Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 321(1): C158-C175, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34038243

RESUMEN

In whole cell patch clamp recordings, it was discovered that normal human adrenal zona glomerulosa (AZG) cells express members of the three major families of K+ channels. Among these are a two-pore (K2P) leak-type and a G protein-coupled, inwardly rectifying (GIRK) channel, both inhibited by peptide hormones that stimulate aldosterone secretion. The K2P current displayed properties identifying it as TREK-1 (KCNK2). This outwardly rectifying current was activated by arachidonic acid and inhibited by angiotensin II (ANG II), adrenocorticotrophic hormone (ACTH), and forskolin. The activation and inhibition of TREK-1 was coupled to AZG cell hyperpolarization and depolarization, respectively. A second K2P channel, TASK-1 (KCNK3), was expressed at a lower density in AZG cells. Human AZG cells also express inwardly rectifying K+ current(s) (KIR) that include quasi-instantaneous and time-dependent components. This is the first report demonstrating the presence of KIR in whole cell recordings from AZG cells of any species. The time-dependent current was selectively inhibited by ANG II, and ACTH, identifying it as a G protein-coupled (GIRK) channel, most likely KIR3.4 (KCNJ5). The quasi-instantaneous KIR current was not inhibited by ANG II or ACTH and may be a separate non-GIRK current. Finally, AZG cells express a voltage-gated, rapidly inactivating K+ current whose properties identified as KV1.4 (KCNA4), a conclusion confirmed by Northern blot. These findings demonstrate that human AZG cells express K2P and GIRK channels whose inhibition by ANG II and ACTH is likely coupled to depolarization-dependent secretion. They further demonstrate that human AZG K+ channels differ fundamentally from the widely adopted rodent models for human aldosterone secretion.


Asunto(s)
Hormona Adrenocorticotrópica/farmacología , Angiotensina II/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canal de Potasio Kv1.4/genética , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Zona Glomerular/metabolismo , Adolescente , Adulto , Aldosterona/biosíntesis , Ácido Araquidónico/farmacología , Autopsia , Niño , Colforsina/farmacología , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Expresión Génica , Humanos , Canal de Potasio Kv1.4/antagonistas & inhibidores , Canal de Potasio Kv1.4/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Persona de Mediana Edad , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Cultivo Primario de Células , Zona Glomerular/citología , Zona Glomerular/efectos de los fármacos
2.
Am J Physiol Heart Circ Physiol ; 321(2): H461-H474, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34270374

RESUMEN

An exaggerated exercise pressor reflex (EPR) causes excessive sympathoexcitation and exercise intolerance during physical activity in the chronic heart failure (CHF) state. Muscle afferent sensitization contributes to the genesis of the exaggerated EPR in CHF. However, the cellular mechanisms underlying muscle afferent sensitization in CHF remain unclear. Considering that voltage-gated potassium (Kv) channels critically regulate afferent neuronal excitability, we examined the potential role of Kv channels in mediating the sensitized EPR in male rats with CHF. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting experiments demonstrate that both mRNA and protein expressions of multiple Kv channel isoforms (Kv1.4, Kv3.4, Kv4.2, and Kv4.3) were downregulated in lumbar dorsal root ganglions (DRGs) of CHF rats compared with sham rats. Immunofluorescence data demonstrate significant decreased Kv channel staining in both NF200-positive and IB4-positive lumbar DRG neurons in CHF rats compared with sham rats. Data from patch-clamp experiments demonstrate that the total Kv current, especially IA, was dramatically decreased in medium-sized IB4-negative muscle afferent neurons (a subpopulation containing mostly Aδ neurons) from CHF rats compared with sham rats, indicating a potential functional loss of Kv channels in muscle afferent Aδ neurons. In in vivo experiments, adenoviral overexpression of Kv4.3 in lumbar DRGs for 1 wk attenuated the exaggerated EPR induced by muscle static contraction and the mechanoreflex by passive stretch without affecting the blunted cardiovascular response to hindlimb arterial injection of capsaicin in CHF rats. These data suggest that Kv channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in CHF.NEW & NOTEWORTHY The primary finding of this manuscript is that voltage-gated potassium (Kv) channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in chronic heart failure (CHF). We propose that manipulation of Kv channels in DRG neurons could be considered as a potential new approach to reduce the exaggerated sympathoexcitation and to improve exercise intolerance in CHF, which can ultimately facilitate an improved quality of life and reduce mortality.


Asunto(s)
Tolerancia al Ejercicio/fisiología , Ganglios Espinales/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Neuronas Aferentes/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Reflejo Anormal , Vías Aferentes , Animales , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Insuficiencia Cardíaca/metabolismo , Canal de Potasio Kv1.4/metabolismo , Masculino , Músculo Esquelético/inervación , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Reflejo , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Canales de Potasio Shaw/metabolismo
3.
Mar Drugs ; 18(8)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823677

RESUMEN

Recently, Conorfamide-Sr3 (CNF-Sr3) was isolated from the venom of Conus spurius and was demonstrated to have an inhibitory concentration-dependent effect on the Shaker K+ channel. The voltage-gated potassium channels play critical functions on cellular signaling, from the regeneration of action potentials in neurons to the regulation of insulin secretion in pancreatic cells, among others. In mammals, there are at least 40 genes encoding voltage-gated K+ channels and the process of expression of some of them may include alternative splicing. Given the enormous variety of these channels and the proven use of conotoxins as tools to distinguish different ligand- and voltage-gated ion channels, in this work, we explored the possible effect of CNF-Sr3 on four human voltage-gated K+ channel subtypes homologous to the Shaker channel. CNF-Sr3 showed a 10 times higher affinity for the Kv1.6 subtype with respect to Kv1.3 (IC50 = 2.7 and 24 µM, respectively) and no significant effect on Kv1.4 and Kv1.5 at 10 µM. Thus, CNF-Sr3 might become a novel molecular probe to study diverse aspects of human Kv1.3 and Kv1.6 channels.


Asunto(s)
Venenos de Moluscos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de la Superfamilia Shaker/antagonistas & inhibidores , Animales , Caracol Conus , Activación del Canal Iónico , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.4/antagonistas & inhibidores , Canal de Potasio Kv1.4/genética , Canal de Potasio Kv1.4/metabolismo , Canal de Potasio Kv1.5/antagonistas & inhibidores , Canal de Potasio Kv1.5/genética , Canal de Potasio Kv1.5/metabolismo , Canal de Potasio Kv1.6/antagonistas & inhibidores , Canal de Potasio Kv1.6/genética , Canal de Potasio Kv1.6/metabolismo , Potenciales de la Membrana , Oocitos , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/metabolismo , Xenopus laevis
4.
Am J Physiol Cell Physiol ; 311(2): C255-68, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27281482

RESUMEN

Polyunsaturated fatty acids (PUFAs) modulate voltage-gated K(+) channel inactivation by an unknown site and mechanism. The effects of ω-6 and ω-3 PUFAs were investigated on the heterologously expressed Kv1.4 channel. PUFAs inhibited wild-type Kv1.4 during repetitive pulsing as a result of slowing of recovery from inactivation. In a mutant Kv1.4 channel lacking N-type inactivation, PUFAs reversibly enhanced C-type inactivation (Kd, 15-43 µM). C-type inactivation was affected by extracellular H(+) and K(+) as well as PUFAs and there was an interaction among the three: the effect of PUFAs was reversed during acidosis and abolished on raising K(+) Replacement of two positively charged residues in the extracellular pore (H508 and K532) abolished the effects of the PUFAs (and extracellular H(+) and K(+)) on C-type inactivation but had no effect on the lipoelectric modulation of voltage sensor activation, suggesting two separable interaction sites/mechanisms of action of PUFAs. Charge calculations suggest that the acidic head group of the PUFAs raises the pKa of H508 and this reduces the K(+) occupancy of the selectivity filter, stabilizing the C-type inactivated state.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Canal de Potasio Kv1.4/metabolismo , Animales , Hidrógeno/metabolismo , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Xenopus laevis/metabolismo , Xenopus laevis/fisiología
5.
Proc Natl Acad Sci U S A ; 110(42): E4036-44, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24082096

RESUMEN

Fine-tuned regulation of K(+) channel inactivation enables excitable cells to adjust action potential firing. Fast inactivation present in some K(+) channels is mediated by the distal N-terminal structure (ball) occluding the ion permeation pathway. Here we show that Kv1.4 K(+) channels are potently regulated by intracellular free heme; heme binds to the N-terminal inactivation domain and thereby impairs the inactivation process, thus enhancing the K(+) current with an apparent EC50 value of ∼20 nM. Functional studies on channel mutants and structural investigations on recombinant inactivation ball domain peptides encompassing the first 61 residues of Kv1.4 revealed a heme-responsive binding motif involving Cys13:His16 and a secondary histidine at position 35. Heme binding to the N-terminal inactivation domain induces a conformational constraint that prevents it from reaching its receptor site at the vestibule of the channel pore.


Asunto(s)
Hemo , Canal de Potasio Kv1.4 , Animales , Cristalografía por Rayos X , Hemo/química , Hemo/genética , Hemo/metabolismo , Transporte Iónico/fisiología , Canal de Potasio Kv1.4/química , Canal de Potasio Kv1.4/genética , Canal de Potasio Kv1.4/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Xenopus laevis
6.
Proc Natl Acad Sci U S A ; 110(41): 16657-62, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24067659

RESUMEN

High-conductance Ca(2+)- and voltage-activated K(+) (Slo1 or BK) channels (KCNMA1) play key roles in many physiological processes. The structure of the Slo1 channel has two functional domains, a core consisting of four voltage sensors controlling an ion-conducting pore, and a larger tail that forms an intracellular gating ring thought to confer Ca(2+) and Mg(2+) sensitivity as well as sensitivity to a host of other intracellular factors. Although the modular structure of the Slo1 channel is known, the functional properties of the core and the allosteric interactions between core and tail are poorly understood because it has not been possible to study the core in the absence of the gating ring. To address these questions, we developed constructs that allow functional cores of Slo1 channels to be expressed by replacing the 827-amino acid gating ring with short tails of either 74 or 11 amino acids. Recorded currents from these constructs reveals that the gating ring is not required for either expression or gating of the core. Voltage activation is retained after the gating ring is replaced, but all Ca(2+)- and Mg(2+)-dependent gating is lost. Replacing the gating ring also right-shifts the conductance-voltage relation, decreases mean open-channel and burst duration by about sixfold, and reduces apparent mean single-channel conductance by about 30%. These results show that the gating ring is not required for voltage activation but is required for Ca(2+) and Mg(2+) activation. They also suggest possible actions of the unliganded (passive) gating ring or added short tails on the core.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal de Potasio Kv1.4/química , Canal de Potasio Kv1.4/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/química , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Animales , Calcio/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Cinética , Canal de Potasio Kv1.4/antagonistas & inhibidores , Canal de Potasio Kv1.4/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Magnesio/metabolismo , Ratones , Mutagénesis Sitio-Dirigida , Oligonucleótidos/genética , Oocitos/metabolismo , Técnicas de Placa-Clamp , Péptidos/farmacología , Tetraetilamonio/farmacología , Xenopus
7.
Pak J Pharm Sci ; 29(5): 1513-1517, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27731805

RESUMEN

This research is to explore the effects of traditional Chinese medicine Ginseng-spikenard heart-nourishing capsule on the inactivation of c-type Kv1.4 channels (Kv1.4∆N) in Xenopus laevis oocytes with two-electrode voltageclamp technique. Defolliculated oocytes (stage V-VI) were injected with transcribed cRNAs of ferret Kv1.4δN channels. During recording, oocytes were continuously perfused with ND96 solution (control group) and solution prepared from Ginseng-spikenard heart-nourishing capsule (experimental group). Results found that, at the command potential of +50 mV, the current of experimental group was reduced to 48.33±4.0% of that in control group. The inactivation time constants in control and experimental groups were 2962.56±175.35 ms and 304.13±36.22ms, respectively (P<0.05, n=7). The recovery time of fKv1.4∆N channel after inactivation in control group and experimental groups was 987±68.39 ms and 1734.15±98.45 ms, respectively (P<0.05, n=5). Ginseng-spikenard heart-nourishing capsule can inhibit the Kv1.4δN channel, which may be one of the mechanisms of underlying antiarrhythmia.


Asunto(s)
Antiarrítmicos/farmacología , Medicamentos Herbarios Chinos/farmacología , Canal de Potasio Kv1.4/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Animales , Femenino , Hurones , Técnicas de Transferencia de Gen , Cinética , Canal de Potasio Kv1.4/genética , Canal de Potasio Kv1.4/metabolismo , Potenciales de la Membrana , Oocitos , Xenopus laevis
8.
J Membr Biol ; 248(2): 187-96, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25416425

RESUMEN

Kv1.4 potassium channels are heavily glycosylated proteins involved in shaping action potentials and in neuronal excitability and plasticity. Kv1.4 N354Q, without an N-glycan, exhibited decreased protein stability and trafficking to the cell surface (Watanabe et al. in J Biol Chem 279:8879-8885, 2004). Here we investigated whether the composition of the N-glycan affected Kv1.4 cell surface expression. Kv1.4 proteins carrying N-glycans with different compositions were generated by adding glycosidase inhibitors or using N-glycosylation-deficient mutant cell lines. We found that oligomannose-type, hybrid-type, or incomplete complex-type N-glycans had a negative effect on surface protein expression of Kv1.4 compared with complex-type N-glycans. The decrease in surface protein level of Kv1.4 was mainly due to a reduction in total protein level, induced by altered N-glycan composition. Kv1.4 in CSTP-treated cells carried a unique oligomannose-type N-glycan that contains three glucose residues. This N-glycan had the most negative effect on cell surface expression of Kv1.4. It decreased Kv1.4 surface protein level by a combined mechanism of reducing total protein level and increasing ER-retention. Our data suggest that composition of the N-glycan plays an important role in protein stability and trafficking, and a sialylated complex-type N-glycan promoted high cell surface expression of Kv1.4.


Asunto(s)
Membrana Celular/metabolismo , Canal de Potasio Kv1.4/metabolismo , Animales , Células CHO , Cricetulus , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/farmacología , Expresión Génica , Glicósido Hidrolasas/antagonistas & inhibidores , Glicosilación/efectos de los fármacos , Canal de Potasio Kv1.4/química , Canal de Potasio Kv1.4/genética , Manosa/química , Manosa/metabolismo , Mutación , Polisacáridos/química , Polisacáridos/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Transporte de Proteínas
9.
BMC Neurosci ; 16: 30, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25940378

RESUMEN

BACKGROUND: High titers of lentiviral vectors are required for the efficient transduction of a gene of interest. During preparation of lentiviral the vectors, the protein of interest is inevitably expressed in the viral vector-producing cells. This expression may affect the production of the lentiviral vector. METHODS: We prepared lentiviral vectors expressing inwardly rectifying potassium channel (Lv-Kir2.1), its dominant-negative form (Lv-Kir-DN), and other K(+) channels, using the ubiquitously active ß-actin and neuron-specific synapsin I promoters. RESULTS: The titer of Lv-Kir-DN was higher than that of Lv-Kir2.1, suggesting a negative effect of induced K(+) currents on viral titer. We then blocked Kir2.1 currents with the selective blocker Ba(2+) during Lv-Kir2.1 production, and obtained about a 5-fold increase in the titer. Higher extracellular K(+) concentrations increased the titer of Lv-Kir2.1 about 9-fold. With a synapsin I promoter Ba(2+) increased the titer because of the moderate expression of Kir2.1 channel. Channel blockade also increased the titers of the lentivirus expressing Kv1.4 and TREK channels, but not HERG. The increase in titer correlated with the K(+) currents generated by the channels expressed. CONCLUSION: In the production of lentivirus expressing K(+) channels, titers are increased by blocking K(+) currents in the virus-producing cells. This identifies a crucial issue in the production of viruses expressing membrane channels, and should facilitate basic and gene therapeutic research on channelopathies.


Asunto(s)
Vectores Genéticos , Lentivirus/genética , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Bario/farmacología , Cationes Bivalentes/farmacología , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Vectores Genéticos/metabolismo , Células HEK293 , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Canal de Potasio Kv1.4/genética , Canal de Potasio Kv1.4/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Ratas Sprague-Dawley , Sinapsinas/genética , Sinapsinas/metabolismo , Transfección , Carga Viral
10.
Am J Physiol Regul Integr Comp Physiol ; 308(1): R18-27, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25411361

RESUMEN

Psychological disorders are prevalent in patients with inflammatory bowel disease; the underlying mechanisms remain unknown. We tested the hypothesis that ulcerative colitis-like inflammation induced by dextran sodium sulfate (DSS) exacerbates the ongoing spontaneous activity in colon-projecting afferent neurons that induces abdominal discomfort and anxiety, and depressive-like behaviors in rats. In this study, we used the conditioned place preference and standard tests for anxiety- and depression-like behaviors. DSS rats developed anxiety- and depression-like behaviors 10 to 20 days after the start of inflammation. Single-fiber recordings showed an increase in the frequency of spontaneous activity in L6-S1 dorsal root ganglion (DRG) roots. Prolonged desensitization of transient receptor potential vanilloid 1 (TRPV1)-expressing colonic afferents by resiniferatoxin (RTX) suppressed the spontaneous activity, as well as the anxiety- and depressive-like behaviors. Reduction in spontaneous activity in colon afferents by intracolonic administration of lidocaine produced robust conditioned place preference (CPP) in DSS rats, but not in control rats. Patch-clamp studies demonstrated a significant decrease in the resting membrane potential, lower rheobase, and sensitization of colon-projecting L6-S1 DRG neurons to generate trains of action potentials in response to current injection in DSS rats. DSS inflammation upregulated the mRNA levels of transient receptor potential ankyrin 1 and TRPV1 channels and downregulated that of Kv1.1 and Kv1.4 channels. Ulcerative colitis-like inflammation in rats induces anxiety- and depression-like behaviors, as well as ongoing abdominal discomfort by exacerbating the spontaneous activity in the colon-projecting afferent neurons. Alterations in the expression of voltage- and ligand-gated channels are associated with the induction of mood disorders following colon inflammation.


Asunto(s)
Dolor Abdominal/etiología , Ansiedad/etiología , Conducta Animal , Colitis Ulcerosa/complicaciones , Colon/inervación , Depresión/etiología , Dolor Abdominal/tratamiento farmacológico , Dolor Abdominal/metabolismo , Dolor Abdominal/fisiopatología , Dolor Abdominal/psicología , Potenciales de Acción , Anestésicos Locales/farmacología , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Ansiedad/prevención & control , Ansiedad/psicología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/fisiopatología , Colitis Ulcerosa/psicología , Condicionamiento Psicológico , Depresión/metabolismo , Depresión/fisiopatología , Depresión/prevención & control , Depresión/psicología , Sulfato de Dextran , Modelos Animales de Enfermedad , Diterpenos/farmacología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/metabolismo , Canal de Potasio Kv1.4/genética , Canal de Potasio Kv1.4/metabolismo , Lidocaína/farmacología , ARN Mensajero/metabolismo , Ratas , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Factores de Tiempo
11.
Biochim Biophys Acta ; 1828(3): 990-6, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23196347

RESUMEN

Rapid inactivation of voltage-gated potassium channel plays an important role in shaping the electrical signaling in neurons and other excitable cells. N-type ("ball and chain") inactivation, as the most extensively studied inactivation model, is assumed to be the inactivation mechanism of Kv1.4 channel. The inactivation ball inactivates the channel by interacting with the hydrophobic wall of inner pore and occluding it. Recently, we have proved that the electrostatic interaction between two charged segments in the NH(2)-termainal plays an important role through promoting the inactivation process of the Kv1.4 channel. This study investigates the effect of inserting negatively or positively charged short peptides at NH(2)-terminal on the inactivation of Kv1.4 channel. The results that inserting negatively-charged peptide (either myc or D-peptide) at different sites of NH(2)-terminal, deceleraes inactivation process of Kv1.4 channel to a different extent with inserting site changing and that the mutant Kv1.4-D50 exhibits a more slower inactivation rate than Kv1.4-K50 further identified the role of electrostatic interactions in the "ball and chain" inactivation mechanism.


Asunto(s)
Canal de Potasio Kv1.4/química , Péptidos/química , Secuencia de Aminoácidos , Animales , Biofisica/métodos , Células CHO , Cricetinae , Electrofisiología/métodos , Proteínas Fluorescentes Verdes/metabolismo , Iones , Canal de Potasio Kv1.4/metabolismo , Potenciales de la Membrana , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-myc/química , Homología de Secuencia de Aminoácido , Electricidad Estática
12.
Pflugers Arch ; 466(11): 2153-65, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24463703

RESUMEN

Neuropathic pain and pain arising from local inflammation are characterized by increased release of inflammatory mediators like interleukin-6 (IL-6) by immune cells. The levels of IL-6 is increased in various painfull conditions and correlates with the severity of thermal and mechanical hypersensitivity. Deletion of the IL-6 signal transducer glycoprotein 130 (gp130) reduces inflammation associated with hypersensitivity to thermal and mechanical stimuli. In this study, we show that nociceptor-specific deletion of gp130 alters excitability parameters that are linked to changes in the potassium conductance. In SNS-gp130(-/-) sensory neurons, the resting membrane potential was reduced. Moreover the repolarization speed of the action potential and afterhypolarization was augmented, however, voltage-gated Na(+) and Ca(2+) current were not obviously altered. The main difference between gp130-deficient and control neurons was a significant increase in the conductance of both delayed rectifier as well as A-type potassium currents. Taqman RT-PCR analysis revealed significantly higher levels of Kcna4 mRNA, encoding A-type Kv1.4 potassium channel, in neuron cultures from SNS-gp130(-/-) versus control mice, which may account for the electrophysiological data. No difference in other voltage-gated ion channel mRNAs was observed. The present data show for the first time increased A-type K(+) currents and expression of voltage-gated potassium channel Kcna4 (Kv1.4) in SNS-gp130(-/-) nociceptors. This suggests that gp130 acts as a break for the expression of potassium channels and important regulator hub for nociceptor excitability.


Asunto(s)
Glicoproteínas/deficiencia , Canal de Potasio Kv1.4/metabolismo , Nociceptores/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Calcio/metabolismo , Glicoproteínas/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Canal de Potasio Kv1.4/genética , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , ARN Mensajero/genética , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Sodio/metabolismo , Regulación hacia Arriba
13.
Am J Physiol Heart Circ Physiol ; 306(7): H1054-65, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24486512

RESUMEN

In the present study, we examined if and how cardiac ion channels are modified by type 2 diabetes mellitus (T2DM). Subendocardial (Endo) myocytes and subepicardial (Epi) myocytes were isolated from left ventricles of Otsuka-Long-Evans-Tokushima Fatty rats (OLETF) rats, a rat model of T2DM, and Otsuka-Long-Evans-Tokushima (LETO) rats (nondiabetic control rats). Endo and Epi myocytes were used for whole cell patch-clamp recordings and for protein and mRNA analyses. Action potential durations in Endo and Epi myocytes were longer in OLETF rats than in LETO rats, and the difference was larger in Endo myocytes. Steady-state transient outward K+ current (Ito) density was reduced in Endo but not Epi myocytes of OLETF rats compared with LETO rats, although the contribution of the fast component of Ito recovery from inactivation was smaller in both Endo and Epi myocytes of OLETF rats than in LETO rats. Kv4.2 protein was reduced only in Endo myocytes in OLETF rats, although voltage-gated K+ channel-interacting protein 2 (KChIP2) protein levels in both Endo and Epi myocytes were lower in OLETF rats than in LETO rats. Corresponding regional differences in mRNA levels of KChIP2 and Kv4.2 were observed between OLETF and LETO rats. mRNA levels of Iroquois homeobox 5 in Endo myocytes were 53% higher in OLETF rats than in LETO rats. Densities of inward rectifier K+ current and L-type Ca2+ current and mRNA levels of Kv4.3 and Kv1.4 were similar in OLETF and LETO rats. In conclusion, T2DM induces Endo-predominant prolongation of the action potential duration via a reduction of the fast component of Ito recovery from inactivation and reduced steady-state Ito, in which downregulation of Kv4.2 and KChIP2 may be involved. Increased Iroquois homeobox 5 expression may underlie Kv4.2 downregulation in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/etiología , Proteínas de Interacción con los Canales Kv/metabolismo , Miocitos Cardíacos/metabolismo , Potasio/metabolismo , Canales de Potasio Shal/metabolismo , Potenciales de Acción , Animales , Glucemia/metabolismo , Canales de Calcio Tipo L/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/sangre , Cardiomiopatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Electrocardiografía , Proteínas de Homeodominio/metabolismo , Cinética , Proteínas de Interacción con los Canales Kv/genética , Canal de Potasio Kv1.4/metabolismo , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas OLETF , Canales de Potasio Shal/genética , Factores de Transcripción/metabolismo
14.
Europace ; 16 Suppl 4: iv46-iv55, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25362170

RESUMEN

AIMS: The study investigates how increased Ito, as mediated by the activator NS5806, affects excitation-contraction coupling in chronic heart failure (HF). We hypothesized that restoring spike-and-dome morphology of the action potential (AP) to a healthy phenotype would be insufficient to restore the intracellular Ca(2) (+) transient (CaT), due to HF-induced remodelling of Ca(2+) handling. METHODS AND RESULTS: An existing mathematical model of the canine ventricular myocyte was modified to incorporate recent experimental data from healthy and failing myocytes, resulting in models of both healthy and HF epicardial, midmyocardial, and endocardial cell variants. Affects of NS5806 were also included in HF models through its direct interaction with Kv4.3 and Kv1.4. Single-cell simulations performed in all models (control, HF, and HF + drug) and variants (epi, mid, and endo) assessed AP morphology and underlying ionic processes with a focus on calcium transients (CaT), how these were altered in HF across the ventricular wall, and the subsequent effects of varying compound concentration in HF. Heart failure model variants recapitulated a characteristic increase in AP duration (APD) in the disease. The qualitative effects of application of half-maximal effective concentration (EC50) of NS5806 on APs and CaT are heterogeneous and non-linear. Deepening in the AP notch with drug is a direct effect of the activation of Ito; both Ito and consequent alteration of IK1 kinetics cause decrease in AP plateau potential. Decreased APD50 and APD90 are both due to altered IK1. Analysis revealed that drug effects depend on transmurality. Ca(2+) transient morphology changes-increased amplitude and shorter time to peak-are due to direct increase in ICa,L and indirect larger SR Ca(2+) release subsequent to Ito activation. CONCLUSIONS: Downstream effects of a compound acting exclusively on sarcolemmal ion channels are difficult to predict. Remediation of APD to pre-failing state does not ameliorate dysfunction in CaT; however, restoration of notch depth appears to impart modest benefit and a likelihood of therapeutic value in modulating early repolarization.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Simulación por Computador , Insuficiencia Cardíaca/tratamiento farmacológico , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Tetrazoles/farmacología , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Perros , Relación Dosis-Respuesta a Droga , Acoplamiento Excitación-Contracción/efectos de los fármacos , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Cinética , Canal de Potasio Kv1.4/agonistas , Canal de Potasio Kv1.4/metabolismo , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Canales de Potasio Shal/agonistas , Canales de Potasio Shal/metabolismo
15.
J Neurosci ; 32(29): 10045-52, 2012 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-22815518

RESUMEN

Neurons in the suprachiasmatic nucleus (SCN) display coordinated circadian changes in electrical activity that are critical for daily rhythms in physiology, metabolism, and behavior. SCN neurons depolarize spontaneously and fire repetitively during the day and hyperpolarize, drastically reducing firing rates, at night. To explore the hypothesis that rapidly activating and inactivating A-type (I(A)) voltage-gated K(+) (Kv) channels, which are also active at subthreshold membrane potentials, are critical regulators of the excitability of SCN neurons, we examined locomotor activity and SCN firing in mice lacking Kv1.4 (Kv1.4(-/-)), Kv4.2 (Kv4.2(-/-)), or Kv4.3 (Kv4.3(-/-)), the pore-forming (α) subunits of I(A) channels. Mice lacking either Kv1.4 or Kv4.2 α subunits have markedly shorter (0.5 h) periods of locomotor activity than wild-type (WT) mice. In vitro extracellular multi-electrode recordings revealed that Kv1.4(-/-) and Kv4.2(-/-) SCN neurons display circadian rhythms in repetitive firing, but with shorter periods (0.5 h) than WT cells. In contrast, the periods of wheel-running activity in Kv4.3(-/-) mice and firing in Kv4.3(-/-) SCN neurons were indistinguishable from WT animals and neurons. Quantitative real-time PCR revealed that the transcripts encoding all three Kv channel α subunits, Kv1.4, Kv4.2, and Kv4.3, are expressed constitutively throughout the day and night in the SCN. Together, these results demonstrate that Kv1.4- and Kv4.2-encoded I(A) channels regulate the intrinsic excitability of SCN neurons during the day and night and determine the period and amplitude of circadian rhythms in SCN neuron firing and locomotor behavior.


Asunto(s)
Potenciales de Acción/fisiología , Ritmo Circadiano/fisiología , Canal de Potasio Kv1.4/metabolismo , Actividad Motora/fisiología , Neuronas/fisiología , Canales de Potasio Shal/metabolismo , Núcleo Supraquiasmático/fisiología , Animales , Activación del Canal Iónico/fisiología , Canal de Potasio Kv1.4/genética , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Canales de Potasio Shal/genética
16.
J Mol Cell Cardiol ; 60: 36-46, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23542310

RESUMEN

BACKGROUND: The ability to recapitulate mature adult phenotypes is critical to the development of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) as models of disease. The present study examines the characteristics of the transient outward current (Ito) and its contribution to the hiPSC-CM action potential (AP). METHOD: Embryoid bodies were made from a hiPS cell line reprogrammed with Oct4, Nanog, Lin28 and Sox2. Sharp microelectrodes were used to record APs from beating-clusters (BC) and patch-clamp techniques were used to record Ito in single hiPSC-CM. mRNA levels of Kv1.4, KChIP2 and Kv4.3 were quantified from BCs. RESULTS: BCs exhibited spontaneous beating (60.5±2.6 bpm) and maximum-diastolic-potential (MDP) of 67.8±0.8 mV (n=155). A small 4-aminopyridine-sensitive phase-1-repolarization was observed in only 6/155 BCs. A robust Ito was recorded in the majority of cells (13.7±1.9 pA/pF at +40 mV; n=14). Recovery of Ito from inactivation (at -80 mV) showed slow kinetics (τ1=200±110 ms (12%) and τ2=2380±240 ms (80%)) accounting for its minimal contribution to the AP. Transcript data revealed relatively high expression of Kv1.4 and low expression of KChIP2 compared to human native ventricular tissues. Mathematical modeling predicted that restoration of IK1 to normal levels would result in a more negative MDP and a prominent phase-1-repolarization. CONCLUSION: The slow recovery kinetics of Ito coupled with a depolarized MDP account for the lack of an AP notch in the majority of hiPSC-CM. These characteristics reveal a deficiency for the development of in vitro models of inherited cardiac arrhythmia syndromes in which Ito-induced AP notch is central to the disease phenotype.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Potenciales de la Membrana/fisiología , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Potasio/metabolismo , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Proteínas de Interacción con los Canales Kv/metabolismo , Canal de Potasio Kv1.4/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/citología , Canales de Potasio Shal/metabolismo
17.
Biochim Biophys Acta ; 1818(1): 55-63, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21996039

RESUMEN

Inactivation of potassium channels plays an important role in shaping the electrical signaling properties of nerve and muscle cells. The rapid inactivation of Kv1.4 has been assumed to be controlled by a "ball and chain" inactivation mechanism. Besides hydrophobic interaction between inactivation ball and the channel's inner pore, the electrostatic interaction has also been proved to participate in the "ball and chain" inactivation process of Kv1.4 channel. Based on the crystal structure of Kv1.2 channel, the acidic T1-S1 linker is indicated to be a candidate interacting with the positively charged hydrophilic region of the inactivation domain. In this study, through mutating the charged residues to amino acids of opposite polar, we identified the electrostatic interaction between the inactivation ball and the T1-S1 linker region of Kv1.4 channel. Inserting negatively charged peptide at the amino terminal of Kv1.4 channel further confirmed the electrostatic interaction between the two regions.


Asunto(s)
Canal de Potasio Kv1.4/metabolismo , Potenciales de la Membrana/fisiología , Péptidos/metabolismo , Electricidad Estática , Secuencia de Aminoácidos , Animales , Células CHO , Clonación Molecular , Cricetinae , Interacciones Hidrofóbicas e Hidrofílicas , Activación del Canal Iónico , Canal de Potasio Kv1.4/química , Canal de Potasio Kv1.4/genética , Mamíferos , Datos de Secuencia Molecular , Mutación , Neuronas/fisiología , Técnicas de Placa-Clamp , Péptidos/química , Péptidos/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
J Neurophysiol ; 110(8): 1751-64, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23864368

RESUMEN

Developmental plasticity in spiral ganglion neurons (SGNs) ensues from profound alterations in the functional properties of the developing hair cell (HC). For example, prehearing HCs are spontaneously active. However, at the posthearing stage, HC membrane properties transition to graded receptor potentials. The dendrotoxin (DTX)-sensitive Kv1 channel subunits (Kv1.1, 1.2, and 1.6) shape the firing properties and membrane potential of SGNs, and the expression of the channel undergoes developmental changes. Because of the stochastic nature of Kv subunit heteromultimerization, it has been difficult to determine physiologically relevant subunit-specific interactions and their functions in the underlying mechanisms of Kv1 channel plasticity in SGNs. Using Kcna2 null mutant mice, we demonstrate a surprising paradox in changes in the membrane properties of SGNs. The resting membrane potential of Kcna2(-/-) SGNs was significantly hyperpolarized compared with that of age-matched wild-type (WT) SGNs. Analyses of outward currents in the mutant SGNs suggest an apparent approximately twofold increase in outward K(+) currents. We show that in vivo and in vitro heteromultimerization of Kv1.2 and Kv1.4 α-subunits underlies the striking and unexpected alterations in the properties of SGNs. The results suggest that heteromeric interactions of Kv1.2 and Kv1.4 dominate the defining features of Kv1 channels in SGNs.


Asunto(s)
Células Ciliadas Auditivas/fisiología , Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv1.4/metabolismo , Multimerización de Proteína , Ganglio Espiral de la Cóclea/fisiología , Potenciales de Acción , Animales , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv1.4/genética , Potenciales de la Membrana , Ratones , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/crecimiento & desarrollo
19.
Mol Pain ; 9: 4, 2013 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-23413915

RESUMEN

BACKGROUND: Hydrogen sulfide (H2S), an endogenous gaseotransmitter/modulator, is becoming appreciated that it may be involved in a wide variety of processes including inflammation and nociception. However, the role and mechanism for H2S in nociceptive processing in trigeminal ganglion (TG) neuron remains unknown. The aim of this study is to investigate distribution of endogenous H2S synthesizing enzyme cystathionine-ß-synthetase (CBS) expression and role of H2S on excitability and voltage-gated potassium channels of TG neurons. METHODS: Immunofluorescence studies were carried out to determine whether CBS was co-expressed in Kv1.1 or Kv1.4-positive TG neurons. Whole cell patch clamp recordings were employed on acutely isolated TG neurons from adult male Sprague Dawley rats (6-8 week old). von Frey filaments were used to examine the pain behavioral responses in rats following injection of sodium hydrosulfide. RESULTS: In rat TG, 77.3±6.6% neurons were immunoreactive for CBS, 85.1±3.8% for Kv1.1 and 97.8±1.1% for Kv1.4. Double staining showed that all CBS labeled cells were Kv1.1 and Kv1.4 positive, but only 92.2±6.1% of Kv1.1 and 78.2±9.9% of Kv1.4 positive cells contained CBS. Application of H2S donor NaHS (250 µM) led to a significant depolarization of resting membrane potential recorded from TG neurons. NaHS application also resulted in a dramatic reduction in rheobase, hyperpolarization of action potential threshold, and a significant increase in the number of action potentials evoked at 2X and 3X rheobase stimulation. Under voltage-clamp conditions, TG neurons exhibited transient A-type (IA) and sustained outward rectifier K+ currents (IK). Application of NaHS did suppress IK density while did not change IA density of TG neurons (n=6). Furthermore, NaHS, a donor of hydrogen sulfide, produced a significant reduction in escape threshold in a dose dependent manner. CONCLUSION: These data suggest that endogenous H2S generating enzyme CBS was co-localized well with Kv1.1 and Kv1.4 in TG neurons and that H2S produces the mechanic pain and increases neuronal excitability, which might be largely mediated by suppressing IK density, thus identifying for the first time a specific molecular mechanism underlying pain and sensitization in TG.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio Kv.1.1/metabolismo , Canal de Potasio Kv1.4/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Ganglio del Trigémino/fisiopatología , Potenciales de Acción/efectos de los fármacos , Animales , Cistationina betasintasa/metabolismo , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Masculino , Neuronas/efectos de los fármacos , Neuronas/enzimología , Ratas , Ratas Sprague-Dawley , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/enzimología , Ganglio del Trigémino/patología
20.
Am J Physiol Heart Circ Physiol ; 304(12): H1680-96, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23585132

RESUMEN

The contribution of transient outward current (Ito) to changes in ventricular action potential (AP) repolarization induced by acidosis is unresolved, as is the indirect effect of these changes on calcium handling. To address this issue we measured intracellular pH (pHi), Ito, L-type calcium current (ICa,L), and calcium transients (CaTs) in rabbit ventricular myocytes. Intracellular acidosis [pHi 6.75 with extracellular pH (pHo) 7.4] reduced Ito by ~50% in myocytes with both high (epicardial) and low (papillary muscle) Ito densities, with little effect on steady-state inactivation and activation. Of the two candidate α-subunits underlying Ito, human (h)Kv4.3 and hKv1.4, only hKv4.3 current was reduced by intracellular acidosis. Extracellular acidosis (pHo 6.5) shifted Ito inactivation toward less negative potentials but had negligible effect on peak current at +60 mV when initiated from -80 mV. The effects of low pHi-induced inhibition of Ito on AP repolarization were much greater in epicardial than papillary muscle myocytes and included slowing of phase 1, attenuation of the notch, and elevation of the plateau. Low pHi increased AP duration in both cell types, with the greatest lengthening occurring in epicardial myocytes. The changes in epicardial AP repolarization induced by intracellular acidosis reduced peak ICa,L, increased net calcium influx via ICa,L, and increased CaT amplitude. In summary, in contrast to low pHo, intracellular acidosis has a marked inhibitory effect on ventricular Ito, perhaps mediated by Kv4.3. By altering the trajectory of the AP repolarization, low pHi has a significant indirect effect on calcium handling, especially evident in epicardial cells.


Asunto(s)
Acidosis/fisiopatología , Potenciales de Acción , Acoplamiento Excitación-Contracción , Miocitos Cardíacos/fisiología , Potasio/metabolismo , Acidosis/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Citoplasma/metabolismo , Ventrículos Cardíacos/citología , Concentración de Iones de Hidrógeno , Canal de Potasio Kv1.4/metabolismo , Miocitos Cardíacos/metabolismo , Músculos Papilares/citología , Pericardio/citología , Conejos , Canales de Potasio Shal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA