Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(16): 6106-6111, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38594830

RESUMEN

This study explores the innovative field of pulsed direct current arc-induced nanoelectrospray ionization mass spectrometry (DCAI-nano-ESI-MS), which utilizes a low-temperature direct current (DC) arc to induce ESI during MS analyses. By employing a 15 kV output voltage, the DCAI-nano-ESI source effectively identifies various biological molecules, including angiotensin II, bradykinin, cytochrome C, and soybean lecithin, showcasing impressive analyte signals and facilitating multicharge MS in positive- and negative-ion modes. Notably, results show that the oxidation of fatty acids using a DC arc produces [M + O - H]- ions, which aid in identifying the location of C═C bonds in unsaturated fatty acids and distinguishing between isomers based on diagnostic ions observed during collision-induced dissociation tandem MS. This study presents an approach for identifying the sn-1 and sn-2 positions in phosphatidylcholine using phosphatidylcholine and nitrate adduct ions, accurately determining phosphatidylcholine molecular configurations via the Paternò-Büchi reaction. With all the advantages above, DCAI-nano-ESI holds significant promise for future analytical and bioanalytical applications.


Asunto(s)
Nanotecnología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Citocromos c/química , Citocromos c/análisis , Bradiquinina/química , Bradiquinina/análisis , Angiotensina II/química , Angiotensina II/análisis , Fosfatidilcolinas/química , Fosfatidilcolinas/análisis , Glycine max/química
2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33397811

RESUMEN

Kallikrein (PKa), generated by activation of its precursor prekallikrein (PK), plays a role in the contact activation phase of coagulation and functions in the kallikrein-kinin system to generate bradykinin. The general dogma has been that the contribution of PKa to the coagulation cascade is dependent on its action on FXII. Recently this dogma has been challenged by studies in human plasma showing thrombin generation due to PKa activity on FIX and also by murine studies showing formation of FIXa-antithrombin complexes in FXI deficient mice. In this study, we demonstrate high-affinity binding interactions between PK(a) and FIX(a) using surface plasmon resonance and show that these interactions are likely to occur under physiological conditions. Furthermore, we directly demonstrate dose- and time-dependent cleavage of FIX by PKa in a purified system by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and chromogenic assays. By using normal pooled plasma and a range of coagulation factor-deficient plasmas, we show that this action of PKa on FIX not only results in thrombin generation, but also promotes fibrin formation in the absence of FXII or FXI. Comparison of the kinetics of either FXIa- or PKa-induced activation of FIX suggest that PKa could be a significant physiological activator of FIX. Our data indicate that the coagulation cascade needs to be redefined to indicate that PKa can directly activate FIX. The circumstances that drive PKa substrate specificity remain to be determined.


Asunto(s)
Bradiquinina/metabolismo , Factor IX/metabolismo , Factor XII/metabolismo , Fibrina/metabolismo , Calicreínas/metabolismo , Trombina/metabolismo , Coagulación Sanguínea/fisiología , Bradiquinina/química , Calcio/química , Calcio/metabolismo , Cationes Bivalentes , Factor IX/química , Factor XI/química , Factor XI/metabolismo , Factor XII/química , Fibrina/química , Humanos , Calicreínas/química , Cinética , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Unión Proteica , Trombina/química
3.
Soft Matter ; 19(26): 4869-4879, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37334565

RESUMEN

Bradykinin (BK) is a peptide hormone that plays a crucial role in blood pressure control, regulates inflammation in the human body, and has recently been implicated in the pathophysiology of COVID-19. In this study, we report a strategy for fabricating highly ordered 1D nanostructures of BK using DNA fragments as a template for self-assembly. We have combined synchrotron small-angle X-ray scattering and high-resolution microscopy to provide insights into the nanoscale structure of BK-DNA complexes, unveiling the formation of ordered nanofibrils. Fluorescence assays hint that BK is more efficient at displacing minor-groove binders in comparison with base-intercalant dyes, thus, suggesting that interaction with DNA strands is mediated by electrostatic attraction between cationic groups at BK and the high negative electron density of minor-grooves. Our data also revealed an intriguing finding that BK-DNA complexes can induce a limited uptake of nucleotides by HEK-293t cells, which is a feature that has not been previously reported for BK. Moreover, we observed that the complexes retained the native bioactivity of BK, including the ability to modulate Ca2+ response into endothelial HUVEC cells. Overall, the findings presented here demonstrate a promising strategy for the fabrication of fibrillar structures of BK using DNA as a template, which keep bioactivity features of the native peptide and may have implications in the development of nanotherapeutics for hypertension and related disorders.


Asunto(s)
Bradiquinina , COVID-19 , Humanos , Bradiquinina/química , Bradiquinina/farmacología , Péptidos , Transducción de Señal , Células Endoteliales
4.
Acc Chem Res ; 51(6): 1487-1495, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29746100

RESUMEN

Ion mobility spectrometry (IMS) has become a valuable tool in biophysical and bioanalytical chemistry because of its ability to separate and characterize the structure of gas-phase biomolecular ions on the basis of their collisional cross section (CCS). Its importance has grown with the realization that in many cases, biomolecular ions retain important structural characteristics when produced in the gas phase by electrospray ionization (ESI). While a CCS can help distinguish between structures of radically different types, one cannot expect a single number to differentiate similar conformations of a complex molecule. Molecular spectroscopy has also played an increasingly important role for structural characterization of biomolecular ions. Spectroscopic measurements, particularly when performed at cryogenic temperatures, can be extremely sensitive to small changes in a molecule's conformation and provide tight constraints for calculations of biomolecular structures. However, spectra of complex molecules can be heavily congested due to the presence of multiple stable conformations, each of which can have a distinct spectrum. This congestion can inhibit spectral analysis and complicate the extraction of structural information. Even when a single conformation is present, the conformational search process needed to match a measured spectrum with a computed structure can be overwhelming for peptides of more than a few amino acids, for example. We have recently combined ion mobility spectrometry and cryogenic ion spectroscopy (CIS) to characterize the structures of gas-phase biomolecular ions. In this Account, we illustrate how the coupling of IMS and CIS is by nature synergistic. On the one hand, IMS can be used as a conformational filter to reduce spectral congestion that arises from heterogeneous samples, facilitating structural analysis. On the other hand, highly resolved, cryogenic spectra can serve as a selective detector for IMS that can increase the effective resolution and hence the maximum number of distinct species that can be detected. Taken together, spectra and CCS measurements on the same system facilitates structural analysis and strengthens the conclusions that can be drawn from each type of data. After describing different approaches to combining these two techniques in such a way as to simplify the data obtained from each one separately, we present two examples that illustrate the type of insight gained from using spectra and CCS data together for characterizing gas-phase biomolecular ions. In one example, the CCS is used as a constraint for quantum chemical structure calculations of kinetically trapped species, where a lowest-energy criterion is not applicable. In a second example, we use both the CCS and a cryogenic infrared spectrum as a means to distinguish isomeric glycans.


Asunto(s)
Bradiquinina/química , Espectrometría de Movilidad Iónica/métodos , Fragmentos de Péptidos/química , Polisacáridos/análisis , Conformación Proteica
5.
Amino Acids ; 51(2): 295-309, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30327888

RESUMEN

Qualitative and quantitative determination of amino acid composition using amino acid analysis (AAA) is an important quality attribute and considered an identity of therapeutic peptide drugs by the regulatory agencies. Although huge literature is available on pre- and post- column derivatization AAA methods, arriving at an appropriate hydrolysis protocol coupled with adequate separation of the derivatized/underivatized amino acids is always challenging. Towards achieving a facile and comprehensive protocol for AAA, the present work is geared towards developing a deeper understanding of the extent of hydrolysis of peptide, and the nature and stability of amino acids present in the peptide backbone. This defines the suitability of the method in meeting the end goals and the regulatory requirement. Analysis of historical data generated during the method optimization of AAA for icatibant acetate (ICT) using head space oven hydrolysis (HSOH) and microwave-assisted hydrolysis (MAH) methods helped in arriving at fast (< 1 h) and efficient hydrolysis (0.9-1.1 of theoretical residue) conditions. Better separations for the natural and unnatural amino acids were achieved using 3.45 ≤ pH ≤ 10.85, and a column oven gradient program. This approach was useful in meeting the method quality attributes [resolution (Rs) > 2.0; plate count (N) > 5600; and USP tailing factor < 1.2] with a target analytical method profile of relative amino acid mole ratios (RAAMR) in the range of 0.9-1.1 for Ser, Oic, Tic, Hyp, Ala (Thi), Gly and Pro, and between 2.7 and 3.3 for Arg. The developed method was validated as per the ICH guidelines and is precise, accurate, linear and robust.


Asunto(s)
Aminoácidos/análisis , Antiinflamatorios no Esteroideos/química , Antagonistas del Receptor de Bradiquinina B2/química , Bradiquinina/análogos & derivados , Angioedemas Hereditarios/tratamiento farmacológico , Antiinflamatorios no Esteroideos/uso terapéutico , Bradiquinina/química , Bradiquinina/uso terapéutico , Antagonistas del Receptor de Bradiquinina B2/uso terapéutico , Cromatografía Líquida de Alta Presión , Exactitud de los Datos , Calor , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Ninhidrina/química , Concentración Osmolar , Tiempo
6.
Bioorg Med Chem Lett ; 29(1): 11-14, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30466897

RESUMEN

Bradykinin is produced in response to inflammation, trauma, burns, shock, allergy and some cardiovascular diseases. Actions of this peptide are mediated through two different G-protein coupled receptors, named B1 and B2 that have different pharmacological characteristics. The former is up-regulated during inflammation episodes or tissue trauma whereas, the latter is constitutively expressed in a variety of cell types. In a previous work we have characterized the molecular features that explain the observed structure-activity results for both receptors by means of molecular modeling studies, using diverse ligands for both receptors. These results were summarized in the form of two different pharmacophores that provided new insights to be used for the design of novel molecules with antagonistic profile. In the present work, we compare these pharmacophores to understand the features that characterize ligand selectivity to the two bradykinin receptors. The study shows that most of the residues involved in the binding pocket are similar in both receptors and consequently are the pharmacophores obtained. The main difference between the two pharmacophores remains on point #5 that involves a polar moiety for the B1 receptor and an aromatic ring for the B2 receptor. Accordingly, analysis of the prospective bound conformation of several non-selective small molecule ligands of the bradykinin receptors permits to conclude that fulfilment of point#5 is a requirement to produce selective ligands. However, the study also shows that this is a necessary condition only, since ligands need also to be bulky enough to avoid binding to these receptors in diverse poses. These results provide new insights for a better understanding of the molecular features that ligands are required to exhibit to be selective bradykinin ligands.


Asunto(s)
Bradiquinina/farmacología , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bradiquinina/química , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
7.
Anal Bioanal Chem ; 411(11): 2339-2349, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30899997

RESUMEN

We introduce rapid replica molding of ordered, high-aspect-ratio, thiol-ene micropillar arrays for implementation of microfluidic immobilized enzyme reactors (IMERs). By exploiting the abundance of free surface thiols of off-stoichiometric thiol-ene compositions, we were able to functionalize the native thiol-ene micropillars with gold nanoparticles (GNPs) and these with proteolytic α-chymotrypsin (CHT) via thiol-gold interaction. The micropillar arrays were replicated via PDMS soft lithography, which facilitated thiol-ene curing without the photoinitiators, and thus straightforward bonding and good control over the surface chemistry (number of free surface thiols). The specificity of thiol-gold interaction was demonstrated over allyl-rich thiol-ene surfaces and the robustness of the CHT-IMERs at different flow rates and reaction temperatures using bradykinin hydrolysis as the model reaction. The product conversion rate was shown to increase as a function of decreasing flow rate (increasing residence time) and upon heating of the IMER to physiological temperature. Owing to the effective enzyme immobilization onto the micropillar array by GNPs, no further purification of the reaction solution was required prior to mass spectrometric detection of the bradykinin hydrolysis products and no clogging problems, commonly associated with conventional capillary packings, were observed. The activity of the IMER remained stable for at least 1.5 h (continuous use), suggesting that the developed protocol may provide a robust, new approach to implementation of IMER technology for proteomics research. Graphical abstract.


Asunto(s)
Quimotripsina/química , Enzimas Inmovilizadas/química , Oro/química , Dispositivos Laboratorio en un Chip , Nanopartículas del Metal/química , Compuestos de Sulfhidrilo/química , Animales , Bradiquinina/química , Bovinos , Hidrólisis , Modelos Moleculares
8.
Molecules ; 24(15)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370142

RESUMEN

Hypertension is considered a major public health issue due to its high prevalence and subsequent risk of cardiovascular and kidney diseases. Thus, the search for new antihypertensive compounds remains of great interest. Snake venoms provide an abundant source of lead molecules that affect the cardiovascular system, which makes them prominent from a pharmaceutical perspective. Such snake venom components include bradykinin potentiating peptides (proline-rich oligopeptides), natriuretic peptides, phospholipases A2, serine-proteases and vascular endothelial growth factors. Some heparin binding hypotensive factors, three-finger toxins and 5' nucleotidases can also exert blood pressure lowering activity. Great advances have been made during the last decade regarding the understanding of the mechanism of action of these hypotensive proteins. Bradykinin potentiating peptides exert their action primarily by inhibiting the angiotensin-converting enzyme and increasing the effect of endogenous bradykinin. Snake venom phospholipases A2 are capable of reducing blood pressure through the production of arachidonic acid, a precursor of cyclooxygenase metabolites (prostaglandins or prostacyclin). Other snake venom proteins mimic the effects of endogenous kallikrein, natriuretic peptides or vascular endothelial growth factors. The aim of this work was to review the current state of knowledge regarding snake venom components with potential antihypertensive activity and their mechanisms of action.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Antihipertensivos/uso terapéutico , Hipertensión/tratamiento farmacológico , Hipotensión/tratamiento farmacológico , Inhibidores de la Enzima Convertidora de Angiotensina/química , Animales , Antihipertensivos/química , Bradiquinina/química , Bradiquinina/uso terapéutico , Humanos , Péptidos/química , Péptidos/uso terapéutico , Venenos de Serpiente/química
9.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1855-1866, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28757212

RESUMEN

In recent years a wide range of studies have shown that G protein-coupled receptors modulate a variety of cell functions through the formation of dimers. For instance, there is growing evidence for the dimerization of bradykinin or dopamine receptors, both as homodimers and heterodimers. A discovery of direct interactions of angiotensin II receptors with bradykinin 2 receptor (B2R) or dopamine D2 (D2R) receptor has led to a hypothesis on a potential dimerization between two latter receptors. In this study, we have demonstrated a constitutive colocalization of receptors on the membranes of HEK293 cells transiently transfected with plasmid vectors encoding B2R and D2R, fused with fluorescent proteins. The receptor colocalization was significantly enhanced by specific agonists of B2R or D2R after 5min following the addition, whereas simultaneous stimulation with these agonists did not influence the B2R/D2R colocalization level. In addition, B2R-D2R heterodimerization was confirmed with FLIM-FRET technique. The most characteristic signaling pathways for B2R and D2R, dependent on intracellular Ca2+ and cAMP concentration, respectively, were analyzed in cells presenting similar endogenous expression of B2R and D2R. Significant changes in receptors' signaling were observed after simultaneous stimulation with agonists, suggesting transformations in proteins' conformation after dimerization. The evidence of B2R-D2R dimerization may open new perspectives in the modulation of diverse cellular functions which depend on their activation.


Asunto(s)
Bradiquinina/química , Dimerización , Receptor de Bradiquinina B2/química , Receptores de Dopamina D2/química , Bradiquinina/genética , Bradiquinina/metabolismo , Células HEK293 , Humanos , Conformación Proteica , Receptor de Bradiquinina B2/agonistas , Receptor de Bradiquinina B2/genética , Receptores de Dopamina D2/genética , Transducción de Señal/genética
10.
J Am Chem Soc ; 140(30): 9357-9360, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30028131

RESUMEN

Ion mobility and mass spectrometry techniques are used to investigate the stabilities of different conformations of bradykinin (BK, Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9). At elevated solution temperatures, we observe a slow protonation reaction, i.e., [BK+2H]2++H+ → [BK+3H]3+, that is regulated by trans → cis isomerization of Arg1-Pro2, resulting in the Arg1- cis-Pro2- cis-Pro3-Gly4-Phe5-Ser6- cis-Pro7-Phe8-Arg9 (all- cis) configuration. Once formed, the all- cis [BK+3H]3+ spontaneously cleaves the bond between Pro2-Pro3 with perfect specificity, a bond that is biologically resistant to cleavage by any human enzyme. Temperature-dependent kinetics studies reveal details about the intrinsic peptide processing mechanism. We propose that nonenzymatic cleavage at Pro2-Pro3 occurs through multiple intermediates and is regulated by trans → cis isomerization of Arg1-Pro2. From this mechanism, we can extract transition state thermochemistry: Δ G‡ = 94.8 ± 0.2 kJ·mol-1, Δ H‡ = 79.8 ± 0.2 kJ·mol-1, and Δ S‡ = -50.4 ± 1.7 J·mol-1·K-1 for the trans → cis protonation event; and, Δ G‡ = 94.1 ± 9.2 kJ·mol-1, Δ H‡ = 107.3 ± 9.2 kJ·mol-1, and Δ S‡ = 44.4 ± 5.1 J·mol-1·K-1 for bond cleavage. Biological resistance to the most favored intrinsic processing pathway prevents formation of Pro3-Gly4-Phe5-Ser6- cis-Pro7-Phe8-Arg9 that is approximately an order of magnitude more antigenic than BK.


Asunto(s)
Bradiquinina/química , Humanos , Isomerismo , Cinética , Modelos Químicos , Conformación Proteica , Temperatura , Termodinámica
11.
J Am Chem Soc ; 140(7): 2401-2404, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29412650

RESUMEN

Mutational analysis is widely used to study the relationship between sequence and structure of proteins and peptides. It is often assumed that substituting a proline with another amino acid "locks" the peptide bond in the trans conformation, allowing only a subset of the initial molecular geometries to be observed. To test this assumption, we assess the result of substituting two prolines in the bradykinin sequence with alanine using field-asymmetric ion mobility spectrometry combined with cryogenic ion spectroscopy in the gas phase. While the structure of the mutant coincides with a part of the conformational space of the original peptide, the higher flexibility of the alanine backbone compared to proline allows it to access additional structures. We conclude that proline-to-nonproline substitutions are helpful to assign structures, but they should be used in conjunction with spectroscopic techniques that allow detailed comparison of the structures of the mutant and the native peptide.


Asunto(s)
Bradiquinina/genética , Alanina/química , Bradiquinina/química , Mutación , Prolina/química , Conformación Proteica
12.
Anal Chem ; 90(17): 10122-10127, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30074774

RESUMEN

The removal of sodium dodecyl sulfate (SDS) in SDS-assisted proteomics with electrospray-ionization-mass-spectrometric (ESI-MS) analysis is an essential step in the analysis. Off-line state-of-the-art sample-preparation strategies can allow 100% removal of DS- and up to 100% peptide recoveries. These strategies, however, are typically laborious and require long analysis times and a complex experimental setup. Here, we developed a simple, membrane-free, electrokinetic, on-line, integrated SDS removal-ESI-MS device that was able to enhance ESI-MS signals of bradykinin and peptides from trypsin-digested bovine serum albumin (BSA) in samples that contained SDS micelles. The significant peptide-signal improvements were contributed by the complete removal of DS- and the enrichment of the peptides in the presence of an electric field. Enrichment was via micelle-to-solvent stacking, initially developed in capillary electrophoresis. Bradykinin percent recovery was 800%, and BSA peptide percent recovery was 87%. Enhancement factors in ESI-MS signals (after and before removal) for selected m/ z values of peptides from the BSA digest were 535-693.


Asunto(s)
Péptidos/química , Dodecil Sulfato de Sodio/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Bradiquinina/química , Electroforesis Capilar , Prueba de Estudio Conceptual , Proteómica , Albúmina Sérica Bovina/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Tripsina/química
13.
Small ; 14(7)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29292579

RESUMEN

Retro-inverso bradykinin (RI-BK) has better metabolic stability and higher affinity for the BK type 2 (B2) receptor, compared with bradykinin. At low doses, RI-BK can selectively enhance the permeability of the blood-brain tumor barrier (BBTB) without harming normal brain tissue. In this study, gold nanoparticles (GNPs) of size ranging from 5 to 90 nm are synthesized to assess the optimal size of nanocarriers that achieves maximum brain accumulation after the treatment of RI-BK. The ability of the GNPs to cross the BBTB is tested in a rat C6 glioma tumor model. The results of inductively coupled plasma-mass spectrometry and transmission electron microscopy indicate that GNPs with size of 70 nm achieve maximum permeability to the glioma. The present study supports the conclusion that RI-BK can enhance the permeability of BBTB and provides fundamental information for further development of nanomedicines or nanoprobes for glioma therapy.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Nanopartículas del Metal/química , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Bradiquinina/análogos & derivados , Bradiquinina/química , Bradiquinina/metabolismo , Oro/química , Ratas
14.
Can J Physiol Pharmacol ; 96(5): 459-470, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29414245

RESUMEN

To support bradykinin (BK) B2 receptor (B2R) detection and therapeutic stimulation, we developed and characterized fusion proteins consisting of the BK homolog maximakinin (MK), or variants, positioned at the C-terminus of functional proteins (enhanced green fluorescent protein (EGFP), the peroxidase APEX2, or human serum albumin (HSA)). EGFP-MK loses its reactivity with anti-BK antibodies and molecular mass as it progresses in the endosomal tract of cells expressing rat B2Rs (immunoblots, epifluorescence microscopy). APEX2-(NG)15-MK is a bona fide agonist of the rat, but not of the human B2R (calcium and c-Fos signaling) and is compatible with the cytochemistry reagent TrueBlue (microscopy), a luminol-based reagent, or 3,3',5,5'-tetramethylbenzidine (luminescence or colourimetric B2R detection, cell well plate format). APEX2-(NG)15-MK is a non-isotopic ligand suitable for drug discovery via binding competition. Affinity-purified secreted forms of HSA fused with peptides possessing the C-terminal MK or BK sequence failed to stimulate the rat B2R in the concentration range of 50-600 nmol/L. However, the non-secreted construction myc-HSA-MK is a B2R agonist, indicating that protein denaturation made the C-terminal sequence available for receptor binding. Fusion protein ligands of the B2R are stable but subjected to slow intracellular inactivation, strong species specificity, and possible steric hindrance between the receptor and large proteins.


Asunto(s)
Bradiquinina/química , Bradiquinina/farmacología , Receptor de Bradiquinina B2/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacología , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Ratas , Relación Estructura-Actividad
15.
J Am Chem Soc ; 138(29): 9224-33, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27366919

RESUMEN

The dynamic nature of intrinsically disordered peptides makes them a challenge to characterize by solution-phase techniques. In order to gain insight into the relation between the disordered state and the environment, we explore the conformational space of the N-terminal 1-5 fragment of bradykinin (BK[1-5](2+)) in the gas phase by combining drift tube ion mobility, cold-ion spectroscopy, and first-principles simulations. The ion-mobility distribution of BK[1-5](2+) consists of two well-separated peaks. We demonstrate that the conformations within the peak with larger cross-section are kinetically trapped, while the more compact peak contains low-energy structures. This is a result of cis-trans isomerization of the two prolyl-peptide bonds in BK[1-5](2+). Density-functional theory calculations reveal that the compact structures have two very different geometries with cis-trans and trans-cis backbone conformations. Using the experimental CCSs to guide the conformational search, we find that the kinetically trapped species have a trans-trans configuration. This is consistent with NMR measurements performed in a solution, which show that 82% of the molecules adopt a trans-trans configuration and behave as a random coil.


Asunto(s)
Bradiquinina/química , Gases/química , Fragmentos de Péptidos/química , Modelos Moleculares , Conformación Proteica , Soluciones , Estereoisomerismo , Termodinámica
16.
Biol Chem ; 397(4): 305-14, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26584354

RESUMEN

Bradykinin (BK) is a nonapeptide important for several physiological processes such as vasodilatation, increase in vascular permeability and release of inflammatory mediators. BK performs its actions by coupling to and activating the B2 receptor, a family A G-protein coupled receptor. Using a strategy which allows systematical monitoring of BK R1 and R9 residues and B2 receptor acidic residues Glu5.35(226) and Asp6.58(298), our study aims at clarifying the BK interaction profile with the B2 receptor [receptor residue numbers are normalized according to Ballesteros and Weinstein, Methods Neurosci. 25 (1995), pp. 366-428) followed by receptor sequence numbering in brackets]. N- and C-terminal analogs of BK (-A1, -G1, -K1, -E1 and BK-A9) were tested against wild type B2, Glu5.35(226)Ala and Asp6.58(298)Ala B2 mutant receptors for their affinity and capability to elicit responses by mechanical recordings of isolated mice stomach fundus, measuring intracellular calcium mobilization, and competitive fluorimetric binding assays. BK showed 2- and 15-fold decreased potency for Glu5.35(226) and Asp6.58(298) B2 mutant receptors, respectively. In B2-Glu5.35(226)Ala BK analogs showed milder reduction in evaluated parameters. On the other hand, in the B2-Asp6.58(298)Ala mutant, no N-terminal analog was able to elicit any response. However, the BK-A9 analog presented higher affinity parameters than BK in the latter mutant. These findings provide enough support for defining a novel interaction role of BK-R9 and Asp6.58(298) receptor residues.


Asunto(s)
Arginina/metabolismo , Bradiquinina/metabolismo , Receptor de Bradiquinina B2/metabolismo , Animales , Arginina/química , Bradiquinina/química , Células CHO , Células Cultivadas , Cricetulus , Ratones , Ratones Endogámicos C57BL , Mutación , Receptor de Bradiquinina B2/química , Receptor de Bradiquinina B2/genética
17.
Biol Chem ; 397(4): 345-51, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26556847

RESUMEN

An Increasing body of evidence supports a critical role of brain inflammation in the pathogenesis of Alzheimer's disease. A principal aspect of the brain immune response to inflammation is the activation of microglia. It has been shown that the kinin system is activated during brain inflammation and previously we demonstrated that bradykinin B1 receptor agonist reduced microglial activation in vitro. The aim of the present study was to investigate the effects of bradykinin B1 or B2 receptor antagonists on microglial release of pro-inflammatory factors in BV2 microglia. In vivo, we focused on the effects of intranasally given kinin antagonists on amyloid burden and microglia/macrophage marker expression in brains of 5X familial Alzheimer's disease mice. The present data show that pharmacological antagonism of B1 receptor (R-715) but not B2 receptor (HOE-140) markedly increased nitric oxide and tumor necrosis factor alpha release from BV2 microglial cells. We also showed that intranasal treatment with R-715 but not HOE-140 of Alzheimer's mice enhanced amyloid beta burden and microglia/macrophages activation. Taken together, our data reveal a possible role for the bradykinin B1 receptor in neuroinflammation and in the control of Abeta accumulation in transgenic mice, possibly through regulation of glial cell responses.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Antagonistas de los Receptores de Bradiquinina/administración & dosificación , Antagonistas de los Receptores de Bradiquinina/farmacología , Bradiquinina/análogos & derivados , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Administración Intranasal , Animales , Bradiquinina/administración & dosificación , Bradiquinina/química , Bradiquinina/farmacología , Antagonistas de los Receptores de Bradiquinina/química , Células Cultivadas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Relación Estructura-Actividad
18.
Rapid Commun Mass Spectrom ; 30(6): 705-10, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-26864523

RESUMEN

RATIONALE: The electron capture dissociation (ECD) of proteins/peptides is affected by the nature of charge carrier. It has been reported that transition metal ions could tune the ECD pathway of peptides. To further explore the charge carrier effect of metal ions, ECD of peptides adducted with trivalent transition metal ions, including group IIIB (Al(3+), Ga(3+), and In(3+) ) and Rh(3+), were investigated and compared with that of the lanthanide ion (Ln(3+)). METHODS: Bradykinin-derived peptides were used as model peptides to probe the dissociation pathways. The ECD experiments were performed on a Bruker APEX III 4.7T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. RESULTS: Typical c-/z-ions with and without metal ions were observed in the ECD of peptides adducted with Group IIIB metal ions as charge carriers. Connection of non-metalated c-ions and metalated z-ions at the position of the serine residue indicated that serine is one of the binding sites of the metal ion on the model peptides. Typical slow heating ions, including metalated a-/b-ions and non-metalated y-ions, were generated in ECD of Rh(3+) -adducted peptides. CONCLUSIONS: Based on the experimental results, it is proposed that (i) for Group IIIB metal ion-peptide complexes, the incoming electron is captured by the proton in the salt-bridge structures of precursor ions; (ii) for Rh(3+) -peptide complexes, the incoming electron is captured by the metal ion due to the formation of charge-solvated precursor ions formed through arginine residue-metal coordination. Our results indicate that the heterogeneity of precursor ions plays an important role for the ECD of metalated peptides.


Asunto(s)
Espectrometría de Masas/métodos , Metales/química , Péptidos/química , Bradiquinina/química , Electrones , Serina/química
19.
Rapid Commun Mass Spectrom ; 30(11): 1313-22, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27173113

RESUMEN

RATIONALE: The increased use of silver nanoparticles (AgNPs) for various biological applications, and over-expression of various peptide receptors in different tumors/cancer cells, necessitate the need for dedicated investigations on the intrinsic binding ability of Ag with various biologically important peptides for better understanding of AgNPs-peptide interactions and for the future development of contrasting agents as well as drugs for imaging/biomedical applications. METHODS: The [M+(Ag)n ](+) complexes are prepared and characterized using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). RESULTS: Silver complexes of the peptides [M+(Ag)n ](+) , where M = oxytocin, arg(8) -vasopressin, bradykinin, bombesin, somatostatin, and neurotensin, have been investigated for their intrinsic Ag(+) -binding ability. Unusual binding of up to seven Ag(+) with these small peptides is observed. The mass spectra show n = 1-5 for bombesin and somatostatin, n = 1-6 for bradykinin and arg(8) -vasopressin, and n = 1-7 for oxytocin and neurotensin. In addition, oxytocin and arg(8) -vasopressin show the formation of dimers and their complexes [M2 +(Ag)n ](+) with n = 1-8 and n = 1-5, respectively. The possible amino acid residues responsible for Ag(+) binding in each peptide have been identified on the basis of density functional theory (DFT)-calculated binding energy values of Ag(+) towards individual amino acids. CONCLUSIONS: Mass spectrometric evidence indicates that the peptides, viz., oxytocin, arg(8) -vasopressin, bradykinin, bombesin, somatostatin, and neurotensin, show greater affinity for Ag(+) . Hence, they may be used as carriers for AgNPs in targeted drug delivery as well as an alternative for iodinated contrasting agents in dual energy X-ray imaging techniques. Radio-labeled Ag with these peptides can also be used in radio-pharmaceuticals for diagnostic and therapeutic applications. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Péptidos/química , Plata/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Aminoácidos , Sitios de Unión , Bombesina/química , Bradiquinina/química , Nanopartículas del Metal/química , Modelos Moleculares , Neurotensina/química , Oxitocina/química , Somatostatina/química , Vasopresinas/química
20.
Phys Chem Chem Phys ; 18(2): 713-7, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26314765

RESUMEN

It is known that the ion collision cross section (CCS) may be calculated from the linewidth of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectral peak at elevated pressure (e.g., ∼10(-6) Torr). However, the high mass resolution of FT-ICR is sacrificed in those experiments due to high buffer gas pressure. In this study, we describe a linewidth correction method to eliminate the windowing-induced peak broadening effect. Together with the energetic ion-neutral collision model previously developed by our group, this method enables the extraction of CCSs of biomolecules from high-resolution FT-ICR mass spectral linewidths, obtained at a typical operating buffer gas pressure of modern FT-ICR instruments (∼10(-10) Torr). CCS values of peptides including MRFA, angiotensin I, and bradykinin measured by the proposed method agree well with ion mobility measurements, and the unfolding of protein ions (ubiquitin) at higher charge states is also observed.


Asunto(s)
Angiotensina I/química , Bradiquinina/química , Ciclotrones , Citocromos c/química , Análisis de Fourier , Ubiquitina/química , Espectrometría de Masas , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA