identification rates for total droplets being 99.27% for LSCM, 98.96% for inverted microscopy, and 99.08% for self-assembled microscopy. Furthermore, the A-MMD is equipped with a user-friendly interface (UI) that streamlines the operational process, enabling non-specialists to efficiently perform droplet detection tasks. Our device not only has good environmental adaptability and identification accuracy, but also significantly reduces costs and operational complexity. It offers an economical, efficient, and user-friendly solution for ddPCR image analysis, thereby further propelling the advancement and application of nucleic acid detection technology.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Colorantes Fluorescentes/química , Automatización , Microscopía Confocal/métodos , Microscopía/métodos , Bacteriófago lambda/genética , ADN/química , ADN/análisis , Microscopía Fluorescente/métodos
20.
Nature ; 564(7735): 283-286, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518855

RESUMEN

The arms race between bacteria and the phages that infect them drives the continual evolution of diverse anti-phage defences. Previously described anti-phage systems have highly varied defence mechanisms1-11; however, all mechanisms rely on protein components to mediate defence. Here we report a chemical anti-phage defence system that is widespread in Streptomyces. We show that three naturally produced molecules that insert into DNA are able to block phage replication, whereas molecules that target DNA by other mechanisms do not. Because double-stranded DNA phages are the most numerous group in the biosphere and the production of secondary metabolites by bacteria is ubiquitous12, this mechanism of anti-phage defence probably has a major evolutionary role in shaping bacterial communities.


Asunto(s)
Bacteriófagos/efectos de los fármacos , Bacteriófagos/genética , Metabolismo Secundario , Streptomyces/química , Streptomyces/virología , Replicación Viral/efectos de los fármacos , Bacteriófago lambda/efectos de los fármacos , Bacteriófago lambda/genética , Bacteriófago lambda/crecimiento & desarrollo , Bacteriófago lambda/fisiología , Bacteriófagos/crecimiento & desarrollo , Evolución Biológica , ADN Viral/biosíntesis , ADN Viral/genética , Daunorrubicina/farmacología , Escherichia coli/virología , Pseudomonas aeruginosa/virología , Streptomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA