Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(16): e106540, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34121210

RESUMEN

Dendritic cells (DC) subsets, like Langerhans cells (LC), are immune cells involved in pathogen sensing. They express specific antimicrobial cellular factors that are able to restrict infection and limit further pathogen transmission. Here, we identify the alarmin S100A9 as a novel intracellular antiretroviral factor expressed in human monocyte-derived and skin-derived LC. The intracellular expression of S100A9 is decreased upon LC maturation and inversely correlates with enhanced susceptibility to HIV-1 infection of LC. Furthermore, silencing of S100A9 in primary human LC relieves HIV-1 restriction while ectopic expression of S100A9 in various cell lines promotes intrinsic resistance to both HIV-1 and MLV infection by acting on reverse transcription. Mechanistically, the intracellular expression of S100A9 alters viral capsid uncoating and reverse transcription. S100A9 also shows potent inhibitory effect against HIV-1 and MMLV reverse transcriptase (RTase) activity in vitro in a divalent cation-dependent manner. Our findings uncover an unexpected intracellular function of the human alarmin S100A9 in regulating antiretroviral immunity in Langerhans cells.


Asunto(s)
Alarminas/genética , Calgranulina B/genética , VIH-1/fisiología , Células de Langerhans/virología , Virus de la Leucemia Murina de Moloney/fisiología , Infecciones por Retroviridae/prevención & control , Animales , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Cricetulus , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Células de Langerhans/inmunología , Leucemia Experimental/prevención & control , Ratones , Virus de la Leucemia Murina de Moloney/genética , Transcripción Reversa , Factor de Crecimiento Transformador beta/inmunología , Infecciones Tumorales por Virus/prevención & control , Replicación Viral
2.
PLoS Pathog ; 19(7): e1011493, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37467233

RESUMEN

S100A8/A9 has important immunomodulatory roles in antibacterial defense, but its relevance in focal pneumonia caused by Streptococcus pneumoniae (S. pneumoniae) is understudied. We show that S100A9 was significantly increased in BAL fluids of patients with bacterial but not viral pneumonia and correlated with procalcitonin and sequential organ failure assessment scores. Mice deficient in S100A9 exhibited drastically elevated Zn2+ levels in lungs, which led to bacterial outgrowth and significantly reduced survival. In addition, reduced survival of S100A9 KO mice was characterized by excessive release of neutrophil elastase, which resulted in degradation of opsonophagocytically important collectins surfactant proteins A and D. All of these features were attenuated in S. pneumoniae-challenged chimeric WT→S100A9 KO mice. Similarly, therapy of S. pneumoniae-infected S100A9 KO mice with a mutant S100A8/A9 protein showing increased half-life significantly decreased lung bacterial loads and lung injury. Collectively, S100A9 controls central antibacterial immune mechanisms of the lung with essential relevance to survival of pneumococcal pneumonia. Moreover, S100A9 appears to be a promising biomarker to distinguish patients with bacterial from those with viral pneumonia. Trial registration: Clinical Trials register (DRKS00000620).


Asunto(s)
Neumonía Neumocócica , Ratones , Animales , Calgranulina B/genética , Calgranulina B/metabolismo , Pulmón , Streptococcus pneumoniae/metabolismo , Calgranulina A/genética , Calgranulina A/metabolismo , Bacterias/metabolismo , Ratones Noqueados
3.
Cell Mol Life Sci ; 81(1): 232, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780644

RESUMEN

Ubiquitin-proteasome system dysfunction triggers α-synuclein aggregation, a hallmark of neurodegenerative diseases, such as Parkinson's disease (PD). However, the crosstalk between deubiquitinating enzyme (DUBs) and α-synuclein pathology remains unclear. In this study, we observed a decrease in the level of ubiquitin-specific protease 14 (USP14), a DUB, in the cerebrospinal fluid (CSF) of PD patients, particularly females. Moreover, CSF USP14 exhibited a dual correlation with α-synuclein in male and female PD patients. To investigate the impact of USP14 deficiency, we crossed USP14 heterozygous mouse (USP14+/-) with transgenic A53T PD mouse (A53T-Tg) or injected adeno-associated virus (AAV) carrying human α-synuclein (AAV-hα-Syn) in USP14+/- mice. We found that Usp14 deficiency improved the behavioral abnormities and pathological α-synuclein deposition in female A53T-Tg or AAV-hα-Syn mice. Additionally, Usp14 inactivation attenuates the pro-inflammatory response in female AAV-hα-Syn mice, whereas Usp14 inactivation demonstrated opposite effects in male AAV-hα-Syn mice. Mechanistically, the heterodimeric protein S100A8/A9 may be the downstream target of Usp14 deficiency in female mouse models of α-synucleinopathies. Furthermore, upregulated S100A8/A9 was responsible for α-synuclein degradation by autophagy and the suppression of the pro-inflammatory response in microglia after Usp14 knockdown. Consequently, our study suggests that USP14 could serve as a novel therapeutic target in PD.


Asunto(s)
Calgranulina A , Calgranulina B , Ratones Transgénicos , Enfermedad de Parkinson , Ubiquitina Tiolesterasa , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Animales , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/deficiencia , Humanos , Ratones , Femenino , Masculino , Calgranulina B/metabolismo , Calgranulina B/genética , Calgranulina A/metabolismo , Calgranulina A/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
4.
Biochem Biophys Res Commun ; 710: 149832, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38588614

RESUMEN

BACKGROUND: Sepsis-induced acute lung injury (ALI) is associated with considerable morbidity and mortality in critically ill patients. S100A9, a key endothelial injury factor, is markedly upregulated in sepsis-induced ALI; however, its specific mechanism of action has not been fully elucidated. METHODS: The Gene Expression Omnibus database transcriptome data for sepsis-induced ALI were used to screen for key differentially expressed genes (DEGs). Using bioinformatics analysis methods such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses, the pathogenesis of sepsis-induced ALI was revealed. Intratracheal infusion of lipopolysaccharide (LPS, 10 mg/kg) induced ALI in wild-type (WT) and S100A9 knockout mice. Multiomics analyses (transcriptomics and proteomics) were performed to investigate the potential mechanisms by which S100A9 exacerbates acute lung damage. Hematoxylin-eosin, Giemsa, and TUNEL staining were used to evaluate lung injury and cell apoptosis. LPS (10 µg/mL)-induced murine lung epithelial MLE-12 cells were utilized to mimic ALI and were modulated by S100A9 lentiviral transfection. The impact of S100A9 on cell apoptosis and inflammatory responses were identified using flow cytometry and PCR. The expression of interleukin (IL)-17-nuclear factor kappa B (NFκB)-caspase-3 signaling components was identified using western blotting. RESULTS: Six common DEGs (S100A9, S100A8, IFITM6, SAA3, CD177, and MMP9) were identified in the six datasets related to ALI in sepsis. Compared to WT sepsis mice, S100A9 knockout significantly alleviated LPS-induced ALI in mice, with reduced lung structural damage and inflammatory exudation, decreased exfoliated cell and protein content in the lung lavage fluid, and reduced apoptosis and necrosis of pulmonary epithelial cells. Transcriptomic analysis revealed that knocking out S100A9 significantly affected 123 DEGs, which were enriched in immune responses, defense responses against bacteria or lipopolysaccharides, cytokine-cytokine receptor interactions, and the IL-17 signaling pathway. Proteomic analysis revealed that S100A9 knockout alleviated muscle contraction dysfunction and structural remodeling in sepsis-induced ALI. Multiomics analysis revealed that S100A9 may be closely related to interferon-induced proteins with tetratricopeptide repeats and oligoadenylate synthase-like proteins. LPS decreased MLE12 cell activity, accompanied by high expression of S100A9. The expression of IL-17RA, pNFκB, and cleaved-caspase-3 were increased by S100A9 overexpression and reduced by S100A9 knockdown in LPS-stimulated MLE12 cells. S100A9 knockdown decreases transcription of apoptosis-related markers Bax, Bcl and caspase-3, alleviating LPS-induced apoptosis. CONCLUSIONS: S100A9 as a key biomarker of sepsis-induced acute lung injury, and exacerbates lung damage and epithelial cell apoptosis induced by LPS via the IL-17-NFκB-caspase-3 signaling pathway.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Interleucina-17/metabolismo , Caspasa 3/metabolismo , Lipopolisacáridos/farmacología , Proteómica , Lesión Pulmonar Aguda/inducido químicamente , Pulmón/patología , Transducción de Señal , Ratones Noqueados , Sepsis/patología , Calgranulina B/genética , Calgranulina B/metabolismo
5.
Cancer Immunol Immunother ; 73(7): 117, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713229

RESUMEN

BACKGROUND: Estrogen receptor (ER) positive human epidermal growth factor receptor 2 (HER2) negative breast cancer (ER+/HER2-BC) and triple-negative breast cancer (TNBC) are two distinct breast cancer molecular subtypes, especially in tumor immune microenvironment (TIME). The TIME of TNBC is considered to be more inflammatory than that of ER+/HER2-BC. Natural killer (NK) cells are innate lymphocytes that play an important role of tumor eradication in TME. However, studies focusing on the different cell states of NK cells in breast cancer subtypes are still inadequate. METHODS: In this study, single-cell mRNA sequencing (scRNA-seq) and bulk mRNA sequencing data from ER+/HER2-BC and TNBC were analyzed. Key regulator of NK cell suppression in ER+/HER2-BC, S100A9, was quantified by qPCR and ELISA in MCF-7, T47D, MDA-MB-468 and MDA-MB-231 cell lines. The prognosis predictability of S100A9 and NK activation markers was evaluated by Kaplan-Meier analyses using TCGA-BRAC data. The phenotype changes of NK cells in ER+/HER2-BC after overexpressing S100A9 in cancer cells were evaluated by the production levels of IFN-gamma, perforin and granzyme B and cytotoxicity assay. RESULTS: By analyzing scRNA-seq data, we found that multiple genes involved in cellular stress response were upregulated in ER+/HER2-BC compared with TNBC. Moreover, TLR regulation pathway was significantly enriched using differentially expressed genes (DEGs) from comparing the transcriptome data of ER+/HER2-BC and TNBC cancer cells, and NK cell infiltration high/low groups. Among the DEGs, S100A9 was identified as a key regulator. Patients with higher expression levels of S100A9 and NK cell activation markers had better overall survival. Furthermore, we proved that overexpression of S100A9 in ER+/HER2-cells could improve cocultured NK cell function. CONCLUSION: In conclusion, the study we presented demonstrated that NK cells in ER+/HER2-BC were hypofunctional, and S100A9 was an important regulator of NK cell function in ER+BC. Our work contributes to elucidate the regulatory networks between cancer cells and NK cells and may provide theoretical basis for novel drug development.


Asunto(s)
Neoplasias de la Mama , Calgranulina B , Células Asesinas Naturales , Receptores de Estrógenos , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Femenino , Calgranulina B/genética , Calgranulina B/metabolismo , Receptores de Estrógenos/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Microambiente Tumoral/inmunología , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Pronóstico , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
6.
J Virol ; 97(8): e0081523, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37578237

RESUMEN

Transcription of the human papillomavirus (HPV) oncogenes, E6 and E7, is regulated by the long control region (LCR) of the viral genome. Although various transcription factors have been reported to bind to the LCR, little is known about the transcriptional cofactors that modulate HPV oncogene expression in association with these transcription factors. Here, we performed in vitro DNA-pulldown purification of nuclear proteins in cervical cancer cells, followed by proteomic analyses to identify transcriptional cofactors that bind to the HPV16 LCR via the transcription factor TEAD1. We detected the proinflammatory cytokine S100A9 that localized to the nucleus of cervical cancer cells and associated with the LCR via direct interaction with TEAD1. Nuclear S100A9 levels and its association with the LCR were increased in cervical cancer cells by treatment with a proinflammatory phorbol ester. Knockdown of S100A9 decreased HPV oncogene expression and reduced the growth of cervical cancer cells and their susceptibility to cisplatin, whereas forced nuclear expression of S100A9 using nuclear localization signals exerted opposite effects. Thus, we conclude that nuclear S100A9 binds to the HPV LCR via TEAD1 and enhances viral oncogene expression by acting as a transcriptional coactivator. IMPORTANCE Human papillomavirus (HPV) infection is the primary cause of cervical cancer, and the viral oncogenes E6 and E7 play crucial roles in carcinogenesis. Although cervical inflammation contributes to the development of cervical cancer, the molecular mechanisms underlying the role of these inflammatory responses in HPV carcinogenesis are not fully understood. Our study shows that S100A9, a proinflammatory cytokine, is induced in the nucleus of cervical cancer cells by inflammatory stimuli, and it enhances HPV oncogene expression by acting as a transcriptional coactivator of TEAD1. These findings provide new molecular insights into the relationship between inflammation and viral carcinogenesis.


Asunto(s)
Calgranulina B , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Factores de Transcripción de Dominio TEA , Neoplasias del Cuello Uterino , Femenino , Humanos , Carcinogénesis/genética , Virus del Papiloma Humano , Proteínas Oncogénicas Virales/genética , Proteínas E7 de Papillomavirus/genética , Infecciones por Papillomavirus/genética , Proteómica , Factores de Transcripción de Dominio TEA/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/virología , Calgranulina B/genética
7.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33397815

RESUMEN

Photosensitivity to ultraviolet (UV) light affects up to ∼80% of lupus patients. Sunlight exposure can exacerbate local as well as systemic manifestations of lupus, including nephritis, by mechanisms that are poorly understood. Here, we report that acute skin exposure to UV light triggers a neutrophil-dependent injury response in the kidney characterized by upregulated expression of endothelial adhesion molecules as well as inflammatory and injury markers associated with transient proteinuria. We showed that UV light stimulates neutrophil migration not only to the skin but also to the kidney in an IL-17A-dependent manner. Using a photoactivatable lineage tracing approach, we observed that a subset of neutrophils found in the kidney had transited through UV light-exposed skin, suggesting reverse transmigration. Besides being required for the renal induction of genes encoding mediators of inflammation (vcam-1, s100A9, and Il-1b) and injury (lipocalin-2 and kim-1), neutrophils significantly contributed to the kidney type I interferon signature triggered by UV light. Together, these findings demonstrate that neutrophils mediate subclinical renal inflammation and injury following skin exposure to UV light. Of interest, patients with lupus have subpopulations of blood neutrophils and low-density granulocytes with similar phenotypes to reverse transmigrating neutrophils observed in the mice post-UV exposure, suggesting that these cells could have transmigrated from inflamed tissue, such as the skin.


Asunto(s)
Inflamación/sangre , Riñón/metabolismo , Neutrófilos/efectos de la radiación , Piel/efectos de la radiación , Animales , Calgranulina B/genética , Movimiento Celular/efectos de la radiación , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Inflamación/etiología , Inflamación/patología , Interleucina-17/genética , Riñón/lesiones , Riñón/patología , Riñón/efectos de la radiación , Lipocalina 2/genética , Ratones , Neutrófilos/metabolismo , Neutrófilos/patología , Piel/lesiones , Rayos Ultravioleta/efectos adversos , Molécula 1 de Adhesión Celular Vascular/genética
8.
Am J Pathol ; 192(3): 536-552, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34954212

RESUMEN

Tumor-associated macrophages are associated with more malignant phenotypes of esophageal squamous cell carcinoma (ESCC) cells. Previously, an indirect co-culture assay of ESCC cells and macrophages was used to identify several factors associated with ESCC progression. Herein, a direct co-culture assay of ESCC cells and macrophages was established, which more closely simulated the actual cancer microenvironment. Direct co-cultured ESCC cells had significantly increased migration and invasion abilities, and phosphorylation levels of Akt and p38 mitogen-activated protein kinase (MAPK) compared with monocultured ESCC cells. According to a cDNA microarray analysis between monocultured and co-cultured ESCC cells, both the expression and release of S100 calcium binding protein A8 and A9 (S100A8 and S100A9), which commonly exist and function as a heterodimer (herein, S100A8/A9), were significantly enhanced in co-cultured ESCC cells. The addition of recombinant human S100A8/A9 protein induced migration and invasion of ESCC cells via Akt and p38 MAPK signaling. Both S100A8 and S100A9 silencing suppressed migration, invasion, and phosphorylation of Akt and p38 MAPK in co-cultured ESCC cells. Moreover, ESCC patients with high S100A8/A9 expression exhibited significantly shorter disease-free survival (P = 0.005) and cause-specific survival (P = 0.038). These results suggest that S100A8/A9 expression and release in ESCC cells are enhanced by direct co-culture with macrophages and that S100A8/A9 promotes ESCC progression via Akt and p38 MAPK signaling pathways.


Asunto(s)
Calgranulina A , Calgranulina B , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteína Quinasa 14 Activada por Mitógenos , Calgranulina A/genética , Calgranulina B/genética , Calgranulina B/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Humanos , Macrófagos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Microambiente Tumoral , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Cytokine ; 172: 156387, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37826869

RESUMEN

BACKGROUND: S100A12, S100A8, and S100A9 are inflammatory disease biomarkers whose functional significance in idiopathic pulmonary fibrosis (IPF) remains unclear. We evaluated the significance of S100A12, S100A8, and S100A9 levels in IPF development and prognosis. METHODS: The dataset was collected from the Gene Expression Omnibus (GEO) database and differentially expressed genes were screened using GEO2R. We conducted a retrospective study of 106 patients with IPF to explore the relationships between different biomarkers and poor outcomes. Pearson's correlation coefficient, Kaplan-Meier, Cox regression, and functional enrichment analyses were used to evaluate relationships between these biomarkers' levels and clinical parameters or prognosis. RESULTS: Serum levels of S100A12, S100A8, and S100A9 were significantly elevated in patients with IPF. The two most significant co-expression genes of S100A12 were S100A8 and S100A9. Patients with levels of S100A12 (median 231.21 ng/mL), S100A9 (median 57.09 ng/mL) or S100A8 (median 52.20 ng/mL), as well as combined elevated S100A12, S100A9, and S100A8 levels, exhibited shorter progression-free survival and overall survival. Serum S100A12 and S100A8, S100A12 and S100A9, S100A9 and S100A8 concentrations also displayed a strong positive correlation (rs2 = 0.4558, rs2 = 0.4558, rs2 = 0.6373; P < 0.001). S100A12 and S100A8/9 concentrations were independent of FVC%, DLCO%, and other clinical parameters (age, laboratory test data, and smoking habit). Finally, in multivariate analysis, the serum levels of S100A12, S100A8, and S100A9 were significant prognostic factors (hazard ratio 1.002, P = 0.032, hazard ratio 1.039, P = 0.001, and hazard ratio 1.048, P = 0.003). CONCLUSIONS: S100A12, S100A8, and S100A9 are promising circulating biomarkers that may aid in determining IPF patient prognosis. Multicenter clinical trials are needed to confirm their clinical value.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteína S100A12 , Humanos , Biomarcadores , Calgranulina A/genética , Calgranulina B/genética , Fibrosis Pulmonar Idiopática/genética , Pronóstico , Estudios Retrospectivos
10.
Respir Res ; 24(1): 288, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978525

RESUMEN

BACKGROUND: We have reported a positive correlation between S100 calcium-binding protein (S100) A8/S100A9 and sepsis-induced lung damage before. However, limited knowledge exists concerning the biological role of S100A8/A9 in pulmonary vascular endothelial barrier dysfunction, as well as the diagnostic value of S100A8/A9 in sepsis. METHODS: Sepsis was induced in C57BL/6J mice and S100A9-knockout (KO) mice through the cecal ligation and puncture (CLP). Pulmonary vascular leakage was determined by measuring extravasated Evans blue (EB). Reverse transcription polymerase chain reaction and the histological score were used to evaluate inflammation and lung injury, respectively. Recombinant S100A8/A9 (rhS100A8/A9) was used to identify the effects of S100A8/A9 on endothelial barrier dysfunction in human umbilical vein endothelial cells (HUVECs). Additionally, the diagnostic value of S100A8/A9 in sepsis was assessed using receiver operating characteristic. RESULTS: S100A8/A9 expression was up-regulated in the lungs of CLP-operated mice. S100A9 KO significantly reversed CLP-induced hypothermia and hypotension, resulting in an improved survival rate. S100A9 KO also decreased the inflammatory response, EB leakage, and histological scores in the lungs of CLP-operated mice. Occludin and VE-cadherin expressions were decreased in the lungs of CLP-operated mice; However, S100A9 KO attenuated this decrease. Moreover, CLP-induced signal transducer and activator of transcription 3 (STAT3) and p38/extracellular signal-regulated kinase (ERK) signalling activation and apoptosis were mitigated by S100A9 KO in lungs. In addition, rhS100A8/A9 administration significantly decreased occludin and VE-cadherin expressions, increased the phosphorylated (p)-ERK/ERK, p-p38/p38, and B-cell leukaemia/lymphoma 2 protein (Bcl-2)-associated X protein/Bcl-2 ratios in HUVECs. CONCLUSION: The present study demonstrated S100A8/A9 aggravated sepsis-induced pulmonary inflammation, vascular permeability, and lung injury. This was achieved, at least partially, by activating the P38/STAT3/ERK signalling pathways. Moreover, S100A8/A9 showed the potential as a biomarker for sepsis diagnosis.


Asunto(s)
Lesión Pulmonar , Sepsis , Ratones , Animales , Humanos , Ocludina , Ratones Endogámicos C57BL , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Pulmón/metabolismo , Ratones Noqueados , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
11.
Protein Expr Purif ; 208-209: 106275, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37084837

RESUMEN

S100A8/A9 (calprotectin) is a damage-associated molecular pattern molecule (DAMP) that plays a key role in the innate immune response of mammalia. S100A8/A9 is therefore widely used as a biomarker in human and veterinary medicine, but diagnostic tools for the detection of S100A8/A9 are rarely optimised for the specific organism, since the corresponding S100A8/A9 is often not available. There is need for an easy, reliable protocol for the production of recombinant, highly pure S100A8/A9 from various mammalia. Here we describe the expression and purification of recombinant human and porcine S100A8/A9 by immobilized metal affinity chromatography (IMAC), which takes advantage of the intrinsic, high-affinity binding of native un-tagged S100A8/A9 to metal ions. Highly pure S100A8/A9 is obtained by a combination of IMAC, ion exchange and size exclusion chromatographic steps. Considering the high sequence homology and conservation of the metal ion coordinating residues of S100A8/A9 metal binding sites, the protocol is presumably applicable to S100A8/A9 of various mammalia.


Asunto(s)
Calgranulina B , Complejo de Antígeno L1 de Leucocito , Humanos , Animales , Porcinos , Complejo de Antígeno L1 de Leucocito/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Calgranulina A/genética , Calgranulina A/metabolismo , Sus scrofa/metabolismo
12.
J Immunol ; 206(3): 505-514, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33361205

RESUMEN

High concentrations of the damage-associated molecular patterns S100A8 and S100A9 are found in skin and serum from patients suffering from psoriasis, an IL-17-related disease. Notably, although the expression of these proteins correlates with psoriatic disease severity, the exact function of S100A8 and S100A9 in psoriasis pathogenesis remains unclear. In this study, we investigated the role of S100A8 and S100A9 in psoriasis-associated skin hyperplasia and immune responses using S100a8-/- and S100a9-/- mice in an imiquimod-induced model of psoriasis. We found that S100a8-/- and S100a9-/- psoriatic mice exhibit worsened clinical symptoms relative to wild-type mice and increased expression of S100A9 and S100A8 proteins in keratinocytes, respectively. In addition, the loss of S100A8 enhances proliferation of keratinocytes and disrupts keratinocyte differentiation. We further detected elevated production of IL-17A and -F from CD4+ T cells in the absence of S100A8 and S100A9, as well as increased infiltration of neutrophils in the skin. In addition, treatment with anti-IL-17A and -F was found to reduce psoriasis symptoms and skin hyperplasia in S100a8-/- and S100a9-/- mice. These data suggest that S100A8 and S100A9 regulate psoriasis by inhibiting production of IL-17A and -F, thereby, to our knowledge, providing new insights into their biological functions.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Interleucina-17/metabolismo , Psoriasis/metabolismo , Psoriasis/patología , Piel/patología , Células Th17/inmunología , Animales , Anticuerpos Bloqueadores/metabolismo , Calgranulina A/genética , Calgranulina B/genética , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Hiperplasia , Imiquimod , Interleucina-17/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Psoriasis/inducido químicamente
13.
Crit Care ; 27(1): 374, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773186

RESUMEN

BACKGROUND AND AIMS: The triggering factors of sepsis-induced myocardial dysfunction (SIMD) are poorly understood and are not addressed by current treatments. S100A8/A9 is a pro-inflammatory alarmin abundantly secreted by activated neutrophils during infection and inflammation. We investigated the efficacy of S100A8/A9 blockade as a potential new treatment in SIMD. METHODS: The relationship between plasma S100A8/A9 and cardiac dysfunction was assessed in a cohort of 62 patients with severe sepsis admitted to the intensive care unit of Linköping University Hospital, Sweden. We used S100A8/A9 blockade with the small-molecule inhibitor ABR-238901 and S100A9-/- mice for therapeutic and mechanistic studies on endotoxemia-induced cardiac dysfunction in mice. RESULTS: In sepsis patients, elevated plasma S100A8/A9 was associated with left-ventricular (LV) systolic dysfunction and increased SOFA score. In wild-type mice, 5 mg/kg of bacterial lipopolysaccharide (LPS) induced rapid plasma S100A8/A9 increase and acute LV dysfunction. Two ABR-238901 doses (30 mg/kg) administered intraperitoneally with a 6 h interval, starting directly after LPS or at a later time-point when LV dysfunction is fully established, efficiently prevented and reversed the phenotype, respectively. In contrast, dexamethasone did not improve cardiac function compared to PBS-treated endotoxemic controls. S100A8/A9 inhibition potently reduced systemic levels of inflammatory mediators, prevented upregulation of inflammatory genes and restored mitochondrial function in the myocardium. The S100A9-/- mice were protected against LPS-induced LV dysfunction to an extent comparable with pharmacologic S100A8/A9 blockade. The ABR-238901 treatment did not induce an additional improvement of LV function in the S100A9-/- mice, confirming target specificity. CONCLUSION: Elevated S100A8/A9 is associated with the development of LV dysfunction in severe sepsis patients and in a mouse model of endotoxemia. Pharmacological blockade of S100A8/A9 with ABR-238901 has potent anti-inflammatory effects, mitigates myocardial dysfunction and might represent a novel therapeutic strategy for patients with severe sepsis.


Asunto(s)
Endotoxemia , Cardiopatías , Disfunción Ventricular Izquierda , Humanos , Ratones , Animales , Endotoxemia/complicaciones , Endotoxemia/tratamiento farmacológico , Lipopolisacáridos , Calgranulina A/fisiología , Calgranulina B/genética , Miocardio , Inflamación/tratamiento farmacológico
14.
Int J Mol Sci ; 24(16)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37629174

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive form of pancreatic cancer with a poor prognosis and low survival rates. The prognostic and predictive biomarkers of PDAC are still largely unknown. The receptor CD74 was recently identified as a regulator of oncogenic properties in various cancers. However, the precise molecular mechanism of CD74 action in PDAC remains little understood. We investigated the role of CD74 by silencing CD74 in the pancreatic cancer cell line Capan-1. CD74 knockdown led to reductions in cell proliferation, migration, and invasion and increased apoptosis. Moreover, silencing CD74 resulted in the decreased expression and secretion of S100A8 and S100A9. An indirect co-culture of fibroblasts and tumor cells revealed that fibroblasts exposed to conditioned media from CD74 knockdown cells exhibited a reduced expression of inflammatory cytokines, suggesting a role of CD74 in influencing cytokine secretion in the tumor microenvironment. Overall, our study provides valuable insights into the critical role of CD74 in regulating the oncogenic properties of pancreatic cancer cells and its influence on the expression and secretion of S100A8 and S100A9. Taken together, these findings indicate CD74 as a potential diagnostic biomarker and therapeutic target for pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Calgranulina A/genética , Calgranulina B/genética , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas
15.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768433

RESUMEN

Acute liver injury (ALI) is recognized as a serious complication of sepsis in patients in intensive care units (ICUs). S100A8/A9 is known to promote inflammation and immune responses. However, the role of S100A8/A9 in the regulation of sepsis-induced ALI remains known. Our results indicated that S100A8/A9 expression was significantly upregulated in the livers of septic mice 24 h after cecal ligation and a puncture (CLP) operation. Moreover, S100A9-KO in mice markedly attenuated CLP-induced liver dysfunction and injury, promoting the AMPK/ACC/GLUT4-mediated increases in fatty acid and glucose uptake as well as the improvement in mitochondrial function and ATP production. In contrast, treatment with the AMPK inhibitor Compound C reversed the inhibitory effects of S100A9 KO on CLP-induced liver dysfunction and injury in vivo. Finally, the administration of the S100A9 inhibitor Paquinimod (Paq) to WT mice protected against CLP-induced mortality, liver injury and mitochondrial dysfunction. In summary, our findings demonstrate for the first time that S100A9 plays an important pro-inflammatory role in sepsis-mediated ALI by regulating AKT-AMPK-dependent mitochondrial energy metabolism and highlights that targeting S100A9 may be a promising new approach for the prevention and treatment of sepsis-related liver injury.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Sepsis , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Hígado/metabolismo , Calgranulina A/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Mitocondrias/metabolismo , Ratones Endogámicos C57BL
16.
J Biol Chem ; 297(5): 101230, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34562450

RESUMEN

Protein methylation is one of the most common post-translational modifications observed in basic amino acid residues, including lysine, arginine, and histidine. Histidine methylation occurs on the distal or proximal nitrogen atom of its imidazole ring, producing two isomers: Nτ-methylhistidine or Nπ-methylhistidine. However, the biological significance of protein histidine methylation remains largely unclear owing in part to the very limited knowledge about its contributing enzymes. Here, we identified mammalian seven-ß-strand methyltransferase METTL9 as a histidine Nπ-methyltransferase by siRNA screening coupled with methylhistidine analysis using LC-tandem MS. We demonstrated that METTL9 catalyzes Nπ-methylhistidine formation in the proinflammatory protein S100A9, but not that of myosin light chain kinase MYLK2, in vivo and in vitro. METTL9 does not affect the heterodimer formation of S100A9 and S100A8, although Nπ-methylation of S100A9 at His-107 overlaps with a zinc-binding site, attenuating its affinity for zinc. Given that S100A9 exerts an antimicrobial activity, probably by chelation of zinc essential for the growth of bacteria and fungi, METTL9-mediated S100A9 methylation might be involved in the innate immune response to bacterial and fungal infection. Thus, our findings suggest a functional consequence for protein histidine Nπ-methylation and may add a new layer of complexity to the regulatory mechanisms of post-translational methylation.


Asunto(s)
Calgranulina B , Metiltransferasas , Procesamiento Proteico-Postraduccional , ARN Interferente Pequeño , Animales , Calgranulina B/genética , Calgranulina B/metabolismo , Células HEK293 , Células HeLa , Humanos , Inflamación/genética , Inflamación/metabolismo , Metilación , Metilhistidinas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
17.
Am J Physiol Heart Circ Physiol ; 322(2): H145-H155, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890276

RESUMEN

Neutrophils infiltrate into the left ventricle (LV) early after myocardial infarction (MI) and launch a proinflammatory response. Along with neutrophil infiltration, LV wall thinning due to cardiomyocyte necrosis also peaks at day 1 in the mouse model of MI. To understand the correlation, we examined a previously published data set that included day 0 (n = 10) and MI day (D) 1 (n = 10) neutrophil proteome and echocardiography assessments. Out of 123 proteins, 4 proteins positively correlated with the infarct wall thinning index (1/wall thickness): histone 1.2 (r = 0.62, P = 0.004), S100A9 (r = 0.60, P = 0.005), histone 3.1 (r = 0.55, P = 0.01), and fibrinogen (r = 0.47, P = 0.04). As S100A9 was the highest ranked secreted protein, we hypothesized that S100A9 is a functional effector of infarct wall thinning. We exogenously administered S100A8/A9 at the time of MI to mice [C57BL/6J, male, 3-6 mo of age, n = 7 M (D1), and n = 5 M (D3)] and compared with saline vehicle control-treated mice [n = 6 M (D1) and n = 6 M (D3)] at MI days 1 and 3. At MI day 3, the S100A8/A9 group showed a 22% increase in the wall thinning index compared with saline (P = 0.02), along with higher dilation and lower ejection fraction. The decline in cardiac physiology occurred subsequent to increased neutrophil and macrophage infiltration at MI day 1 and increased macrophage infiltration at D3. Our results reveal that S100A9 is a functional effector of infarct wall thinning.NEW & NOTEWORTHY S100A9 is a functional marker of infarct wall thinning.


Asunto(s)
Calgranulina B/metabolismo , Infarto del Miocardio/metabolismo , Animales , Calgranulina B/genética , Células Cultivadas , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Neutrófilos/metabolismo , Proteoma/genética , Proteoma/metabolismo
18.
Biochem Biophys Res Commun ; 618: 127-132, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35717907

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) has been previously shown to be associated with diabetes mellitus (DM) which is one of the most decisive risk factors for the faster progression of NAFLD to nonalcoholic steatohepatitis (NASH), fibrosis or advanced cirrhosis. However, the critical molecular pathway involved in the development of diabetic-induced liver injury is unclear. By the proteomic study of liver from high-fat diet (HFD)/streptozotocin(STZ)-induced diabetic mice, we revealed that the upregulation of S100A9 was involved in the development of NAFLD with DM. Moreover, we found that S100A9 silencing decreased proinflammatory response and inhibited the TLR4-NF-κB signaling in in-vitro study. Our findings provide new perspectives into the pivotal role of S100A9 for development of diabetic NAFLD and revealed that S100A9 is a critical molecule that links liver injury to inflammation of NAFLD with DM.


Asunto(s)
Diabetes Mellitus Experimental , Enfermedad del Hígado Graso no Alcohólico , Animales , Calgranulina B/genética , Calgranulina B/metabolismo , Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Cirrosis Hepática/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteómica
19.
Cancer Immunol Immunother ; 71(3): 705-718, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34374812

RESUMEN

BACKGROUND: A major feature of the microenvironment in pancreatic ductal adenocarcinoma (PDAC) is the significant amount of extracellular matrix produced by pancreatic stellate cells (PSCs), which have been reported to enhance the invasiveness of pancreatic cancer cells and negatively impact the prognosis. METHODS: We analyzed the data from two publicly available microarray datasets deposited in the Gene Expression Omnibus and found candidate genes that were differentially expressed in PDAC cells with metastatic potential and PDAC cells cocultured with PSCs. We studied the interaction between PDAC cells and PSCs in vitro and verified our finding with the survival data of patients with PDAC from the website of The Human Protein Atlas. RESULTS: We found that PSCs stimulated PDAC cells to secrete S100A9, which attracted circulatory monocytes into cancer tissue and enhanced the expression of programmed death-ligand 1 (PD-L1) on macrophages. When analyzing the correlation of S100A9 and PD-L1 expression with the clinical outcomes of patients with PDAC, we ascertained that high expression of S100A9 and PD-L1 was associated with poor survival in patients with PDAC. CONCLUSIONS: PSCs stimulated PDAC cells to secrete S100A9, which acts as a chemoattractant to attract circulatory monocytes into cancer microenvironment and induces expression of PD-L1 on macrophages. High expression of S100A9 and PD-L1 was associated with worse overall survival in a cohort of patients with PDAC.


Asunto(s)
Calgranulina B/genética , Carcinoma Ductal Pancreático/etiología , Carcinoma Ductal Pancreático/metabolismo , Comunicación Celular , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/metabolismo , Células del Estroma/metabolismo , Biomarcadores , Calgranulina B/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Comunicación Celular/genética , Comunicación Celular/inmunología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Clasificación del Tumor , Estadificación de Neoplasias , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Pronóstico , Interferencia de ARN , Células del Estroma/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
20.
Blood ; 135(25): 2271-2285, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32202636

RESUMEN

SETD2, the histone H3 lysine 36 methyltransferase, previously identified by us, plays an important role in the pathogenesis of hematologic malignancies, but its role in myelodysplastic syndromes (MDSs) has been unclear. In this study, low expression of SETD2 correlated with shortened survival in patients with MDS, and the SETD2 levels in CD34+ bone marrow cells of those patients were increased by decitabine. We knocked out Setd2 in NUP98-HOXD13 (NHD13) transgenic mice, which phenocopies human MDS, and found that loss of Setd2 accelerated the transformation of MDS into acute myeloid leukemia (AML). Loss of Setd2 enhanced the ability of NHD13+ hematopoietic stem and progenitor cells (HSPCs) to self-renew, with increased symmetric self-renewal division and decreased differentiation and cell death. The growth of MDS-associated leukemia cells was inhibited though increasing the H3K36me3 level by using epigenetic modifying drugs. Furthermore, Setd2 deficiency upregulated hematopoietic stem cell signaling and downregulated myeloid differentiation pathways in the NHD13+ HSPCs. Our RNA-seq and chromatin immunoprecipitation-seq analysis indicated that S100a9, the S100 calcium-binding protein, is a target gene of Setd2 and that the addition of recombinant S100a9 weakens the effect of Setd2 deficiency in the NHD13+ HSPCs. In contrast, downregulation of S100a9 leads to decreases of its downstream targets, including Ikba and Jnk, which influence the self-renewal and differentiation of HSPCs. Therefore, our results demonstrated that SETD2 deficiency predicts poor prognosis in MDS and promotes the transformation of MDS into AML, which provides a potential therapeutic target for MDS-associated acute leukemia.


Asunto(s)
Anemia Refractaria con Exceso de Blastos/patología , Calgranulina B/fisiología , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/fisiología , Leucemia Mieloide Aguda/etiología , Anemia Refractaria con Exceso de Blastos/genética , Anemia Refractaria con Exceso de Blastos/metabolismo , Animales , Calgranulina B/biosíntesis , Calgranulina B/genética , Transformación Celular Neoplásica , Células Cultivadas , Decitabina/farmacología , Regulación hacia Abajo , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Código de Histonas/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/biosíntesis , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Síndromes Mielodisplásicos/patología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Fusión Oncogénica/genética , Pronóstico , Proteínas Recombinantes/uso terapéutico , Factores de Tiempo , Análisis de Matrices Tisulares , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA