RESUMEN
The mRNA cap structure is a major site of dynamic mRNA methylation. mRNA caps exist in either the Cap1 or Cap2 form, depending on the presence of 2'-O-methylation on the first transcribed nucleotide or both the first and second transcribed nucleotides, respectively1,2. However, the identity of Cap2-containing mRNAs and the function of Cap2 are unclear. Here we describe CLAM-Cap-seq, a method for transcriptome-wide mapping and quantification of Cap2. We find that unlike other epitranscriptomic modifications, Cap2 can occur on all mRNAs. Cap2 is formed through a slow continuous conversion of mRNAs from Cap1 to Cap2 as mRNAs age in the cytosol. As a result, Cap2 is enriched on long-lived mRNAs. Large increases in the abundance of Cap1 leads to activation of RIG-I, especially in conditions in which expression of RIG-I is increased. The methylation of Cap1 to Cap2 markedly reduces the ability of RNAs to bind to and activate RIG-I. The slow methylation rate of Cap2 allows Cap2 to accumulate on host mRNAs, yet ensures that low levels of Cap2 occur on newly expressed viral RNAs. Overall, these results reveal an immunostimulatory role for Cap1, and that Cap2 functions to reduce activation of the innate immune response.
Asunto(s)
Senescencia Celular , Epigenoma , Mamíferos , Metilación , Caperuzas de ARN , ARN Mensajero , Animales , Citosol/metabolismo , Proteína 58 DEAD Box , Perfilación de la Expresión Génica , Inmunidad Innata , Mamíferos/genética , Mamíferos/metabolismo , Nucleótidos/química , Nucleótidos/genética , Nucleótidos/metabolismo , Receptores Inmunológicos , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/genética , Análogos de Caperuza de ARN/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma , Factores de TiempoRESUMEN
The RNA genome of SARS-CoV-2 contains a 5' cap that facilitates the translation of viral proteins, protection from exonucleases and evasion of the host immune response1-4. How this cap is made in SARS-CoV-2 is not completely understood. Here we reconstitute the N7- and 2'-O-methylated SARS-CoV-2 RNA cap (7MeGpppA2'-O-Me) using virally encoded non-structural proteins (nsps). We show that the kinase-like nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain5 of nsp12 transfers the RNA to the amino terminus of nsp9, forming a covalent RNA-protein intermediate (a process termed RNAylation). Subsequently, the NiRAN domain transfers the RNA to GDP, forming the core cap structure GpppA-RNA. The nsp146 and nsp167 methyltransferases then add methyl groups to form functional cap structures. Structural analyses of the replication-transcription complex bound to nsp9 identified key interactions that mediate the capping reaction. Furthermore, we demonstrate in a reverse genetics system8 that the N terminus of nsp9 and the kinase-like active-site residues in the NiRAN domain are required for successful SARS-CoV-2 replication. Collectively, our results reveal an unconventional mechanism by which SARS-CoV-2 caps its RNA genome, thus exposing a new target in the development of antivirals to treat COVID-19.
Asunto(s)
Caperuzas de ARN , ARN Viral , SARS-CoV-2 , Proteínas Virales , Antivirales , COVID-19/virología , Dominio Catalítico , Guanosina Difosfato/metabolismo , Humanos , Metiltransferasas/metabolismo , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Dominios Proteicos , Caperuzas de ARN/química , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/enzimología , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Tratamiento Farmacológico de COVID-19RESUMEN
Positive-sense single-stranded RNA viruses, such as coronaviruses, flaviviruses and alphaviruses, carry out transcription and replication inside virus-induced membranous organelles within host cells1-7. The remodelling of the host-cell membranes for the formation of these organelles is coupled to the membrane association of viral replication complexes and to RNA synthesis. These viral niches allow for the concentration of metabolites and proteins for the synthesis of viral RNA, and prevent the detection of this RNA by the cellular innate immune system8. Here we present the cryo-electron microscopy structure of non-structural protein 1 (nsP1) of the alphavirus chikungunya virus, which is responsible for RNA capping and membrane binding of the viral replication machinery. The structure shows the enzyme in its active form, assembled in a monotopic membrane-associated dodecameric ring. The structure reveals the structural basis of the coupling between membrane binding, oligomerization and allosteric activation of the capping enzyme. The stoichiometry-with 12 active sites in a single complex-redefines viral replication complexes as RNA synthesis reactors. The ring shape of the complex implies it has a role in controlling access to the viral organelle and ensuring the exit of properly capped viral RNA. Our results provide high-resolution information about the membrane association of the replication machinery of positive-sense single-stranded RNA viruses, and open up avenues for the further characterization of viral replication on cell membranes and the generation of antiviral agents.
Asunto(s)
Membrana Celular/metabolismo , Virus Chikungunya/crecimiento & desarrollo , Virus Chikungunya/ultraestructura , Microscopía por Crioelectrón , Caperuzas de ARN/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Dominio Catalítico , Línea Celular , Membrana Celular/química , Virus Chikungunya/química , Virus Chikungunya/genética , Modelos Moleculares , Caperuzas de ARN/química , ARN Viral/biosíntesis , ARN Viral/química , ARN Viral/metabolismo , Proteínas no Estructurales Virales/ultraestructuraRESUMEN
Cap-independent or eukaryotic initiation factor (eIF) 4E-independent, translation initiation in eukaryotes requires scaffolding protein eIF4G or its homolog, death-associated protein 5 (DAP5). eIF4G associates with the 40S ribosomal subunit, recruiting the ribosome to the RNA transcript. A subset of RNA transcripts, such as fibroblast growth factor 9 (FGF-9), contain 5' untranslated regions (5' UTRs) that directly bind DAP5 or eIF4GI. For viral mRNA, eIF recruitment usually utilizes RNA structure, such as a pseudoknot or stem-loops, and the RNA-helicase eIF4A is required for DAP5- or 4G-mediated translation, suggesting these 5' UTRs are structured. However, for cellular IRES-like translation, no consensus RNA structures or sequences have yet been identified for eIF binding. However, the DAP5-binding site within the FGF-9 5' UTR is unknown. Moreover, DAP5 binds to other, dissimilar 5' UTRs, some of which require an unpaired, accessible 5' end to stimulate cap-independent translation. Using SHAPE-seq, we modeled the 186 nt FGF-9 5'-UTR RNA's complex secondary structure in vitro. Further, DAP5 footprinting, toeprinting, and UV cross-linking experiments identify DAP5-RNA interactions. Modeling of FGF-9 5'-UTR tertiary structure aligns DAP5-interacting nucleotides on one face of the predicted structure. We propose that RNA structure involving tertiary folding, rather than a conserved sequence or secondary structure, acts as a DAP5-binding site. DAP5 appears to contact nucleotides near the start codon. Our findings offer a new perspective in the hunt for cap-independent translational enhancers. Structural, rather than sequence-specific, eIF-binding sites may act as attractive chemotherapeutic targets or as dosage tools for mRNA-based therapies.
Asunto(s)
Regiones no Traducidas 5' , Factor 4G Eucariótico de Iniciación , Factor 9 de Crecimiento de Fibroblastos , Conformación de Ácido Nucleico , Sitios de Unión , Factor 4G Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/química , Humanos , Factor 9 de Crecimiento de Fibroblastos/genética , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Factor 9 de Crecimiento de Fibroblastos/química , Biosíntesis de Proteínas , Modelos Moleculares , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/químicaRESUMEN
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a human pathogen that is now endemic to several East Asian countries. The viral large (L) protein catalyzes viral transcription by stealing host mRNA caps via a process known as cap-snatching. Here, we establish an in vitro cap-snatching assay and present three high-quality electron cryo-microscopy (cryo-EM) structures of the SFTSV L protein in biologically relevant, transcription-specific states. In a priming-state structure, we show capped RNA bound to the L protein cap-binding domain (CBD). The L protein conformation in this priming structure is significantly different from published replication-state structures, in particular the N- and C-terminal domains. The capped-RNA is positioned in a way that it can feed directly into the RNA-dependent RNA polymerase (RdRp) ready for elongation. We also captured the L protein in an early-elongation state following primer-incorporation demonstrating that this priming conformation is retained at least in the very early stages of primer extension. This structural data is complemented by in vitro biochemical and cell-based assays. Together, these insights further our mechanistic understanding of how SFTSV and other bunyaviruses incorporate stolen host mRNA fragments into their viral transcripts thereby allowing the virus to hijack host cell translation machinery.
Asunto(s)
Interacciones Microbiota-Huesped , Modelos Moleculares , Phlebovirus , Caperuzas de ARN , Transcripción Genética , Humanos , Microscopía por Crioelectrón , Phlebovirus/química , Phlebovirus/genética , Phlebovirus/ultraestructura , Conformación Proteica , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo , Caperuzas de ARN/ultraestructura , ARN Viral/química , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura , Replicación Viral/fisiología , Interacciones Microbiota-Huesped/fisiologíaRESUMEN
The recent COVID-19 pandemics have demonstrated the great therapeutic potential of in vitro transcribed (IVT) mRNAs, but improvements in their biochemical properties, such as cellular stability, reactogenicity and translational activity, are critical for further practical applications in gene replacement therapy and anticancer immunotherapy. One of the strategies to overcome these limitations is the chemical modification of a unique mRNA 5'-end structure, the 5'-cap, which is responsible for regulating translation at multiple levels. This could be achieved by priming the in vitro transcription reaction with synthetic cap analogs. In this study, we combined a highly efficient trinucleotide IVT capping technology with several modifications of the 5' cap triphosphate bridge to synthesize a series of 16 new cap analogs. We also combined these modifications with epigenetic marks (2'-O-methylation and m6Am) characteristic of mRNA 5'-ends in higher eukaryotes, which was not possible with dinucleotide caps. All analogs were compared for their effect on the interactions with eIF4E protein, IVT priming, susceptibility to decapping, and mRNA translation efficiency in model cell lines. The most promising α-phosphorothiolate modification was also evaluated in an in vivo mouse model. Unexpected differences between some of the analogs were analyzed using a protein cell extract pull-down assay.
Asunto(s)
Análogos de Caperuza de ARN , ARN Mensajero , Animales , Análogos de Caperuza de ARN/síntesis química , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/metabolismo , Ratones , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , COVID-19/virología , Biosíntesis de Proteínas/efectos de los fármacos , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/química , Polifosfatos/química , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/genéticaRESUMEN
Circular RNAs (circRNAs) are abundant and evolutionarily conserved RNAs of largely unknown function. Here, we show that a subset of circRNAs is translated in vivo. By performing ribosome footprinting from fly heads, we demonstrate that a group of circRNAs is associated with translating ribosomes. Many of these ribo-circRNAs use the start codon of the hosting mRNA, are bound by membrane-associated ribosomes, and have evolutionarily conserved termination codons. In addition, we found that a circRNA generated from the muscleblind locus encodes a protein, which we detected in fly head extracts by mass spectrometry. Next, by performing in vivo and in vitro translation assays, we show that UTRs of ribo-circRNAs (cUTRs) allow cap-independent translation. Moreover, we found that starvation and FOXO likely regulate the translation of a circMbl isoform. Altogether, our study provides strong evidence for translation of circRNAs, revealing the existence of an unexplored layer of gene activity.
Asunto(s)
Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/metabolismo , Proteínas Nucleares/biosíntesis , Biosíntesis de Proteínas , ARN/metabolismo , Ribosomas/metabolismo , Animales , Línea Celular , Codón Iniciador , Codón de Terminación , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Factores de Transcripción Forkhead/metabolismo , Genotipo , Cabeza , Espectrometría de Masas , Ratones , Mutación , Proteínas Nucleares/genética , Conformación de Ácido Nucleico , Estado Nutricional , Fenotipo , ARN/química , ARN/genética , Caperuzas de ARN/química , Caperuzas de ARN/genética , ARN Circular , Ratas , Ribosomas/química , Ribosomas/genética , Inanición/genética , Inanición/metabolismo , Relación Estructura-Actividad , TransfecciónRESUMEN
Eukaryotic mRNAs undergo cotranscriptional 5'-end modification with a 7-methylguanosine cap. In higher eukaryotes, the cap carries additional methylations, such as m6Amâa common epitranscriptomic mark unique to the mRNA 5'-end. This modification is regulated by the Pcif1 methyltransferase and the FTO demethylase, but its biological function is still unknown. Here, we designed and synthesized a trinucleotide FTO-resistant N6-benzyl analogue of the m6Am-cap-m7GpppBn6AmpG (termed AvantCap) and incorporated it into mRNA using T7 polymerase. mRNAs carrying Bn6Am showed several advantages over typical capped transcripts. The Bn6Am moiety was shown to act as a reversed-phase high-performance liquid chromatography (RP-HPLC) purification handle, allowing the separation of capped and uncapped RNA species, and to produce transcripts with lower dsRNA content than reference caps. In some cultured cells, Bn6Am mRNAs provided higher protein yields than mRNAs carrying Am or m6Am, although the effect was cell-line-dependent. m7GpppBn6AmpG-capped mRNAs encoding reporter proteins administered intravenously to mice provided up to 6-fold higher protein outputs than reference mRNAs, while mRNAs encoding tumor antigens showed superior activity in therapeutic settings as anticancer vaccines. The biochemical characterization suggests several phenomena potentially underlying the biological properties of AvantCap: (i) reduced propensity for unspecific interactions, (ii) involvement in alternative translation initiation, and (iii) subtle differences in mRNA impurity profiles or a combination of these effects. AvantCapped-mRNAs bearing the Bn6Am may pave the way for more potent mRNA-based vaccines and therapeutics and serve as molecular tools to unravel the role of m6Am in mRNA.
Asunto(s)
Caperuzas de ARN , Vacunas , Animales , Ratones , ARN Mensajero/genética , Caperuzas de ARN/química , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Biosíntesis de Proteínas , MetilaciónRESUMEN
Cap methyltransferases (CMTrs) O methylate the 2' position of the ribose (cOMe) of cap-adjacent nucleotides of animal, protist, and viral mRNAs. Animals generally have two CMTrs, whereas trypanosomes have three, and many viruses encode one in their genome. In the splice leader of mRNAs in trypanosomes, the first four nucleotides contain cOMe, but little is known about the status of cOMe in animals. Here, we show that cOMe is prominently present on the first two cap-adjacent nucleotides with species- and tissue-specific variations in Caenorhabditis elegans, honeybees, zebrafish, mouse, and human cell lines. In contrast, Drosophila contains cOMe primarily on the first cap-adjacent nucleotide. De novo RoseTTA modeling of CMTrs reveals close similarities of the overall structure and near identity for the catalytic tetrad, and for cap and cofactor binding for human, Drosophila and C. elegans CMTrs. Although viral CMTrs maintain the overall structure and catalytic tetrad, they have diverged in cap and cofactor binding. Consistent with the structural similarity, both CMTrs from Drosophila and humans methylate the first cap-adjacent nucleotide of an AGU consensus start. Because the second nucleotide is also methylated upon heat stress in Drosophila, these findings argue for regulated cOMe important for gene expression regulation.
Asunto(s)
Caperuzas de ARN , Ribosa , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila/genética , Drosophila/metabolismo , Humanos , Metilación , Metiltransferasas/metabolismo , Ratones , Nucleótidos/genética , Nucleótidos/metabolismo , Caperuzas de ARN/química , ARN Mensajero/genética , Ribosa/metabolismo , Pez Cebra/genéticaRESUMEN
Ribonucleic acid (RNA) is composed primarily of four canonical building blocks. In addition, more than 170 modifications contribute to its stability and function. Metabolites like nicotinamide adenine dinucleotide (NAD) were found to function as 5'-cap structures of RNA, just like 7-methylguanosine (m7G). The identification of NAD-capped RNA sequences was first made possible by NAD captureSeq, a multistep protocol for the specific targeting, purification, and sequencing of NAD-capped RNAs, developed in the authors' laboratory in the year 2015. In recent years, a number of NAD-RNA identification protocols have been developed by researchers around the world. They have enabled the discovery and identification of NAD-RNAs in bacteria, archaea, yeast, plants, mice, and human cells, and they play a key role in studying the biological functions of NAD capping. We introduce the four parameters of yield, specificity, evaluability, and throughput and describe to the reader how an ideal NAD-RNA identification protocol would perform in each of these disciplines. These parameters are further used to describe and analyze existing protocols that follow two general methodologies: the capture approach and the decapping approach. Capture protocols introduce an exogenous moiety into the NAD-cap structure in order to either specifically purify or sequence NAD-capped RNAs. In decapping protocols, the NAD cap is digested to 5'-monophosphate RNA, which is then specifically targeted and sequenced. Both approaches, as well as the different protocols within them, have advantages and challenges that we evaluate based on the aforementioned parameters. In addition, we suggest improvements in order to meet the future needs of research on NAD-modified RNAs, which is beginning to emerge in the area of cell-type specific samples. A limiting factor of the capture approach is the need for large amounts of input RNA. Here we see a high potential for innovation within the key targeting step: The enzymatic modification reaction of the NAD-cap structure catalyzed by ADP-ribosyl cyclase (ADPRC) is a major contributor to the parameters of yield and specificity but has mostly seen minor changes since the pioneering protocol of NAD captureSeq and needs to be more stringently analyzed. The major challenge of the decapping approach remains the specificity of the decapping enzymes, many of which act on a variety of 5'-cap structures. Exploration of new decapping enzymes or engineering of already known enzymes could lead to improvements in NAD-specific protocols. The use of a curated set of decapping enzymes in a combinatorial approach could allow for the simultaneous detection of multiple 5'-caps. The throughput of both approaches could be greatly improved by early sample pooling. We propose that this could be achieved by introducing a barcode RNA sequence before or immediately after the NAD-RNA targeting steps. With increased processing capacity and a potential decrease in the cost per sample, protocols will gain the potential to analyze large numbers of samples from different growth conditions and treatments. This will support the search for biological roles of NAD-capped RNAs in all types of organisms.
Asunto(s)
NAD , Caperuzas de ARN , Animales , Humanos , Ratones , NAD/química , NAD/genética , NAD/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismoRESUMEN
The messenger RNA (mRNA) 5'-cap structure is indispensable for mRNA translation initiation and stability. Despite its importance, large-scale production of capped mRNA through in vitro transcription (IVT) synthesis using vaccinia capping enzyme (VCE) is challenging, due to the requirement of tedious and multiple pre-and-post separation steps causing mRNA loss and degradation. Here in the present study, we found that the VCE together with 2'-O-methyltransferase can efficiently catalyze the capping of poly dT media-tethered mRNA to produce mRNA with cap-1 structure under an optimized condition. We have therefore designed an integrated purification and solid-based capping protocol, which involved capturing the mRNA from the IVT system by using poly dT media through its affinity binding for 3'-end poly-A in mRNA, in situ capping of mRNA 5'-end by supplying the enzymes, and subsequent eluting of the capped mRNA from the poly dT media. Using mRNA encoding the enhanced green fluorescent protein as a model system, we have demonstrated that the new strategy greatly simplified the mRNA manufacturing process and improved its overall recovery without sacrificing the capping efficiency, as compared with the conventional process, which involved at least mRNA preseparation from IVT, solution-based capping, and post-separation and recovering steps. Specifically, the new process accomplished a 1.76-fold (84.21% over 47.79%) increase in mRNA overall recovery, a twofold decrease in operation time (70 vs. 140 min), and similar high capping efficiency (both close to 100%). Furthermore, the solid-based capping process greatly improved mRNA stability, such that the integrity of the mRNA could be well kept during the capping process even in the presence of exogenously added RNase; in contrast, mRNA in the solution-based capping process degraded almost completely. Meanwhile, we showed that such a strategy can be operated both in a batch mode and in an on-column continuous mode. The results presented in this work demonstrated that the new on-column capping process developed here can accomplish high capping efficiency, enhanced mRNA recovery, and improved stability against RNase; therefore, can act as a simple, efficient, and cost-effective platform technology suitable for large-scale production of capped mRNA.
Asunto(s)
Poli T , Ribonucleasas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/genéticaRESUMEN
Messenger RNA (mRNA) therapies have recently gained tremendous traction with the approval of mRNA vaccines for the prevention of SARS-CoV-2 infection. However, manufacturing challenges have complicated large scale mRNA production, which is necessary for the clinical viability of these therapies. Not only can the incorporation of the required 5' 7-methylguanosine cap analog be inefficient and costly, in vitro transcription (IVT) using wild-type T7 RNA polymerase generates undesirable double-stranded RNA (dsRNA) byproducts that elicit adverse host immune responses and are difficult to remove at large scale. To overcome these challenges, we have engineered a novel RNA polymerase, T7-68, that co-transcriptionally incorporates both di- and tri-nucleotide cap analogs with high efficiency, even at reduced cap analog concentrations. We also demonstrate that IVT products generated with T7-68 have reduced dsRNA content.
Asunto(s)
ARN Polimerasas Dirigidas por ADN , ARN Bicatenario , ARN Mensajero , Proteínas Virales , ARN Bicatenario/metabolismo , ARN Bicatenario/química , ARN Bicatenario/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/química , Transcripción Genética , Caperuzas de ARN/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Ingeniería de ProteínasRESUMEN
RNA capping is a prominent RNA modification that influences RNA stability, metabolism, and function. While it was long limited to the study of the most abundant eukaryotic canonical m7G cap, the field recently went through a large paradigm shift with the discovery of non-canonical RNA capping in bacteria and ultimately all domains of life. The repertoire of non-canonical caps has expanded to encompass metabolite caps, including NAD, FAD, CoA, UDP-Glucose, and ADP-ribose, alongside alarmone dinucleoside polyphosphate caps, and methylated phosphate cap-like structures. This review offers an introduction into the field, presenting a summary of the current knowledge about non-canonical RNA caps. We highlight the often still enigmatic biological roles of the caps together with their processing enzymes, focusing on the most recent discoveries. Furthermore, we present the methods used for the detection and analysis of these non-canonical RNA caps and thus provide an introduction into this dynamic new field.
Asunto(s)
Caperuzas de ARN , Caperuzas de ARN/metabolismo , Caperuzas de ARN/química , Humanos , Estabilidad del ARN , Animales , ARN/química , ARN/metabolismo , ARN/genética , Bacterias/genética , Bacterias/metabolismoRESUMEN
Viral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases. For this, chemical tools mimicking the state in which the cap RNA substrate and SAM cofactor are bound in the enzyme's catalytic pocket may prove useful. In this work, we designed and synthesized over 30 RNA conjugates that contain a short oligoribonucleotide (ORN with 4 or 6 nucleotides) with the first nucleotide 2'-O-attached to an adenosine by linkers of different lengths and containing S or N-heteroatoms, or a 1,2,3-triazole ring. These ORN conjugates bearing or not a cap structure at 5'-extremity mimic the methylation transition state with RNA substrate/SAM complex as bisubstrates of 2'-O-MTases. The ORN conjugates were synthesized either by the incorporation of a dinucleoside phosphoramidite during RNA elongation or by click chemistry performed on solid-phase post-RNA elongation. Their ability to inhibit the activity of the nsp16/nsp10 complex of SARS-CoV-2 and the NS5 protein of dengue and Zika viruses was assessed. Significant submicromolar IC50 values and Kd values in the µM range were found, suggesting a possible interaction of some ORN conjugates with these viral 2'-O-MTases.
Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Metiltransferasas/metabolismo , Metilación , Caperuzas de ARN/química , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , SARS-CoV-2/metabolismo , ARN Viral , Virus Zika/metabolismoRESUMEN
Nicotinamide adenine diphosphate (NAD+) is a novel messenger RNA 5' cap in Escherichia coli, yeast, mammals, and Arabidopsis Transcriptome-wide identification of NAD+-capped RNAs (NAD-RNAs) was accomplished through NAD captureSeq, which combines chemoenzymatic RNA enrichment with high-throughput sequencing. NAD-RNAs are enzymatically converted to alkyne-RNAs that are then biotinylated using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Originally applied to E. coli RNA, which lacks the m7G cap, NAD captureSeq was then applied to eukaryotes without extensive verification of its specificity for NAD-RNAs vs. m7G-capped RNAs (m7G-RNAs). In addition, the Cu2+ ion in the CuAAC reaction causes RNA fragmentation, leading to greatly reduced yield and loss of full-length sequence information. We developed an NAD-RNA capture scheme utilizing the copper-free, strain-promoted azide-alkyne cycloaddition reaction (SPAAC). We examined the specificity of CuAAC and SPAAC reactions toward NAD-RNAs and m7G-RNAs and found that both prefer the former, but also act on the latter. We demonstrated that SPAAC-NAD sequencing (SPAAC-NAD-seq), when combined with immunodepletion of m7G-RNAs, enables NAD-RNA identification with accuracy and sensitivity, leading to the discovery of new NAD-RNA profiles in Arabidopsis Furthermore, SPAAC-NAD-seq retained full-length sequence information. Therefore, SPAAC-NAD-seq would enable specific and efficient discovery of NAD-RNAs in prokaryotes and, when combined with m7G-RNA depletion, in eukaryotes.
Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , NAD , Caperuzas de ARN/química , Caperuzas de ARN/genética , RNA-Seq/métodos , Reacción de Cicloadición , Transcripción GenéticaRESUMEN
HIV-1 selectively packages two copies of its 5'-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5' leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5' leader. ΨCES lacks a 5'-tandem hairpin element that sequesters the 5' cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5' ribozyme to ΨCES to enable cotranscriptional shedding of the 5' cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5' cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5'-capped RNA genomes.
Asunto(s)
Regiones no Traducidas 5'/genética , Genoma Viral , VIH-1/genética , Caperuzas de ARN/metabolismo , ARN Viral/metabolismo , Virión/fisiología , Ensamble de Virus , Células HEK293 , Infecciones por VIH/virología , Humanos , Conformación de Ácido Nucleico , Caperuzas de ARN/química , Caperuzas de ARN/genética , ARN Viral/química , ARN Viral/genéticaRESUMEN
The genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus has a capping modification at the 5'-untranslated region (UTR) to prevent its degradation by host nucleases. These modifications are performed by the Nsp10/14 and Nsp10/16 heterodimers using S-adenosylmethionine as the methyl donor. Nsp10/16 heterodimer is responsible for the methylation at the ribose 2'-O position of the first nucleotide. To investigate the conformational changes of the complex during 2'-O methyltransferase activity, we used a fixed-target serial synchrotron crystallography method at room temperature. We determined crystal structures of Nsp10/16 with substrates and products that revealed the states before and after methylation, occurring within the crystals during the experiments. Here we report the crystal structure of Nsp10/16 in complex with Cap-1 analog (m7GpppAm2'-O). Inhibition of Nsp16 activity may reduce viral proliferation, making this protein an attractive drug target.
Asunto(s)
Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/química , Cristalografía , Metilación , Metiltransferasas/química , Metiltransferasas/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/metabolismo , Caperuzas de ARN/química , ARN Mensajero/química , ARN Viral/química , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Sincrotrones , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismoRESUMEN
Viruses have evolved different strategies to overcome their recognition by the host innate immune system. The addition of caps at their 5' RNA ends is an efficient mechanism not only to ensure escape from detection by the innate immune system but also to ensure the efficient synthesis of viral proteins. Rotavirus mRNAs contain a type 1 cap structure at their 5' end that is added by the viral capping enzyme VP3, which is a multifunctional protein with all the enzymatic activities necessary to add the cap and also functions as an antagonist of the 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway. Here, the relative abundances of capped and noncapped viral RNAs during the replication cycle of rotavirus were determined. We found that both classes of rotaviral plus-sense RNAs (+RNAs) were encapsidated and that they were present in a 1:1 ratio in the mature infectious particles. The capping of viral +RNAs was dynamic, since different ratios of capped and noncapped RNAs were detected at different times postinfection. Similarly, when the relative amounts of capped and uncapped viral +RNAs produced in an in vitro transcription system were determined, we found that the proportions were very similar to those in the mature viral particles and in infected cells, suggesting that the capping efficiency of VP3, both in vivo and in vitro, might be close to 50%. Unexpectedly, when the effect of simultaneously knocking down the expression of VP3 and RNase L on the cap status of viral +RNAs was evaluated, we found that, even though at late times postinfection there was an increased proportion of capped viral RNAs in infected cells, the viral particles isolated from this condition contained equal ratios of capped and noncapped viral RNA, suggesting that there might be selective packaging of capped and noncapped RNAs. IMPORTANCE Rotaviruses have a genome composed of 11 segments of double-stranded RNA. Whether all 5' ends of the positive-sense genomic RNAs contained in the mature viral particles are modified by a cap structure is unknown. In this work, we characterized the relative proportions of capped and noncapped viral RNAs in rotavirus-infected cells and in viral particles by using a direct quantitative assay. We found that, independent of the relative proportions of capped/noncapped RNAs present in rotavirus-infected cells, there were similar proportions of these two kinds of 5'-modified positive-sense RNAs in the viral particles.
Asunto(s)
Caperuzas de ARN , ARN Viral , Rotavirus , Virión , 2',5'-Oligoadenilato Sintetasa , Proteínas de la Cápside/metabolismo , Endorribonucleasas/metabolismo , Caperuzas de ARN/análisis , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Rotavirus/genética , Rotavirus/metabolismo , Virión/genética , Virión/metabolismo , Replicación ViralRESUMEN
Cells organize biochemical processes into biological condensates. P-bodies are cytoplasmic condensates that are enriched in enzymes important for mRNA degradation and have been identified as sites of both storage and decay. How these opposing outcomes can be achieved in condensates remains unresolved. mRNA decapping immediately precedes degradation, and the Dcp1/Dcp2 decapping complex is enriched in P-bodies. Here, we show that Dcp1/Dcp2 activity is modulated in condensates and depends on the interactions promoting phase separation. We find that Dcp1/Dcp2 phase separation stabilizes an inactive conformation in Dcp2 to inhibit decapping. The activator Edc3 causes a conformational change in Dcp2 and rewires the protein-protein interactions to stimulate decapping in condensates. Disruption of the inactive conformation dysregulates decapping in condensates. Our results indicate that the regulation of enzymatic activity in condensates relies on a coupling across length scales ranging from microns to ångstroms. We propose that this regulatory mechanism may control the functional state of P-bodies and related phase-separated compartments.
Asunto(s)
Caperuzas de ARN/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Sitios de Unión , Clonación Molecular , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Estabilidad del ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Coloración y Etiquetado/métodos , Especificidad por SustratoRESUMEN
Internal bases in mRNA can be subjected to modifications that influence the fate of mRNA in cells. One of the most prevalent modified bases is found at the 5' end of mRNA, at the first encoded nucleotide adjacent to the 7-methylguanosine cap. Here we show that this nucleotide, N6,2'-O-dimethyladenosine (m6Am), is a reversible modification that influences cellular mRNA fate. Using a transcriptome-wide map of m6Am we find that m6Am-initiated transcripts are markedly more stable than mRNAs that begin with other nucleotides. We show that the enhanced stability of m6Am-initiated transcripts is due to resistance to the mRNA-decapping enzyme DCP2. Moreover, we find that m6Am is selectively demethylated by fat mass and obesity-associated protein (FTO). FTO preferentially demethylates m6Am rather than N6-methyladenosine (m6A), and reduces the stability of m6Am mRNAs. Together, these findings show that the methylation status of m6Am in the 5' cap is a dynamic and reversible epitranscriptomic modification that determines mRNA stability.