Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 30: 561-80, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25000994

RESUMEN

In mammals, the process of X-chromosome inactivation ensures equivalent levels of X-linked gene expression between males and females through the silencing of one of the two X chromosomes in female cells. The process is established early in development and is initiated by a unique locus, which produces a long noncoding RNA, Xist. The Xist transcript triggers gene silencing in cis by coating the future inactive X chromosome. It also induces a cascade of chromatin changes, including posttranslational histone modifications and DNA methylation, and leads to the stable repression of all X-linked genes throughout development and adult life. We review here recent progress in our understanding of the molecular mechanisms involved in the initiation of Xist expression, the propagation of the Xist RNA along the chromosome, and the cis-elements and trans-acting factors involved in the maintenance of the repressed state. We also describe the diverse strategies used by nonplacental mammals for X-chromosome dosage compensation and highlight the common features and differences between eutherians and metatherians, in particular regarding the involvement of long noncoding RNAs.


Asunto(s)
Silenciador del Gen , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética , Animales , Cromatina/genética , Cromatina/ultraestructura , Mapeo Cromosómico , Cromosomas Humanos X/genética , Células Madre Embrionarias/ultraestructura , Evolución Molecular , Femenino , Impresión Genómica , Humanos , Elementos de Nucleótido Esparcido Largo , Masculino , Marsupiales/genética , Ratones , Procesos de Determinación del Sexo , Factores de Transcripción/genética , Cromosoma X/genética , Cromosoma X/ultraestructura
2.
Mol Cell ; 55(5): 708-22, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25132174

RESUMEN

Cell type-specific master transcription factors (TFs) play vital roles in defining cell identity and function. However, the roles ubiquitous factors play in the specification of cell identity remain underappreciated. Here we show that the ubiquitous CCAAT-binding NF-Y complex is required for the maintenance of embryonic stem cell (ESC) identity and is an essential component of the core pluripotency network. Genome-wide studies in ESCs and neurons reveal that NF-Y regulates not only genes with housekeeping functions through cell type-invariant promoter-proximal binding, but also genes required for cell identity by binding to cell type-specific enhancers with master TFs. Mechanistically, NF-Y's distinct DNA-binding mode promotes master/pioneer TF binding at enhancers by facilitating a permissive chromatin conformation. Our studies unearth a conceptually unique function for histone-fold domain (HFD) protein NF-Y in promoting chromatin accessibility and suggest that other HFD proteins with analogous structural and DNA-binding properties may function in similar ways.


Asunto(s)
Factor de Unión a CCAAT/fisiología , Cromatina/metabolismo , Histonas/metabolismo , Animales , Sitios de Unión , Factor de Unión a CCAAT/metabolismo , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/ultraestructura , Ratones , Modelos Genéticos , Nucleosomas/química , Nucleosomas/metabolismo , Células Madre Pluripotentes , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
3.
Cell Biol Int ; 45(11): 2238-2250, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34288224

RESUMEN

Even though rats are popular model animals, the ultrastructure of their pluripotent cells, that is, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), remains unexplored, although fine structure of pluripotent stem cells of mice and humans and its changes during differentiation have been investigated well. In the present study, we carried out ultrastructural and morphometric analyses of three lines of rat ESCs and two lines of rat iPSCs. The rat pluripotent stem cells were found to have the main typical morphological features of pluripotent cells: large nuclei of irregular or nearly round shape, scanty cytoplasm with few membrane organelles, and a poorly developed Golgi apparatus and endoplasmic reticulum. The cytoplasm of the rat pluripotent cells contains clusters of glycogen, previously described in human ESCs. To identify possible differences between rat ESCs and iPSCs, we performed a morphometric analysis of cell parameters. The mean area of cells and nuclei, the nuclear/cytoplasmic ratio, distributions of glycogen and diversity of mitochondria showed marked variations among the lines of rat pluripotent stem cells and were more pronounced than variations between rat ESCs and iPSCs as separate types of pluripotent stem cells. We noted morphological heterogeneity of the mitochondrial population in the rat pluripotent stem cells. The cells contained three types of mitochondria differing in the structure of cristae and in matrix density, and our morphometric analysis revealed differences in cristae structure.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Mitocondrias/metabolismo , Animales , Diferenciación Celular/fisiología , Núcleo Celular/patología , Células Madre Embrionarias/ultraestructura , Células Madre Pluripotentes Inducidas/ultraestructura , Mitocondrias/patología , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Células Madre Pluripotentes/citología , Ratas
4.
Adv Anat Embryol Cell Biol ; 230: 1-70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30543033

RESUMEN

The observation of two precursor groups of the early stem cells (Groups I and II) leads to the realization that a first amount of fetal stem cells (Group I) migrate from the AMG (Aortal-Mesonephric-Gonadal)-region into the aorta and its branching vessels. A second group (Group II) gains quite a new significance during human development. This group presents a specific developmental step which is found only in the human. This continuation of the early development along a different way indicates a general alteration of the stem cell biology. This changed process in the stem cell scene dominates the further development of the human stem cells. It remains unclear where this phylogenetic step first appears. By far not all advanced mammals show this second group of stem cells and their axonal migration. Essentially only primates seem to be involved in this special development.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/ultraestructura , Gónadas/citología , Gónadas/embriología , Células APUD/citología , Corteza Suprarrenal/citología , Corteza Suprarrenal/embriología , Corteza Suprarrenal/fisiología , Corteza Suprarrenal/ultraestructura , Médula Suprarrenal/citología , Médula Suprarrenal/embriología , Médula Suprarrenal/fisiología , Aorta/citología , Aorta/embriología , Aorta/ultraestructura , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/embriología , Sistema Nervioso Autónomo/fisiología , Orientación del Axón/fisiología , Movimiento Celular/fisiología , Células Madre Embrionarias/fisiología , Gónadas/fisiología , Gónadas/ultraestructura , Desarrollo Humano/fisiología , Humanos , Microscopía Electrónica , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/fisiología , Páncreas/citología , Páncreas/crecimiento & desarrollo , Páncreas/ultraestructura , Paraganglios Cromafines/citología , Paraganglios Cromafines/fisiología , Paraganglios Cromafines/ultraestructura , Teratoma/embriología , Teratoma/fisiopatología
5.
Epilepsy Behav ; 101(Pt B): 106581, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31761686

RESUMEN

Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder caused by deletions in the TSC1 or TSC2 genes that is associated with epilepsy in up to 90% of patients. Seizures are suggested to start in benign brain tumors, cortical tubers, or in the perituberal tissue making these tubers an interesting target for further research into mechanisms underlying epileptogenesis in TSC. Animal models of TSC insufficiently capture the neurodevelopmental biology of cortical tubers, and hence, human stem cell-based in vitro models of TSC are being increasingly explored in attempts to recapitulate tuber development and epileptogenesis in TSC. However, in vitro culture conditions for stem cell-derived neurons do not necessarily mimic physiological conditions. For example, very high glucose concentrations of up to 25 mM are common in culture media formulations. As TSC is potentially caused by a disruption of the mechanistic target of rapamycin (mTOR) pathway, a main integrator of metabolic information and intracellular signaling, we aimed to examine the impact of different glucose concentrations in the culture media on cellular phenotypes implicated in tuber characteristics. Here, we present preliminary data from a pilot study exploring cortical neuronal differentiation on human embryonic stem cells (hES) harboring a TSC2 knockout mutation (TSC2-/-) and an isogenic control line (TSC2+/+). We show that the commonly used high glucose media profoundly mask cellular phenotypes in TSC2-/- cultures during neuronal differentiation. These phenotypes only become apparent when differentiating TSC2+/+ and TSC2-/- cultures in more physiologically relevant conditions of 5 mM glucose suggesting that the careful consideration of culture conditions is vital to ensuring biological relevance and translatability of stem cell models for neurological disorders such as TSC. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".


Asunto(s)
Glucosa/farmacología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/ultraestructura , Esclerosis Tuberosa/patología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular , Células Cultivadas , Células Madre Embrionarias/ultraestructura , Técnicas de Inactivación de Genes , Humanos , Modelos Neurológicos , Mutación/efectos de los fármacos , Neurogénesis , Fenotipo , Proyectos Piloto , Serina-Treonina Quinasas TOR/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
6.
Eur Heart J ; 39(20): 1835-1847, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29420830

RESUMEN

Aims: We have shown that extracellular vesicles (EVs) secreted by embryonic stem cell-derived cardiovascular progenitor cells (Pg) recapitulate the therapeutic effects of their parent cells in a mouse model of chronic heart failure (CHF). Our objectives are to investigate whether EV released by more readily available cell sources are therapeutic, whether their effectiveness is influenced by the differentiation state of the secreting cell, and through which mechanisms they act. Methods and results: The total EV secreted by human induced pluripotent stem cell-derived cardiovascular progenitors (iPSC-Pg) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) were isolated by ultracentrifugation and characterized by Nanoparticle Tracking Analysis, western blot, and cryo-electron microscopy. In vitro bioactivity assays were used to evaluate their cellular effects. Cell and EV microRNA (miRNA) content were assessed by miRNA array. Myocardial infarction was induced in 199 nude mice. Three weeks later, mice with left ventricular ejection fraction (LVEF) ≤ 45% received transcutaneous echo-guided injections of iPSC-CM (1.4 × 106, n = 19), iPSC-Pg (1.4 × 106, n = 17), total EV secreted by 1.4 × 106 iPSC-Pg (n = 19), or phosphate-buffered saline (control, n = 17) into the peri-infarct myocardium. Seven weeks later, hearts were evaluated by echocardiography, histology, and gene expression profiling, blinded to treatment group. In vitro, EV were internalized by target cells, increased cell survival, cell proliferation, and endothelial cell migration in a dose-dependent manner and stimulated tube formation. Extracellular vesicles were rich in miRNAs and most of the 16 highly abundant, evolutionarily conserved miRNAs are associated with tissue-repair pathways. In vivo, EV outperformed cell injections, significantly improving cardiac function through decreased left ventricular volumes (left ventricular end systolic volume: -11%, P < 0.001; left ventricular end diastolic volume: -4%, P = 0.002), and increased LVEF (+14%, P < 0.0001) relative to baseline values. Gene profiling revealed that EV-treated hearts were enriched for tissue reparative pathways. Conclusion: Extracellular vesicles secreted by iPSC-Pg are effective in the treatment of CHF, possibly, in part, through their specific miRNA signature and the associated stimulation of distinct cardioprotective pathways. The processing and regulatory advantages of EV could make them effective substitutes for cell transplantation.


Asunto(s)
Vesículas Extracelulares/trasplante , Insuficiencia Cardíaca/terapia , Animales , Proliferación Celular , Supervivencia Celular , Células Madre Embrionarias/ultraestructura , Vesículas Extracelulares/genética , Insuficiencia Cardíaca/patología , Humanos , Ratones Desnudos , MicroARNs/análisis , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocitos Cardíacos/ultraestructura , Células Madre Pluripotentes/ultraestructura , Resultado del Tratamiento
7.
J Neurosci ; 37(49): 11835-11853, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29089438

RESUMEN

Many lines of evidence suggest that the Parkinson's disease (PD)-related protein α-synuclein (α-SYN) can propagate from cell to cell in a prion-like manner. However, the cellular mechanisms behind the spreading remain elusive. Here, we show that human astrocytes derived from embryonic stem cells actively transfer aggregated α-SYN to nearby astrocytes via direct contact and tunneling nanotubes (TNTs). Failure in the astrocytes' lysosomal digestion of excess α-SYN oligomers results in α-SYN deposits in the trans-Golgi network followed by endoplasmic reticulum swelling and mitochondrial disturbances. The stressed astrocytes respond by conspicuously sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes, which in return deliver mitochondria, indicating a TNT-mediated rescue mechanism. Using a pharmacological approach to inhibit TNT formation, we abolished the transfer of both α-SYN and mitochondria. Together, our results highlight the role of astrocytes in α-SYN cell-to-cell transfer, identifying possible pathophysiological events in the PD brain that could be of therapeutic relevance.SIGNIFICANCE STATEMENT Astrocytes are the major cell type in the brain, yet their role in Parkinson's disease progression remains elusive. Here, we show that human astrocytes actively transfer aggregated α-synuclein (α-SYN) to healthy astrocytes via direct contact and tunneling nanotubes (TNTs), rather than degrade it. The astrocytes engulf large amounts of oligomeric α-SYN that are subsequently stored in the trans-Golgi network region. The accumulation of α-SYN in the astrocytes affects their lysosomal machinery and induces mitochondrial damage. The stressed astrocytes respond by sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes. Our findings highlight an unexpected role of astrocytes in the propagation of α-SYN pathology via TNTs, revealing astrocytes as a potential target for therapeutic intervention.


Asunto(s)
Astrocitos/química , Astrocitos/metabolismo , Nanotubos , alfa-Sinucleína/análisis , alfa-Sinucleína/metabolismo , Astrocitos/ultraestructura , Comunicación Celular/fisiología , Células Cultivadas , Células Madre Embrionarias/química , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/ultraestructura , Humanos , alfa-Sinucleína/ultraestructura
8.
Chromosoma ; 126(5): 605-614, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28084535

RESUMEN

Epiblast stem cells (EpiSCs), which are pluripotent cells isolated from early post-implantation mouse embryos (E5.5), show both similarities and differences compared to mouse embryonic stem cells (mESCs), isolated earlier from the inner cell mass (ICM) of the E3.5 embryo. Previously, we have observed that while chromatin is very dispersed in E3.5 ICM, compact chromatin domains and chromocentres appear in E5.5 epiblasts after embryo implantation. Given that the observed chromatin re-organization in E5.5 epiblasts coincides with an increase in DNA methylation, in this study, we aimed to examine the role of DNA methylation in chromatin re-organization during the in vitro conversion of ESCs to EpiSCs. The requirement for DNA methylation was determined by converting both wild-type and DNA methylation-deficient ESCs to EpiSCs, followed by structural analysis with electron spectroscopic imaging (ESI). We show that the chromatin re-organization which occurs in vivo can be re-capitulated in vitro during the ESC to EpiSC conversion. Indeed, after 7 days in EpiSC media, compact chromatin domains begin to appear throughout the nuclear volume, creating a chromatin organization similar to E5 epiblasts and embryo-derived EpiSCs. Our data demonstrate that DNA methylation is dispensable for this global chromatin re-organization but required for the compaction of pericentromeric chromatin into chromocentres.


Asunto(s)
Diferenciación Celular , Cromatina/metabolismo , Metilación de ADN , Células Madre Embrionarias/metabolismo , Animales , Células Cultivadas , Cromatina/ultraestructura , Células Madre Embrionarias/ultraestructura , Epigénesis Genética , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Ratones , Ratones Noqueados , Energía Filtrada en la Transmisión por Microscopía Electrónica
9.
J Cell Sci ; 129(4): 665-72, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26823607

RESUMEN

Wnt signaling regulates a broad variety of processes during embryonic development and disease. A hallmark of the Wnt signaling pathway is the formation of concentration gradients by Wnt proteins across responsive tissues, which determines cell fate in invertebrates and vertebrates. To fulfill its paracrine function, trafficking of the Wnt morphogen from an origin cell to a recipient cell must be tightly regulated. A variety of models have been proposed to explain the extracellular transport of these lipid-modified signaling proteins in the aqueous extracellular space; however, there is still considerable debate with regard to which mechanisms allow the precise distribution of ligand in order to generate a morphogenetic gradient within growing tissue. Recent evidence suggests that Wnt proteins are distributed along signaling filopodia during vertebrate and invertebrate embryogenesis. Cytoneme-mediated transport has profound impact on our understanding of how Wnt signaling propagates through tissues and allows the formation of a precise ligand distribution in the recipient tissue during embryonic growth. In this Commentary, we review extracellular trafficking mechanisms for Wnt proteins and discuss the growing evidence of cytoneme-based Wnt distribution in development and stem cell biology. We will also discuss their implication for Wnt signaling in the formation of the Wnt morphogenetic gradient during tissue patterning.


Asunto(s)
Seudópodos/fisiología , Proteínas Wnt/fisiología , Vía de Señalización Wnt , Animales , Desarrollo Embrionario , Células Madre Embrionarias/fisiología , Células Madre Embrionarias/ultraestructura , Humanos , Transporte de Proteínas , Nicho de Células Madre
10.
Development ; 142(11): 1948-59, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26015538

RESUMEN

Mechanosensory hair cells (HCs) are the primary receptors of our senses of hearing and balance. Elucidation of the transcriptional networks regulating HC fate determination and differentiation is crucial not only to understand inner ear development but also to improve cell replacement therapies for hearing disorders. Here, we show that combined expression of the transcription factors Gfi1, Pou4f3 and Atoh1 can induce direct programming towards HC fate, both during in vitro mouse embryonic stem cell differentiation and following ectopic expression in chick embryonic otic epithelium. Induced HCs (iHCs) express numerous HC-specific markers and exhibit polarized membrane protrusions reminiscent of stereociliary bundles. Transcriptome profiling confirms the progressive establishment of a HC-specific gene signature during in vitro iHC programming. Overall, this work provides a novel approach to achieve robust and highly efficient HC production in vitro, which could be used as a model to study HC development and to drive inner ear HC regeneration.


Asunto(s)
Reprogramación Celular , Células Ciliadas Auditivas/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Forma de la Célula/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Embrión de Pollo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/ultraestructura , Fluorescencia , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/efectos de los fármacos , Ratones , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcriptoma/genética , Tretinoina/farmacología
11.
Methods ; 123: 66-75, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28554525

RESUMEN

In this article, we summarize current findings for the emergence of biophysical properties such as nuclear stiffness, chromatin compaction, chromosome positioning, and chromosome intermingling during stem cell differentiation, which eventually correlated with the changes of gene expression profiles during cellular differentiation. An overview is first provided to link stem cell differentiation with alterations in nuclear architecture, chromatin compaction, along with nuclear and chromatin dynamics. Further, we highlight the recent biophysical and molecular approaches, imaging methods and computational developments in characterizing transcription-related chromosome organization especially chromosome intermingling and nano-scale chromosomal contacts. Finally, the article ends with an outlook towards the emergence of a functional roadmap in setting up chromosome positioning and intermingling in a cell type specific manner during cellular differentiation.


Asunto(s)
Núcleo Celular/metabolismo , Cromosomas/química , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Genoma , Hibridación Fluorescente in Situ/métodos , Animales , Diferenciación Celular , Núcleo Celular/ultraestructura , Cromosomas/ultraestructura , ADN/genética , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Células Madre Embrionarias/ultraestructura , Fibroblastos/ultraestructura , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Especificidad de Órganos , Transcripción Genética
12.
Circ Res ; 117(1): 52-64, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25904597

RESUMEN

RATIONALE: Embryonic stem cells (ESCs) hold great promise for cardiac regeneration but are susceptible to various concerns. Recently, salutary effects of stem cells have been connected to exosome secretion. ESCs have the ability to produce exosomes, however, their effect in the context of the heart is unknown. OBJECTIVE: Determine the effect of ESC-derived exosome for the repair of ischemic myocardium and whether c-kit(+) cardiac progenitor cells (CPCs) function can be enhanced with ESC exosomes. METHODS AND RESULTS: This study demonstrates that mouse ESC-derived exosomes (mES Ex) possess ability to augment function in infarcted hearts. mES Ex enhanced neovascularization, cardiomyocyte survival, and reduced fibrosis post infarction consistent with resurgence of cardiac proliferative response. Importantly, mES Ex augmented CPC survival, proliferation, and cardiac commitment concurrent with increased c-kit(+) CPCs in vivo 8 weeks after in vivo transfer along with formation of bonafide new cardiomyocytes in the ischemic heart. miRNA array revealed significant enrichment of miR290-295 cluster and particularly miR-294 in ESC exosomes. The underlying basis for the beneficial effect of mES Ex was tied to delivery of ESC specific miR-294 to CPCs promoting increased survival, cell cycle progression, and proliferation. CONCLUSIONS: mES Ex provide a novel cell-free system that uses the immense regenerative power of ES cells while avoiding the risks associated with direct ES or ES-derived cell transplantation and risk of teratomas. ESC exosomes possess cardiac regeneration ability and modulate both cardiomyocyte and CPC-based repair programs in the heart.


Asunto(s)
Células Madre Embrionarias/fisiología , Exosomas/fisiología , Infarto del Miocardio/terapia , Animales , Supervivencia Celular , Sistema Libre de Células , Colágeno , Combinación de Medicamentos , Células Madre Embrionarias/ultraestructura , Fibroblastos/fisiología , Fibroblastos/ultraestructura , Fibrosis , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/ultraestructura , Inyecciones , Laminina , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Morfogénesis , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Miocitos Cardíacos/patología , Neovascularización Fisiológica , Consumo de Oxígeno , Proteoglicanos , Ratas , Ratas Sprague-Dawley , Transfección , Ultrasonografía
13.
Proc Natl Acad Sci U S A ; 111(34): 12438-43, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114218

RESUMEN

The apical domain of embryonic (radial glia) and adult (B1 cells) neural stem cells (NSCs) contains a primary cilium. This organelle has been suggested to function as an antenna for the detection of morphogens or growth factors. In particular, primary cilia are essential for Hedgehog (Hh) signaling, which plays key roles in brain development. Their unique location facing the ventricular lumen suggests that primary cilia in NSCs could play an important role in reception of signals within the cerebrospinal fluid. Surprisingly, ablation of primary cilia using conditional alleles for genes essential for intraflagellar transport [kinesin family member 3A (Kif3a) and intraflagellar transport 88 (Ift88)] and Cre drivers that are activated at early [Nestin; embryonic day 10.5 (E10.5)] and late [human glial fibrillary acidic protein (hGFAP); E13.5] stages of mouse neural development resulted in no apparent developmental defects. Neurogenesis in the ventricular-subventricular zone (V-SVZ) shortly after birth was also largely unaffected, except for a restricted ventral domain previously known to be regulated by Hh signaling. However, Kif3a and Ift88 genetic ablation also disrupts ependymal cilia, resulting in hydrocephalus by postnatal day 4. To directly study the role of B1 cells' primary cilia without the confounding effects of hydrocephalus, we stereotaxically targeted elimination of Kif3a from a subpopulation of radial glia, which resulted in ablation of primary cilia in a subset of B1 cells. Again, this experiment resulted in decreased neurogenesis only in the ventral V-SVZ. Primary cilia ablation led to disruption of Hh signaling in this subdomain. We conclude that primary cilia are required in a specific Hh-regulated subregion of the postnatal V-SVZ.


Asunto(s)
Cilios/fisiología , Células-Madre Neurales/clasificación , Células-Madre Neurales/ultraestructura , Animales , Animales Recién Nacidos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proliferación Celular , Células Madre Embrionarias/clasificación , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/ultraestructura , Femenino , Técnicas de Silenciamiento del Gen , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Hedgehog/fisiología , Humanos , Cinesinas/antagonistas & inhibidores , Cinesinas/genética , Cinesinas/metabolismo , Ratones , Ratones Transgénicos , Nestina/genética , Nestina/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Embarazo , Transducción de Señal , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
14.
Development ; 140(6): 1171-83, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23444350

RESUMEN

The maintenance of pluripotency in mouse embryonic stem cells (mESCs) relies on the activity of a transcriptional network that is fuelled by the activity of three transcription factors (Nanog, Oct4 and Sox2) and balanced by the repressive activity of Tcf3. Extracellular signals modulate the activity of the network and regulate the differentiation capacity of the cells. Wnt/ß-catenin signaling has emerged as a significant potentiator of pluripotency: increases in the levels of ß-catenin regulate the activity of Oct4 and Nanog, and enhance pluripotency. A recent report shows that ß-catenin achieves some of these effects by modulating the activity of Tcf3, and that this effect does not require its transcriptional activation domain. Here, we show that during self-renewal there is negligible transcriptional activity of ß-catenin and that this is due to its tight association with membranes, where we find it in a complex with Oct4 and E-cadherin. Differentiation triggers a burst of Wnt/ß-catenin transcriptional activity that coincides with the disassembly of the complex. Our results establish that ß-catenin, but not its transcriptional activity, is central to pluripotency acting through a ß-catenin/Oct4 complex.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/fisiología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/fisiología , beta Catenina/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/ultraestructura , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ratones , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , ARN Interferente Pequeño/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , beta Catenina/fisiología
15.
Nat Methods ; 10(9): 861-4, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23913258

RESUMEN

We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical and morphological localization by determining a complete infrared spectrum for every voxel (millions of spectra determined per sample).


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Microtomografía por Rayos X/métodos , Animales , Células Madre Embrionarias/ultraestructura , Cabello/ultraestructura , Humanos , Imagenología Tridimensional , Ratones , Populus/ultraestructura , Sincrotrones , Madera/ultraestructura
16.
J Reprod Dev ; 62(2): 177-85, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26821870

RESUMEN

The ultrastructure of porcine putative embryonic stem cells and porcine fetal fibroblasts (PFFs) was analyzed by transmission electron microscopy. The aim of this study was to compare the features of organelles in in vitro fertilization (IVF) derived porcine embryonic stem cells (IVF-pESCs) and somatic cell nuclear transfer (SCNT) derived pESCs (SCNT-pESCs). Also, the features of organelles in high-passage IVF-pESCs were compared with those in low-passage cells. The ultrastructure of PFFs showed rare microvilli on the cell surfaces, polygonal or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, elongated mitochondria, rich lysosomes and rich phagocytic vacuoles. IVF-pESCs showed rare microvilli on the cell surfaces, round or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rich ribosomes, long stacks of rough endoplasmic reticulum, elongated mitochondria, rare lysosomes and rare autophagic vacuoles. By contrast, SCNT-pESCs showed rich microvilli with various lengths and frequencies on the cell surfaces, polygonal nuclei with one reticular shaped nucleoli and heterochromatin, high cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, round mitochondria, rich lysosomes and rich phagocytic vacuoles with clear intercellular junctions. Furthermore, high-passage IVF-pESCs showed irregularly shaped colonies, pyknosis and numerous lysosomes associated with autophagic vacuoles showing signs of apoptosis. In conclusion, this study confirms that the ultrastructural characteristics of pESCs differ depending on their origin. These ultrastructural characteristics might be useful in biomedical research using pESCs, leading to new insights regarding regenerative medicine and tissue repair.


Asunto(s)
Células Madre Embrionarias/ultraestructura , Fertilización In Vitro/métodos , Técnicas de Transferencia Nuclear , Animales , Apoptosis , Blastocisto/citología , Línea Celular , Núcleo Celular/ultraestructura , Técnicas de Cocultivo , Citoplasma/ultraestructura , Células Madre Embrionarias/citología , Retículo Endoplásmico Rugoso/ultraestructura , Fibroblastos/ultraestructura , Ratones , Ratones Endogámicos ICR , Microscopía Electrónica de Transmisión , Microvellosidades/ultraestructura , Mitocondrias/ultraestructura , Fagocitosis , Porcinos
17.
Cytogenet Genome Res ; 146(4): 251-60, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26517359

RESUMEN

Replication stress causes DNA damage at fragile sites in the genome. DNA damage at telomeres can initiate breakage-fusion-bridge cycles and chromosome instability, which can result in replicative senescence or tumor formation. Little is known about the extent of replication stress or telomere dysfunction in human embryonic stem cells (hESCs). hESCs are grown in culture with the expectation of being used therapeutically in humans, making it important to minimize the levels of replication stress and telomere dysfunction. Here, the hESC line UCSF4 was cultured in a defined medium with growth factor Activin A, exogenous nucleosides, or DNA polymerase inhibitor aphidicolin. We used quantitative fluorescence in situ hybridization to analyze individual telomeres for dysfunction and observed that it can be increased by aphidicolin or Activin A. In contrast, adding exogenous nucleosides relieved dysfunction, suggesting that telomere dysfunction results from replication stress. Whether these findings can be applied to other hESC lines remains to be determined. However, because the loss of telomeres can lead to chromosome instability and cancer, we conclude that hESCs grown in culture for future therapeutic purposes should be routinely checked for replication stress and telomere dysfunction.


Asunto(s)
Replicación del ADN , Células Madre Embrionarias/ultraestructura , Telómero , Activinas/farmacología , Afidicolina/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Humanos , Hibridación Fluorescente in Situ , Nucleósidos/farmacología
18.
Stem Cells ; 32(5): 1195-207, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24375815

RESUMEN

Besides its role in exocrine differentiation, pancreas-specific transcription factor 1a (PTF1a) is required for pancreas specification from the foregut endoderm and ultimately for endocrine cell formation. Examining the early role of PTF1a in pancreas development has been challenging due to limiting amounts of embryonic tissue material for study. Embryonic stem cells (ESCs) which can be differentiated in vitro, and without limit to the amount of experimental material, can serve as a model system to study these early developmental events. To this end, we derived and characterized a mouse ESC line with tetracycline-inducible expression of PTF1a (tet-Ptf1a mESCs). We found that transient ectopic expression of PTF1a initiated the pancreatic program in differentiating ESCs causing cells to activate PDX1 expression in bud-like structures resembling pancreatic primordia in vivo. These bud-like structures also expressed progenitor markers characteristic of a developing pancreatic epithelium. The epithelium differentiated to generate a wave of NGN3+ endocrine progenitors, and further formed cells of all three pancreatic lineages. Notably, the insulin+ cells in the cultures were monohormonal, and expressed PDX1 and NKX6.1. PTF1a-induced cultures differentiated into significantly more endocrine and exocrine cells and the ratio of endocrine-to-exocrine cell differentiation could be regulated by retinoic acid (RA) and nicotinamide (Nic) signaling. Moreover, induced cultures treated with RA and Nic exhibited a modest glucose response. Thus, this tet-Ptf1a ESC-based in vitro system is a valuable new tool for interrogating the role of PTF1a in pancreas development and in directing differentiation of ESCs to endocrine cells.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Células Endocrinas/metabolismo , Páncreas/metabolismo , Factores de Transcripción/genética , Animales , Western Blotting , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/ultraestructura , Células Endocrinas/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Insulina/genética , Insulina/metabolismo , Ratones , Microscopía Electrónica , Microscopía Fluorescente , Modelos Genéticos , Niacinamida/farmacología , Organogénesis/genética , Páncreas/citología , Páncreas/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Tretinoina/farmacología
19.
Anesthesiology ; 123(5): 1067-83, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26352374

RESUMEN

BACKGROUND: Studies in developing animals have shown that anesthetic agents can lead to neuronal cell death and learning disabilities when administered early in life. Development of human embryonic stem cell-derived neurons has provided a valuable tool for understanding the effects of anesthetics on developing human neurons. Unbalanced mitochondrial fusion and fission lead to various pathological conditions including neurodegeneration. The aim of this study was to dissect the role of mitochondrial dynamics in propofol-induced neurotoxicity. METHODS: Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick-end labeling staining was used to assess cell death in human embryonic stem cell-derived neurons. Mitochondrial fission was assessed using TOM20 staining and electron microscopy. Expression of mitochondrial fission-related proteins was assessed by Western blot, and confocal microscopy was used to assess opening time of the mitochondrial permeability transition pore (mPTP). RESULTS: Exposure to 6 h of 20 µg/ml propofol increased cell death from 3.18 ± 0.17% in the control-treated group to 9.6 ± 0.95% and led to detrimental increases in mitochondrial fission (n = 5 coverslips per group) accompanied by increased expression of activated dynamin-related protein 1 and cyclin-dependent kinase 1, key proteins responsible for mitochondrial fission. Propofol exposure also induced earlier opening of the mPTP from 118.9 ± 3.1 s in the control-treated group to 73.3 ± 1.6 s. Pretreatment of the cells with mdivi-1, a mitochondrial fission blocker rescued the propofol-induced toxicity, mitochondrial fission, and mPTP opening time (n = 75 cells per group). Inhibiting cyclin-dependent kinase 1 attenuated the increase in cell death and fission and the increase in expression of activated dynamin-related protein 1. CONCLUSION: These data demonstrate for the first time that propofol-induced neurotoxicity occurs through a mitochondrial fission/mPTP-mediated pathway.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Células Madre Embrionarias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Neuronas/efectos de los fármacos , Propofol/toxicidad , Muerte Celular/efectos de los fármacos , Células Cultivadas , Células Madre Embrionarias/patología , Células Madre Embrionarias/ultraestructura , Humanos , Neuronas/patología , Neuronas/ultraestructura
20.
Blood ; 120(11): 2340-8, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22859612

RESUMEN

The lymphatic vasculature preserves tissue fluid balance by absorbing fluid and macromolecules and transporting them to the blood vessels for circulation. The stepwise process leading to the formation of the mammalian lymphatic vasculature starts by the expression of the gene Prox1 in a subpopulation of blood endothelial cells (BECs) on the cardinal vein (CV) at approximately E9.5. These Prox1-expressing lymphatic endothelial cells (LECs) will exit the CV to form lymph sacs, primitive structures from which the entire lymphatic network is derived. Until now, no conclusive information was available regarding the cellular processes by which these LEC progenitors exit the CV without compromising the vein's integrity. We determined that LECs leave the CV by an active budding mechanism. During this process, LEC progenitors are interconnected by VE-cadherin-expressing junctions. Surprisingly, we also found that Prox1-expressing LEC progenitors were present not only in the CV but also in the intersomitic vessels (ISVs). Furthermore, as LEC progenitors bud from the CV and ISVs into the surrounding mesenchyme, they begin expressing the lymphatic marker podoplanin, migrate away from the CV, and form the lymph sacs. Analyzing this process in Prox1-null embryos revealed that Prox1 activity is necessary for LEC progenitors to exit the CV.


Asunto(s)
Movimiento Celular , Vasos Coronarios/citología , Embrión de Mamíferos/irrigación sanguínea , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Endotelio Linfático/embriología , Proteínas de Homeodominio/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Uniones Adherentes/metabolismo , Uniones Adherentes/ultraestructura , Animales , Cadherinas/metabolismo , Vasos Coronarios/embriología , Vasos Coronarios/ultraestructura , Embrión de Mamíferos/ultraestructura , Desarrollo Embrionario , Células Madre Embrionarias/ultraestructura , Endotelio Linfático/ultraestructura , Proteínas de Homeodominio/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA