Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641407

RESUMEN

Vertebrate vision begins with light absorption by rod and cone photoreceptors, which transmit signals from their synaptic terminals to second-order neurons: bipolar and horizontal cells. In mouse rods, there is a single presynaptic ribbon-type active zone at which the release of glutamate occurs tonically in the dark. This tonic glutamatergic signaling requires continuous exo- and endocytosis of synaptic vesicles. At conventional synapses, endocytosis commonly requires dynamins: GTPases encoded by three genes (Dnm1-3), which perform membrane scission. Disrupting endocytosis by dynamin deletions impairs transmission at conventional synapses, but the impact of disrupting endocytosis and the role(s) of specific dynamin isoforms at rod ribbon synapses are understood incompletely. Here, we used cell-specific knock-outs (KOs) of the neuron-specific Dnm1 and Dnm3 to investigate the functional roles of dynamin isoforms in rod photoreceptors in mice of either sex. Analysis of synaptic protein expression, synapse ultrastructure, and retinal function via electroretinograms (ERGs) showed that dynamins 1 and 3 act redundantly and are essential for supporting the structural and functional integrity of rod ribbon synapses. Single Dnm3 KO showed no phenotype, and single Dnm1 KO only modestly reduced synaptic vesicle density without affecting vesicle size and overall synapse integrity, whereas double Dnm1/Dnm3 KO impaired vesicle endocytosis profoundly, causing enlarged vesicles, reduced vesicle density, reduced ERG responses, synaptic terminal degeneration, and disassembly and degeneration of postsynaptic processes. Concurrently, cone function remained intact. These results show the fundamental redundancy of dynamins 1 and 3 in regulating the structure and function of rod ribbon synapses.


Asunto(s)
Dinamina III , Dinamina I , Electrorretinografía , Ratones Noqueados , Células Fotorreceptoras Retinianas Bastones , Sinapsis , Animales , Células Fotorreceptoras Retinianas Bastones/fisiología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Ratones , Sinapsis/fisiología , Sinapsis/metabolismo , Sinapsis/ultraestructura , Masculino , Femenino , Dinamina I/metabolismo , Dinamina I/genética , Dinamina III/genética , Dinamina III/metabolismo , Ratones Endogámicos C57BL
2.
Am J Pathol ; 194(5): 796-809, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38395146

RESUMEN

α-Synuclein (α-Syn) is a key determinator of Parkinson disease (PD) pathology, but synapse and microcircuit pathologies in the retina underlying visual dysfunction are poorly understood. Herein, histochemical and ultrastructural analyses and ophthalmologic measurements in old transgenic M83 PD model (mice aged 16 to 18 months) indicated that abnormal α-Syn aggregation in the outer plexiform layer (OPL) was associated with degeneration in the C-terminal binding protein 2 (CtBP2)+ ribbon synapses of photoreceptor terminals and protein kinase C alpha (PKCα)+ rod bipolar cell terminals, whereas α-Syn aggregates in the inner retina correlated with the reduction and degeneration of tyrosine hydroxylase- and parvalbumin-positive amacrine cells. Phosphorylated Ser129 α-synuclein expression was strikingly restricted in the OPL, with the most severe degenerations in the entire retina, including mitochondrial degeneration and loss of ribbon synapses in 16- to 18-month-old mice. These synapse- and microcircuit-specific deficits of the rod pathway at the CtBP2+ rod terminals and PKCα+ rod bipolar and amacrine cells were associated with attenuated a- and b-wave amplitudes and oscillatory potentials on the electroretinogram. They were also associated with the impairment of visual functions, including reduced contrast sensitivity and impairment of the middle range of spatial frequencies. Collectively, these findings demonstrate that α-Syn aggregates cause the synapse- and microcircuit-specific deficits of the rod pathway and the most severe damage to the OPL, providing the retinal synaptic and microcircuit basis for visual dysfunctions in PD.


Asunto(s)
Proteína Quinasa C-alfa , alfa-Sinucleína , Animales , Ratones , alfa-Sinucleína/metabolismo , Células Amacrinas/metabolismo , Proteína Quinasa C-alfa/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Sinapsis/metabolismo , Factores de Transcripción/metabolismo
3.
J Neurosci ; 43(30): 5468-5482, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37414561

RESUMEN

The rod photoreceptor synapse is the first synapse of dim-light vision and one of the most complex in the mammalian CNS. The components of its unique structure, a presynaptic ribbon and a single synaptic invagination enclosing several postsynaptic processes, have been identified, but disagreements about their organization remain. Here, we have used EM tomography to generate high-resolution images of 3-D volumes of the rod synapse from the female domestic cat. We have resolved the synaptic ribbon as a single structure, with a single arciform density, indicating the presence of one long site of transmitter release. The organization of the postsynaptic processes, which has been difficult to resolve with past methods, appears as a tetrad arrangement of two horizontal cell and two rod bipolar cell processes. Retinal detachment severely disrupts this organization. After 7 d, EM tomography reveals withdrawal of rod bipolar dendrites from most spherules; fragmentation of synaptic ribbons, which lose their tight association with the presynaptic membrane; and loss of the highly branched telodendria of the horizontal cell axon terminals. After detachment, the hilus, the opening through which postsynaptic processes enter the invagination, enlarges, exposing the normally sequestered environment within the invagination to the extracellular space of the outer plexiform layer. Our use of EM tomography provides the most accurate description to date of the complex rod synapse and details changes it undergoes during outer segment degeneration. These changes would be expected to disrupt the flow of information in the rod pathway.SIGNIFICANCE STATEMENT Ribbon-type synapses transmit the first electrical signals of vision and hearing. Despite their crucial role in sensory physiology, the three-dimensional ultrastructure of these synapses, especially the complex organization of the rod photoreceptor synapse, is not well understood. We used EM tomography to obtain 3-D imaging at nanoscale resolution to help resolve the organization of rod synapses in normal and detached retinas. This approach has enabled us to show that in the normal retina a single ribbon and arciform density oppose a tetrad of postsynaptic processes. In addition, it enabled us to provide a 3-D perspective of the ultrastructural changes that occur in response to retinal detachment.


Asunto(s)
Desprendimiento de Retina , Femenino , Animales , Gatos , Microscopía Electrónica , Sinapsis/metabolismo , Retina/ultraestructura , Células Bipolares de la Retina , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Mamíferos
4.
J Neurosci ; 41(23): 5015-5028, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33893221

RESUMEN

Double cones are the most common photoreceptor cell type in most avian retinas, but their precise functions remain a mystery. Among their suggested functions are luminance detection, polarized light detection, and light-dependent, radical pair-based magnetoreception. To better understand the function of double cones, it will be crucial to know how they are connected to the neural network in the avian retina. Here we use serial sectioning, multibeam scanning electron microscopy to investigate double-cone anatomy and connectivity with a particular focus on their contacts to other photoreceptor and bipolar cells in the chicken retina. We found that double cones are highly connected to neighboring double cones and with other photoreceptor cells through telodendria-to-terminal and telodendria-to-telodendria contacts. We also identified 15 bipolar cell types based on their axonal stratifications, photoreceptor contact pattern, soma position, and dendritic and axonal field mosaics. Thirteen of these 15 bipolar cell types contacted at least one or both members of the double cone. All bipolar cells were bistratified or multistratified. We also identified surprising contacts between other cone types and between rods and cones. Our data indicate a much more complex connectivity network in the outer plexiform layer of the avian retina than originally expected.SIGNIFICANCE STATEMENT Like in humans, vision is one of the most important senses for birds. Here, we present the first serial section multibeam scanning electron microscopy dataset from any bird retina. We identified many previously undescribed rod-to-cone and cone-to-cone connections. Surprisingly, of the 15 bipolar cell types we identified, 11 received input from rods and 13 of 15 received at least part of their input from double cones. Therefore, double cones seem to play many different and important roles in avian retinal processing, and the neural network and thus information processing in the outer retina are much more complex than previously expected. These fundamental findings will be very important for several fields of science, including vertebrate vision, avian magnetoreception, and comparative neuroanatomy.


Asunto(s)
Retina/ultraestructura , Células Bipolares de la Retina/ultraestructura , Células Fotorreceptoras Retinianas Conos/ultraestructura , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Vías Visuales/ultraestructura , Animales , Pollos , Microscopía Electrónica de Rastreo
5.
Pflugers Arch ; 473(9): 1469-1491, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33779813

RESUMEN

Light-evoked voltage responses of rod and cone photoreceptor cells in the vertebrate retina must be converted to a train of synaptic vesicle release events for transmission to downstream neurons. This review discusses the processes, proteins, and structures that shape this critical early step in vision, focusing on studies from salamander retina with comparisons to other experimental animals. Many mechanisms are conserved across species. In cones, glutamate release is confined to ribbon release sites although rods are also capable of release at non-ribbon sites. The role of non-ribbon release in rods remains unclear. Release from synaptic ribbons in rods and cones involves at least three vesicle pools: a readily releasable pool (RRP) matching the number of membrane-associated vesicles along the ribbon base, a ribbon reserve pool matching the number of additional vesicles on the ribbon, and an enormous cytoplasmic reserve. Vesicle release increases in parallel with Ca2+ channel activity. While the opening of only a few Ca2+ channels beneath each ribbon can trigger fusion of a single vesicle, sustained release rates in darkness are governed by the rate at which the RRP can be replenished. The number of vacant release sites, their functional status, and the rate of vesicle delivery in turn govern replenishment. Along with an overview of the mechanisms of exocytosis and endocytosis, we consider specific properties of ribbon-associated proteins and pose a number of remaining questions about this first synapse in the visual system.


Asunto(s)
Canales de Calcio/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Humanos , Estimulación Luminosa/métodos , Retina/metabolismo , Retina/ultraestructura , Células Fotorreceptoras Retinianas Conos/ultraestructura , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Sinapsis/ultraestructura
6.
Pflugers Arch ; 473(9): 1539-1554, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33988778

RESUMEN

In the vertebrate retina, signals generated by cones of different spectral preference and by highly sensitive rod photoreceptors interact at various levels to extract salient visual information. The first opportunity for such interaction is offered by electrical coupling of the photoreceptors themselves, which is mediated by gap junctions located at the contact points of specialised cellular processes: synaptic terminals, telodendria and radial fins. Here, we examine the evolutionary pressures for and against interphotoreceptor coupling, which are likely to have shaped how coupling is deployed in different species. The impact of coupling on signal to noise ratio, spatial acuity, contrast sensitivity, absolute and increment threshold, retinal signal flow and colour discrimination is discussed while emphasising available data from a variety of vertebrate models spanning from lampreys to primates. We highlight the many gaps in our knowledge, persisting discrepancies in the literature, as well as some major unanswered questions on the actual extent and physiological role of cone-cone, rod-cone and rod-rod communication. Lastly, we point toward limited but intriguing evidence suggestive of the ancestral form of coupling among ciliary photoreceptors.


Asunto(s)
Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Sinapsis/metabolismo , Animales , Uniones Comunicantes/metabolismo , Uniones Comunicantes/ultraestructura , Humanos , Células Fotorreceptoras Retinianas Conos/ultraestructura , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Sinapsis/ultraestructura
7.
J Neurosci ; 39(4): 627-650, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30459218

RESUMEN

In the rod pathway of the mammalian retina, axon terminals of glutamatergic rod bipolar cells are presynaptic to AII and A17 amacrine cells in the inner plexiform layer. Recent evidence suggests that both amacrines express NMDA receptors, raising questions concerning molecular composition, localization, activation, and function of these receptors. Using dual patch-clamp recording from synaptically connected rod bipolar and AII or A17 amacrine cells in retinal slices from female rats, we found no evidence that NMDA receptors contribute to postsynaptic currents evoked in either amacrine. Instead, NMDA receptors on both amacrine cells were activated by ambient glutamate, and blocking glutamate uptake increased their level of activation. NMDA receptor activation also increased the frequency of GABAergic postsynaptic currents in rod bipolar cells, suggesting that NMDA receptors can drive release of GABA from A17 amacrines. A striking dichotomy was revealed by pharmacological and immunolabeling experiments, which found GluN2B-containing NMDA receptors on AII amacrines and GluN2A-containing NMDA receptors on A17 amacrines. Immunolabeling also revealed a clustered organization of NMDA receptors on both amacrines and a close spatial association between GluN2B subunits and connexin 36 on AII amacrines, suggesting that NMDA receptor modulation of gap junction coupling between these cells involves the GluN2B subunit. Using multiphoton Ca2+ imaging, we verified that activation of NMDA receptors evoked an increase of intracellular Ca2+ in dendrites of both amacrines. Our results suggest that AII and A17 amacrines express clustered, extrasynaptic NMDA receptors, with different and complementary subunits that are likely to contribute differentially to signal processing and plasticity.SIGNIFICANCE STATEMENT Glutamate is the most important excitatory neurotransmitter in the CNS, but not all glutamate receptors transmit fast excitatory signals at synapses. NMDA-type glutamate receptors act as voltage- and ligand-gated ion channels, with functional properties determined by their specific subunit composition. These receptors can be found at both synaptic and extrasynaptic sites on neurons, but the role of extrasynaptic NMDA receptors is unclear. Here, we demonstrate that retinal AII and A17 amacrine cells, postsynaptic partners at rod bipolar dyad synapses, express extrasynaptic (but not synaptic) NMDA receptors, with different and complementary GluN2 subunits. The localization of GluN2A-containing receptors to A17s and GluN2B-containing receptors to AIIs suggests a mechanism for differential modulation of excitability and signaling in this retinal microcircuit.


Asunto(s)
Células Amacrinas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Amacrinas/efectos de los fármacos , Células Amacrinas/ultraestructura , Animales , Calcio/metabolismo , Conexinas/metabolismo , Dendritas/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Uniones Comunicantes/efectos de los fármacos , Técnicas In Vitro , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Células Bipolares de la Retina/efectos de los fármacos , Células Bipolares de la Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Transducción de Señal/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología , Proteína delta-6 de Union Comunicante
8.
Proc Natl Acad Sci U S A ; 113(2): 356-61, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26715746

RESUMEN

Vertebrate retinas are generally composed of rod (dim-light) and cone (bright-light) photoreceptors with distinct morphologies that evolved as adaptations to nocturnal/crepuscular and diurnal light environments. Over 70 years ago, the "transmutation" theory was proposed to explain some of the rare exceptions in which a photoreceptor type is missing, suggesting that photoreceptors could evolutionarily transition between cell types. Although studies have shown support for this theory in nocturnal geckos, the origins of all-cone retinas, such as those found in diurnal colubrid snakes, remain a mystery. Here we investigate the evolutionary fate of the rods in a diurnal garter snake and test two competing hypotheses: (i) that the rods, and their corresponding molecular machinery, were lost or (ii) that the rods were evolutionarily modified to resemble, and function, as cones. Using multiple approaches, we find evidence for a functional and unusually blue-shifted rhodopsin that is expressed in small single "cones." Moreover, these cones express rod transducin and have rod ultrastructural features, providing strong support for the hypothesis that they are not true cones, as previously thought, but rather are modified rods. Several intriguing features of garter snake rhodopsin are suggestive of a more cone-like function. We propose that these cone-like rods may have evolved to regain spectral sensitivity and chromatic discrimination as a result of ancestral losses of middle-wavelength cone opsins in early snake evolution. This study illustrates how sensory evolution can be shaped not only by environmental constraints but also by historical contingency in forming new cell types with convergent functionality.


Asunto(s)
Evolución Biológica , Ritmo Circadiano , Colubridae/fisiología , Células Fotorreceptoras Retinianas Conos/citología , Animales , Inmunohistoquímica , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Células Fotorreceptoras Retinianas Conos/ultraestructura , Pigmentos Retinianos/metabolismo , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Rodopsina/metabolismo , Transducina/metabolismo
9.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1691-1702, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28645515

RESUMEN

The light-sensing rod photoreceptor cell exhibits several adaptations in response to the lighting environment. While adaptations to short-term changes in lighting conditions have been examined in depth, adaptations to long-term changes in lighting conditions are less understood. Atomic force microscopy was used to characterize the structure of rod outer segment disc membranes, the site of photon absorption by the pigment rhodopsin, to better understand how photoreceptor cells respond to long-term lighting changes. Structural properties of the disc membrane changed in response to housing mice in constant dark or light conditions and these adaptive changes required output from the phototransduction cascade initiated by rhodopsin. Among these were changes in the packing density of rhodopsin in the membrane, which was independent of rhodopsin synthesis and specifically affected scotopic visual function as assessed by electroretinography. Studies here support the concept of photostasis, which maintains optimal photoreceptor cell function with implications in retinal degenerations.


Asunto(s)
Degeneración Retiniana/genética , Células Fotorreceptoras Retinianas Bastones/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Ambiente , Luz , Membranas/patología , Membranas/efectos de la radiación , Ratones , Microscopía de Fuerza Atómica , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Rodopsina/metabolismo , Segmento Externo de la Célula en Bastón/ultraestructura
10.
Hum Mol Genet ; 25(16): 3500-3514, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27365499

RESUMEN

Peripherin 2 (Prph2) is a photoreceptor tetraspanin, and deletion of codon 153 (K153Δ) leads to retinitis pigmentosa, pattern dystrophy, and fundus flavimaculatus in the same family. To study this variability, we generated a K153Δ-Prph2 knockin mouse. K153Δ-Prph2 cannot form the complexes required for outer segment formation, and in cones cannot interact with its binding partner rod outer segment membrane protein 1. K153Δ causes dominant defects in rod and cone function; however, rod but not cone ultrastructure is improved by the presence of K153Δ-Prph2. Likewise, supplementation of K153Δ heterozygotes with WT-Prph2 results in structural but not functional improvements. These results support the idea that mutations may differentially affect Prph2's role as a structural component, and its role as a functional protein key for organizing membrane domains for cellular signalling. These roles may be different in rods and cones, thus contributing to the phenotypic heterogeneity that characterizes diseases associated with Prph2 mutations.


Asunto(s)
Periferinas/genética , Degeneración Retiniana/genética , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Codón/genética , Técnicas de Sustitución del Gen , Heterocigoto , Humanos , Ratones , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/ultraestructura , Degeneración Retiniana/fisiopatología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Eliminación de Secuencia
11.
Adv Exp Med Biol ; 1074: 521-538, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721984

RESUMEN

This article summarizes the recent advances in our understanding of a major retinal disease gene RPGR (retinitis pigmentosa GTPase regulator), mutations in which are associated with majority of X-linked forms of retinal degenerations. A great deal of work has been done to uncover the ciliary localization of RPGR and its interacting proteins in the retina. However, the molecular mechanisms of action of RPGR in the photoreceptors are still unclear. Recent studies have begun to shed light on the intracellular pathways in which RPGR is likely involved. The deregulation of such pathways may underlie the pathogenesis of severe retinal degeneration associated with RPGR. With the recent advances in the gene augmentation therapy for RPGR-associated disease, there is a lot of excitement in the field. Patients with RPGR mutations, however, present with clinically heterogeneous manifestations. It is therefore imperative to examine the function of RPGR in detail, so that we can design patient-oriented therapeutic strategies for this disease.


Asunto(s)
Cilios/fisiología , Proteínas del Ojo/fisiología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Transporte de Proteínas/fisiología , Retinitis Pigmentosa/genética , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Cilios/ultraestructura , Exones , Proteínas del Ojo/química , Proteínas del Ojo/genética , Pleiotropía Genética , Humanos , Ratones Noqueados , Modelos Biológicos , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Retinitis Pigmentosa/patología , Transducción de Señal/genética
12.
Proc Natl Acad Sci U S A ; 112(48): 14870-5, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26578801

RESUMEN

The vertebrate photoreceptor cell contains an elaborate cilium that includes a stack of phototransductive membrane disks. The disk membranes are continually renewed, but how new disks are formed remains poorly understood. Here we used electron microscope tomography to obtain 3D visualization of the nascent disks of rod photoreceptors in three mammalian species, to gain insight into the process of disk morphogenesis. We observed that nascent disks are invariably continuous with the ciliary plasma membrane, although, owing to partial enclosure, they can appear to be internal in 2D profiles. Tomographic analyses of the basal-most region of the outer segment show changes in shape of the ciliary plasma membrane indicating an invagination, which is likely a first step in disk formation. The invagination flattens to create the proximal surface of an evaginating lamella, as well as membrane protrusions that extend between adjacent lamellae, thereby initiating a disk rim. Immediately distal to this initiation site, lamellae of increasing diameter are evident, indicating growth outward from the cilium. In agreement with a previous model, our data indicate that mature disks are formed once lamellae reach full diameter, and the growth of a rim encloses the space between adjacent surfaces of two lamellae. This study provides 3D data of nascent and mature rod photoreceptor disk membranes at unprecedented z-axis depth and resolution, and provides a basis for addressing fundamental questions, ranging from protein sorting in the photoreceptor cilium to photoreceptor electrophysiology.


Asunto(s)
Membranas Intracelulares/ultraestructura , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Animales , Gatos , Cilios/metabolismo , Cilios/ultraestructura , Membranas Intracelulares/metabolismo , Macaca mulatta , Ratones , Células Fotorreceptoras Retinianas Bastones/metabolismo
13.
Proc Natl Acad Sci U S A ; 112(52): 15922-7, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668363

RESUMEN

The outer segments of vertebrate rod photoreceptors are renewed every 10 d. Outer segment components are transported from the site of synthesis in the inner segment through the connecting cilium, followed by assembly of the highly ordered discs. Two models of assembly of discrete discs involving either successive fusion events between intracellular rhodopsin-bearing vesicles or the evagination of the plasma membrane followed by fusion of adjacent evaginations have been proposed. Here we use immuno-electron microscopy and electron tomography to show that rhodopsin is transported from the inner to the outer segment via the ciliary plasma membrane, subsequently forming successive evaginations that "zipper" up proximally, but at their leading edges are free to make junctions containing the protocadherin, PCDH21, with the inner segment plasma membrane. Given the physical dimensions of the evaginations, coupled with likely instability of the membrane cortex at the distal end of the connecting cilium, we propose that the evagination occurs via a process akin to blebbing and is not driven by actin polymerization. Disassembly of these junctions is accompanied by fusion of the leading edges of successive evaginations to form discrete discs. This fusion is topologically different to that mediated by the membrane fusion proteins, SNAREs, as initial fusion is between exoplasmic leaflets, and is accompanied by gain of the tetraspanin rim protein, peripherin.


Asunto(s)
Cadherinas/metabolismo , Membrana Celular/metabolismo , Células Fotorreceptoras/metabolismo , Segmento Interno de las Células Fotorreceptoras Retinianas/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Proteínas Relacionadas con las Cadherinas , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Ojo/metabolismo , Ojo/ultraestructura , Proteínas del Ojo/metabolismo , Ratones Endogámicos C57BL , Microscopía Inmunoelectrónica , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras/ultraestructura , Proteínas Qa-SNARE/metabolismo , Segmento Interno de las Células Fotorreceptoras Retinianas/ultraestructura , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Rodopsina/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Segmento Externo de la Célula en Bastón/ultraestructura
14.
Vet Ophthalmol ; 21(6): 577-585, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29336116

RESUMEN

OBJECTIVE: To study retinal morphology and function in the collared peccary, an ungulate species distantly related to the domestic pig. ANIMAL STUDIES: Twenty captive peccaries anesthetized for routine health examinations. Procedures No abnormalities were noted on a complete ophthalmic examination. Fundi were examined ophthalmoscopically and photographed. The eyes of an individual that died of unrelated, nonocular reasons were studied histologically and by immunohistochemistry. Scotopic, mixed rod-cone, and photopic electroretinography (ERG) responses were recorded using the 'QuickRetCheck' (n = 6) and 'Dog diagnostic' (n = 5) protocols of the Handheld Multispecies ERG (HMsERG). RESULTS: The fundus of the peccary is atapetal, with varying amounts of pigmentation seen ophthalmoscopically, and histologically in the retinal pigment epithelium (RPE) and choroid. The retina is holangiotic with dichotomously branching vessels. These cross, and apparently loop on, the optic disk surface, but no venous circle was seen. Immunohistochemistry suggests a high concentration of cone photoreceptors with red/green cones being more abundant than blue cones. Rod ERG responses were very low with no evident dark adaptation. Mixed rod-cone and cone ERG response amplitudes were low compared to those of domestic pigs, but quite similar to those of minipigs. CONCLUSIONS: To the best of our knowledge, this study describes the collared peccary's retinal features for the first time. A comparison of our findings with data from other ungulate species shows some similarities between the peccary and pig retinas. Further studies are warranted to determine whether the peccary can be used alongside the pig as an animal model in retinal studies.


Asunto(s)
Artiodáctilos/anatomía & histología , Retina/anatomía & histología , Animales , Artiodáctilos/fisiología , Electrorretinografía/veterinaria , Femenino , Fondo de Ojo , Masculino , Oftalmoscopía/veterinaria , Nervio Óptico/anatomía & histología , Nervio Óptico/fisiología , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Conos/ultraestructura , Células Fotorreceptoras Retinianas Bastones/fisiología , Células Fotorreceptoras Retinianas Bastones/ultraestructura
15.
Eur J Neurosci ; 43(11): 1509-22, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27037829

RESUMEN

Heterotrimeric G-proteins couple metabotropic receptors to downstream effectors. In retinal ON bipolar cells, Go couples the metabotropic receptor mGluR6 to the TRPM1 channel and closes it in the dark, thus hyperpolarizing the cell. Light, via GTPase-activating proteins, deactivates Go , opens TRPM1 and depolarizes the cell. Go comprises Gαo1 , Gß3 and Gγ13; all are necessary for efficient coupling. In addition, Gß3 contributes to trafficking of certain cascade proteins and to maintaining the synaptic structure. The goal of this study was to determine the role of Gαo1 in maintaining the cascade and synaptic integrity. Using mice lacking Gαo1 , we quantified the immunostaining of certain mGluR6-related components. Deleting Gαo1 greatly reduced staining for Gß3, Gγ13, Gß5, RGS11, RGS7 and R9AP. Deletion of Gαo1 did not affect mGluR6, TRPM1 or PCP2. In addition, deleting Gαo1 reduced the number of rod bipolar dendrites that invaginate the rod terminal, similar to the effect seen in the absence of mGluR6, Gß3 or the matrix-associated proteins, pikachurin, dystroglycan and dystrophin, which are localized presynaptically to the rod bipolar cell. We therefore tested mice lacking mGluR6, Gαo1 and Gß3 for expression of these matrix-associated proteins. In all three genotypes, staining intensity for these proteins was lower than in wild type, suggesting a retrograde trans-synaptic effect. We propose that the mGluR6 macromolecular complex is connected to the presynaptic rod terminal via a protein chain that includes the matrix-associated proteins. When a component of the macromolecular chain is missing, the chain may fall apart and loosen the dendritic tip adherence within the invagination.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Sinapsis/ultraestructura , Animales , Dendritas/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Masculino , Ratones , Ratones Noqueados , Células Bipolares de la Retina/metabolismo , Células Bipolares de la Retina/ultraestructura , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Transducción de Señal , Canales Catiónicos TRPM/metabolismo
16.
Proc Natl Acad Sci U S A ; 110(5): 1732-7, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23319618

RESUMEN

A prime goal of regenerative medicine is to direct cell fates in a therapeutically useful manner. Retinitis pigmentosa is one of the most common degenerative diseases of the eye and is associated with early rod photoreceptor death followed by secondary cone degeneration. We hypothesized that converting adult rods into cones, via knockdown of the rod photoreceptor determinant Nrl, could make the cells resistant to the effects of mutations in rod-specific genes, thereby preventing secondary cone loss. To test this idea, we engineered a tamoxifen-inducible allele of Nrl to acutely inactivate the gene in adult rods. This manipulation resulted in reprogramming of rods into cells with a variety of cone-like molecular, histologic, and functional properties. Moreover, reprogramming of adult rods achieved cellular and functional rescue of retinal degeneration in a mouse model of retinitis pigmentosa. These findings suggest that elimination of Nrl in adult rods may represent a unique therapy for retinal degeneration.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas del Ojo/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Degeneración Retiniana/genética , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Islas de CpG/genética , Metilación de ADN , Electrorretinografía , Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Retina/metabolismo , Retina/patología , Células Fotorreceptoras Retinianas Conos/ultraestructura , Degeneración Retiniana/metabolismo , Degeneración Retiniana/fisiopatología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/fisiopatología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rodopsina/deficiencia , Rodopsina/genética
17.
Proc Natl Acad Sci U S A ; 110(1): 354-9, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23248312

RESUMEN

Despite different aetiologies, age-related macular degeneration and most inherited retinal disorders culminate in the same final common pathway, the loss of photoreceptors. There are few treatments and none reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. Recently, we demonstrated restoration of vision following rod-photoreceptor transplantation into a mouse model of stationary night-blindness, raising the critical question of whether photoreceptor replacement is equally effective in different types and stages of degeneration. We present a comprehensive assessment of rod-photoreceptor transplantation across six murine models of inherited photoreceptor degeneration. Transplantation is feasible in all models examined but disease type has a major impact on outcome, as assessed both by the morphology and number of integrated rod-photoreceptors. Integration can increase (Prph2(+/Δ307)), decrease (Crb1(rd8/rd8), Gnat1(-/-), Rho(-/-)), or remain constant (PDE6ß(rd1/rd1), Prph2(rd2/rd2)) with disease progression, depending upon the gene defect, with no correlation with severity. Robust integration is possible even in late-stage disease. Glial scarring and outer limiting membrane integrity, features that change with degeneration, significantly affect transplanted photoreceptor integration. Combined breakdown of these barriers markedly increases integration in a model with an intact outer limiting membrane, strong gliotic response, and otherwise poor transplantation outcome (Rho(-/-)), leading to an eightfold increase in integration and restoration of visual function. Thus, it is possible to achieve robust integration across a broad range of inherited retinopathies. Moreover, transplantation outcome can be improved by administering appropriate, tailored manipulations of the recipient environment.


Asunto(s)
Ceguera Nocturna/cirugía , Atrofia Óptica Hereditaria de Leber/cirugía , Células Fotorreceptoras Retinianas Bastones/trasplante , Retinitis Pigmentosa/cirugía , Animales , Western Blotting , Recuento de Células , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Citometría de Flujo , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Transmisión , Proteínas del Tejido Nervioso/metabolismo , Ceguera Nocturna/genética , Atrofia Óptica Hereditaria de Leber/genética , Periferinas , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Retinitis Pigmentosa/genética , Transducina/genética , Transducina/metabolismo , Resultado del Tratamiento , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
18.
J Neurosci ; 34(24): 8164-74, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24920621

RESUMEN

The photoreceptor outer segment (OS) is comprised of two compartments: plasma membrane (PM) and disk membranes. It is unknown how the PM renewal is coordinated with that of the disk membranes. Here we visualized the localization and trafficking process of rod cyclic nucleotide-gated channel α-subunit (CNGA1), a PM component essential for phototransduction. The localization was visualized by fusing CNGA1 to a fluorescent protein Dendra2 and expressing in Xenopus laevis rod photoreceptors. Dendra2 allowed us to label CNGA1 in a spatiotemporal manner and therefore discriminate between old and newly trafficked CNGA1-Dendra2 in the OS PM. Newly synthesized CNGA1 was preferentially trafficked to the basal region of the lateral OS PM where newly formed and matured disks are also added. Unique trafficking pattern and diffusion barrier excluded CNGA1 from the PM domains, which are the proposed site of disk membrane maturation. Such distinct compartmentalization allows the confinement of cyclic nucleotide-gated channel in the PM, while preventing the disk membrane incorporation. Cytochalasin D and latrunculin A treatments, which are known to disrupt F-actin-dependent disk membrane morphogenesis, prevented the entrance of newly synthesized CNGA1 to the OS PM, but did not prevent the entrance of rhodopsin and peripherin/rds to the membrane evaginations believed to be disk membrane precursors. Uptake of rhodopsin and peripherin/rds coincided with the overgrowth of the evaginations at the base of the OS. Thus F-actin is essential for the trafficking of CNGA1 to the ciliary PM, and coordinates the formations of disk membrane rim region and OS PM.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Morfogénesis/fisiología , Retina/citología , Células Fotorreceptoras Retinianas Bastones/citología , Animales , Animales Modificados Genéticamente , Membrana Celular/ultraestructura , Quelantes/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Endopeptidasas/farmacología , Técnicas In Vitro , Larva , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Modelos Biológicos , Morfogénesis/genética , Fotoblanqueo , Transporte de Proteínas/fisiología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Rodopsina/genética , Rodopsina/metabolismo , Xenopus
19.
EMBO J ; 30(24): 4955-69, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21926968

RESUMEN

Synaptic transmission relies on effective and accurate compensatory endocytosis. F-BAR proteins may serve as membrane curvature sensors and/or inducers and thereby support membrane remodelling processes; yet, their in vivo functions urgently await disclosure. We demonstrate that the F-BAR protein syndapin I is crucial for proper brain function. Syndapin I knockout (KO) mice suffer from seizures, a phenotype consistent with excessive hippocampal network activity. Loss of syndapin I causes defects in presynaptic membrane trafficking processes, which are especially evident under high-capacity retrieval conditions, accumulation of endocytic intermediates, loss of synaptic vesicle (SV) size control, impaired activity-dependent SV retrieval and defective synaptic activity. Detailed molecular analyses demonstrate that syndapin I plays an important role in the recruitment of all dynamin isoforms, central players in vesicle fission reactions, to the membrane. Consistently, syndapin I KO mice share phenotypes with dynamin I KO mice, whereas their seizure phenotype is very reminiscent of fitful mice expressing a mutant dynamin. Thus, syndapin I acts as pivotal membrane anchoring factor for dynamins during regeneration of SVs.


Asunto(s)
Neuronas/fisiología , Neuropéptidos/fisiología , Fosfoproteínas/fisiología , Vesículas Sinápticas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Dinaminas/metabolismo , Endocitosis , Hipocampo/fisiopatología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Neuronas/ultraestructura , Neuropéptidos/genética , Neuropéptidos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Retina/fisiología , Retina/ultraestructura , Células Fotorreceptoras Retinianas Bastones/fisiología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Convulsiones/genética , Transmisión Sináptica , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestructura
20.
Proc Natl Acad Sci U S A ; 109(1): 203-8, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22184246

RESUMEN

Proteins segregate into discrete subcellular compartments via a variety of mechanisms, including motor protein transport, local binding, and diffusion barriers. This physical separation of cell functions serves, in part, as a mechanism for controlling compartment activity by allowing regulation of local protein concentrations. In this study we explored how soluble protein size impacts access to the confined space within the retinal photoreceptor outer segment signaling compartment and discovered a strikingly steep relationship. We find that GFP monomers, dimers, and trimers expressed transgenically in frog rods are present in the outer segment at 1.8-, 2.9-, and 6.8-fold lower abundances, relative to the cell body, than the small soluble fluorescent marker, calcein. Theoretical analysis, based on statistical-mechanical models of molecular access to polymer meshes, shows that these observations can be explained by the steric hindrance of molecules occupying the highly constrained spaces between outer segment disc membranes. This mechanism may answer a long-standing question of how the soluble regulatory protein, arrestin, is effectively excluded from the outer segments of dark-adapted rods and cones. Generally, our results suggest an alternate mode for the control of protein access to cell domains based on dynamic, size-dependent compartmental partitioning that does not require diffusion barriers, active transport, or large numbers of immobile binding sites.


Asunto(s)
Cilios/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Animales , Compartimento Celular , Citoplasma/metabolismo , Modelos Biológicos , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Solubilidad , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA