Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 597(7878): 698-702, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526714

RESUMEN

The development of new antibiotics to treat infections caused by drug-resistant Gram-negative pathogens is of paramount importance as antibiotic resistance continues to increase worldwide1. Here we describe a strategy for the rational design of diazabicyclooctane inhibitors of penicillin-binding proteins from Gram-negative bacteria to overcome multiple mechanisms of resistance, including ß-lactamase enzymes, stringent response and outer membrane permeation. Diazabicyclooctane inhibitors retain activity in the presence of ß-lactamases, the primary resistance mechanism associated with ß-lactam therapy in Gram-negative bacteria2,3. Although the target spectrum of an initial lead was successfully re-engineered to gain in vivo efficacy, its ability to permeate across bacterial outer membranes was insufficient for further development. Notably, the features that enhanced target potency were found to preclude compound uptake. An improved optimization strategy leveraged porin permeation properties concomitant with biochemical potency in the lead-optimization stage. This resulted in ETX0462, which has potent in vitro and in vivo activity against Pseudomonas aeruginosa plus all other Gram-negative ESKAPE pathogens, Stenotrophomonas maltophilia and biothreat pathogens. These attributes, along with a favourable preclinical safety profile, hold promise for the successful clinical development of the first novel Gram-negative chemotype to treat life-threatening antibiotic-resistant infections in more than 25 years.


Asunto(s)
Antibacterianos/farmacología , Diseño de Fármacos , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas/efectos de los fármacos , Animales , Antibacterianos/química , Compuestos Aza/química , Compuestos Aza/farmacología , Ciclooctanos/química , Ciclooctanos/farmacología , Femenino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Pseudomonas aeruginosa/efectos de los fármacos , beta-Lactamasas
2.
J Am Chem Soc ; 146(19): 13163-13175, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698548

RESUMEN

A pretargeted strategy that decouples targeting vectors from radionuclides has shown promise for nuclear imaging and/or therapy in vivo. However, the current pretargeted approach relies on the use of antibodies or nanoparticles as the targeting vectors, which may be compromised by poor tissue penetration and limited accumulation of targeting vectors in the tumor tissues. Herein, we present an orthogonal dual-pretargeted approach by combining stimuli-triggered in situ self-assembly strategy with fast inverse electron demand Diels-Alder (IEDDA) reaction and strong biotin-streptavidin (SA) interaction for near-infrared fluorescence (NIR FL) and magnetic resonance (MR) imaging of tumors. This approach uses a small-molecule probe (P-Cy-TCO&Bio) containing both biotin and trans-cyclooctene (TCO) as a tumor-targeting vector. P-Cy-TCO&Bio can efficiently penetrate subcutaneous HeLa tumors through biotin-assisted targeted delivery and undergo in situ self-assembly to form biotinylated TCO-bearing nanoparticles (Cy-TCO&Bio NPs) on tumor cell membranes. Cy-TCO&Bio NPs exhibited an "off-on" NIR FL and retained in the tumors, offering a high density of TCO and biotin groups for the concurrent capture of Gd-chelate-labeled tetrazine (Tz-Gd) and IR780-labeled SA (SA-780) via the orthogonal IEDDA reaction and SA-biotin interaction. Moreover, Cy-TCO&Bio NPs offered multiple-valent binding modes toward SA, which additionally regulated the cross-linking of Cy-Gd&Bio NPs into microparticles (Cy-Gd&Bio/SA MPs). This process could significantly (1) increase r1 relaxivity and (2) enhance the accumulation of Tz-Gd and SA-780 in the tumors, resulting in strong NIR FL, bright MR contrast, and an extended time window for the clear and precise imaging of HeLa tumors.


Asunto(s)
Biotina , Ciclooctanos , Imagen por Resonancia Magnética , Nanopartículas , Ciclooctanos/química , Humanos , Nanopartículas/química , Imagen por Resonancia Magnética/métodos , Células HeLa , Biotina/química , Animales , Imagen Óptica , Biotinilación , Ratones , Estreptavidina/química , Reacción de Cicloadición , Fluorescencia
3.
Chembiochem ; 25(4): e202300786, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38126970

RESUMEN

The allylic trans-cyclooctene (TCO) functionality facilitates powerful control over the spatiotemporal activity of bio-active molecules, enabling precision targeting of druglike and imaging modalities. However, the introduction of this function onto molecules remains chemically challenging, particularly for peptides. Modification with TCOs of this important class of biomolecules remains a challenge, primarily due to the sensitivity of the TCO group to the strong acids typically used in global deprotection during solid phase peptide synthesis. Here, we present a novel synthetic approach to site-selectively introduce TCO-groups in peptides. Our approach utilizes azide groups to mask amine functions, enabling selective introduction of the TCO on a single lysine residue. Staudinger reduction of the azides back to the corresponding amines proceeds without disturbing the sensitive TCO. We show that using our method, we can produce TCO-inactivated antigenic peptides of previously unseen complexity.


Asunto(s)
Carbamatos , Lisina , Ciclooctanos/química , Péptidos/química , Azidas/química , Aminas
4.
Biomacromolecules ; 25(5): 3200-3211, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38591457

RESUMEN

Achieving efficient and site-specific conjugation of therapeutic protein to polymer is crucial to augment their applicability in the realms of biomedicine by improving their stability and enzymatic activity. In this study, we exploited tetrazine bioorthogonal chemistry to achieve the site-specific conjugation of bottlebrush polymers to urate oxidase (UOX), a therapeutic protein for gout treatment. An azido-functionalized zwitterionic bottlebrush polymer (N3-ZBP) using a "grafting-from" strategy involving RAFT and ATRP methods was synthesized, and a trans-cyclooctene (TCO) moiety was introduced at the polymer end through the strain-promoted azide-alkyne click (SPAAC) reaction. The subsequent coupling between TCO-incorporated bottlebrush polymer and tetrazine-labeled UOX using a fast and safe bioorthogonal reaction, inverse electron demand Diels-Alder (IEDDA), led to the formation of UOX-ZBP conjugates with a 52% yield. Importantly, the enzymatic activity of UOX remained unaffected following polymer conjugation, suggesting a minimal change in the folded structure of UOX. Moreover, UOX-ZBP conjugates exhibited enhanced proteolytic resistance and reduced antibody binding, compared to UOX-wild type. Overall, the present findings reveal an efficient and straightforward route for synthesizing protein-bottlebrush polymer conjugates without compromising the enzymatic activity while substantially reducing proteolytic degradation and antibody binding.


Asunto(s)
Química Clic , Reacción de Cicloadición , Polímeros , Urato Oxidasa , Urato Oxidasa/química , Química Clic/métodos , Polímeros/química , Ciclooctanos/química , Humanos , Azidas/química , Alquinos/química
5.
Bioorg Chem ; 150: 107573, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38905885

RESUMEN

Bioorthogonal reactions have revolutionized chemical biology by enabling selective chemical transformations within living organisms and cells. This review comprehensively explores bioorthogonal chemistry, emphasizing inverse-electron-demand Diels-Alder (IEDDA) reactions between tetrazines and strained dienophiles and their crucial role in chemical biology and various applications within the human body. This highly reactive and selective reaction finds diverse applications, including cleaving antibody-drug conjugates, prodrugs, proteins, peptide antigens, and enzyme substrates. The versatility extends to hydrogel chemistry, which is crucial for biomedical applications, yet it faces challenges in achieving precise cellularization. In situ activation of cytotoxic compounds from injectable biopolymer belongs to the click-activated protodrugs against cancer (CAPAC) platform, an innovative approach to tumor-targeted prodrug delivery and activation. The CAPAC platform, relying on click chemistry between trans-cyclooctene (TCO) and tetrazine-modified biopolymers, exhibits modularity across diverse tumor characteristics, presenting a promising approach in anticancer therapeutics. The review highlights the importance of bioorthogonal reactions in developing radiopharmaceuticals for positron emission tomography (PET) imaging and theranostics, offering a promising avenue for diverse therapeutic applications.


Asunto(s)
Reacción de Cicloadición , Ciclooctanos , Humanos , Ciclooctanos/química , Ciclooctanos/síntesis química , Química Clic , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Estructura Molecular
6.
Phytochem Anal ; 35(5): 1142-1151, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38558474

RESUMEN

INTRODUCTION: Gomisin is a natural dibenzo cyclooctene lignan, which is mainly derived from the family Magnoliaceae. It has anti-inflammatory, antioxidant, anti-tumor, anti-aging, and hypoglycemic effects. Gomisins play important roles as medicines, nutraceuticals, food additives, and cosmetics. OBJECTIVE: The objective of this study is to establish a micellar electrokinetic chromatography (MEKC) method for simultaneous separation and determination of seven biphenyl cyclooctene lignans (Gomisin D, E, G, H, J, N, and O) in Schisandra chinensis and its preparations. METHODS: The method was optimized by studying the effects of the main parameters on the separation. The method has been validated and successfully applied to the determination of seven Gomisins in S. chinensis and its preparations. RESULTS: In the separation system, the running buffer was composed of 20 mM Na2HPO4, 8.0 mM sodium dodecyl sulfate (SDS), 11% (v/v) methanol, and 6.0% (v/v) ethanol. A diode array detector was used with a detection wavelength of 230 nm, a separation voltage of 17 kV, and an operating temperature of 25°C. Under this condition, the seven analytes were separated at baseline within 20 min, and a good linear relationship was obtained with correlation coefficient ranging from 0.9919 to 0.9992. The limit of detection (LOD, S/N = 3) and the limit of quantification (LOQ, S/N = 10) ranged from 0.8 to 0.9 µg/mL and from 2.6 to 3.0 µg/mL, respectively. The recovery rate was between 99.1% and 102.5%. CONCLUSION: The experimental results indicated that this method is suitable for the separation and determination of seven Schisandra biphenyl cyclooctene lignan compounds in real samples. At the same time, it provides an effective reference for the quality control of S. chinensis and its preparations.


Asunto(s)
Cromatografía Capilar Electrocinética Micelar , Ciclooctanos , Lignanos , Schisandra , Solventes , Lignanos/análisis , Schisandra/química , Cromatografía Capilar Electrocinética Micelar/métodos , Solventes/química , Ciclooctanos/análisis , Ciclooctanos/química , Reproducibilidad de los Resultados , Límite de Detección , Compuestos de Bifenilo/química
7.
J Asian Nat Prod Res ; 26(5): 604-615, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38634612

RESUMEN

We established myocardial injury models in vivo and in vitro to investigate the cardioprotective effect of gomisin D obtained from Schisandra chinensis. Gomisin D significantly inhibited isoproterenol-induced apoptosis and hypertrophy in H9C2 cells. Gomisin D decreased serum BNP, ANP, CK-MB, cTn-T levels and histopathological alterations, and inhibited myocardial hypertrophy in mice. In mechanisms research, gomisin D reversed ISO-induced accumulation of intracellular ROS and Ca2+. Gomisin D further improved mitochondrial energy metabolism disorders by regulating the TCA cycle. These results demonstrated that gomisin D had a significant effect on isoproterenol-induced myocardial injury by inhibiting oxidative stress, calcium overload and improving mitochondrial energy metabolism.


Asunto(s)
Apoptosis , Isoproterenol , Estrés Oxidativo , Compuestos Policíclicos , Schisandra , Animales , Isoproterenol/farmacología , Ratones , Estructura Molecular , Schisandra/química , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Masculino , Especies Reactivas de Oxígeno/metabolismo , Lignanos/farmacología , Lignanos/química , Cardiotónicos/farmacología , Línea Celular , Miocitos Cardíacos/efectos de los fármacos , Ciclooctanos/farmacología , Ciclooctanos/química
8.
Chemistry ; 29(3): e202203069, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36250260

RESUMEN

Modified trans-cyclooctenes (TCO) are capable of highly efficient molecular manipulations in biological environments, driven by the bioorthogonal reaction with tetrazines (Tz). The development of click-cleavable TCO has fueled the field of in vivo chemistry and enabled the design of therapeutic strategies that have already started to enter the clinic. A key element for most of these approaches is the implementation of a cleavable TCO linker. So far, only one member of this class has been developed, a compound that requires a high synthetic effort, mainly to fulfill the multilayered demands on its chemical structure. To tackle this limitation, we developed a dioxolane-fused cleavable TCO linker (dcTCO) that can be prepared in only five steps by applying an oxidative desymmetrization to achieve diastereoselective introduction of the required functionalities. Based on investigation of the structure, reaction kinetics, stability, and hydrophilicity of dcTCO, we demonstrate its bioorthogonal application in the design of a caged prodrug that can be activated by in-situ Tz-triggered cleavage to achieve a remarkable >1000-fold increase in cytotoxicity.


Asunto(s)
Ciclooctanos , Estrés Oxidativo , Oxidación-Reducción , Cinética , Ciclooctanos/química , Ciclooctanos/uso terapéutico
9.
Chemistry ; 29(45): e202300755, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37224460

RESUMEN

An increase in the click-to-release reaction rate between cleavable trans-cyclooctenes (TCO) and tetrazines would be beneficial for drug delivery applications. In this work, we have developed a short and stereoselective synthesis route towards highly reactive sTCOs that serve as cleavable linkers, affording quantitative tetrazine-triggered payload release. In addition, the fivefold more reactive sTCO exhibited the same in vivo stability as current TCO linkers when used as antibody linkers in circulation in mice.


Asunto(s)
Ciclooctanos , Sistemas de Liberación de Medicamentos , Animales , Ratones , Ciclooctanos/química
10.
Chem Biodivers ; 20(6): e202300372, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37145919

RESUMEN

From the fruits of Schisandra cauliflora, five new dimethylbutyrylated dibenzocyclooctadiene lignans, named schisandracaurins A-E, were isolated using separation and chromatographic techniques. Their structures were determined by extensive analyses of HR-ESI-MS, NMR, and ECD spectra. The schisandracaurins A-E potentially inhibited NO production in LPS-activated RAW264.7 cells with their IC50 values from 21.4 to 30.3 µM.


Asunto(s)
Lignanos , Schisandra , Schisandra/química , Lipopolisacáridos/farmacología , Estructura Molecular , Frutas/química , Lignanos/química , Ciclooctanos/farmacología , Ciclooctanos/análisis , Ciclooctanos/química
11.
Molecules ; 28(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298808

RESUMEN

Schisandra henryi (Schisandraceae) is a plant species endemic to Yunnan Province in China and is little known in Europe and America. To date, few studies, mainly performed by Chinese researchers, have been conducted on S. henryi. The chemical composition of this plant is dominated by lignans (dibenzocyclooctadiene, aryltetralin, dibenzylbutane), polyphenols (phenolic acids, flavonoids), triterpenoids, and nortriterpenoids. The research on the chemical profile of S. henryi showed a similar chemical composition to S. chinensis-a globally known pharmacopoeial species with valuable medicinal properties whichis the best-known species of the genus Schisandra. The whole genus is characterized by the presence of the aforementioned specific dibenzocyclooctadiene lignans, known as "Schisandra lignans". This paper was intended to provide a comprehensive review of the scientific literature published on the research conducted on S. henryi, with particular emphasis on the chemical composition and biological properties. Recently, a phytochemical, biological, and biotechnological study conducted by our team highlighted the great potential of S. henryi in in vitro cultures. The biotechnological research revealed the possibilities of the use of biomass from S. henryi as an alternative to raw material that cannot be easily obtained from natural sites. Moreover, the characterization of dibenzocyclooctadiene lignans specific to the Schisandraceae family was provided. Except for several scientific studies which have confirmed the most valuable pharmacological properties of these lignans, hepatoprotective and hepatoregenerative, this article also reviews studies that have confirmed the anti-inflammatory, neuroprotective, anticancer, antiviral, antioxidant, cardioprotective, and anti-osteoporotic effects and their application for treating intestinal dysfunction.


Asunto(s)
Lignanos , Schisandra , Schisandra/química , China , Lignanos/química , Ciclooctanos/química
12.
J Am Chem Soc ; 144(4): 1647-1662, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35072462

RESUMEN

Described is the spatiotemporally controlled labeling and patterning of biomolecules in live cells through the catalytic activation of bioorthogonal chemistry with light, referred to as "CABL". Here, an unreactive dihydrotetrazine (DHTz) is photocatalytically oxidized in the intracellular environment by ambient O2 to produce a tetrazine that immediately reacts with a trans-cyclooctene (TCO) dienophile. 6-(2-Pyridyl)dihydrotetrazine-3-carboxamides were developed as stable, cell permeable DHTz reagents that upon oxidation produce the most reactive tetrazines ever used in live cells with Diels-Alder kinetics exceeding k2 of 106 M-1 s-1. CABL photocatalysts are based on fluorescein or silarhodamine dyes with activation at 470 or 660 nm. Strategies for limiting extracellular production of singlet oxygen are described that increase the cytocompatibility of photocatalysis. The HaloTag self-labeling platform was used to introduce DHTz tags to proteins localized in the nucleus, mitochondria, actin, or cytoplasm, and high-yielding subcellular activation and labeling with a TCO-fluorophore were demonstrated. CABL is light-dose dependent, and two-photon excitation promotes CABL at the suborganelle level to selectively pattern live cells under no-wash conditions. CABL was also applied to spatially resolved live-cell labeling of an endogenous protein target by using TIRF microscopy to selectively activate intracellular monoacylglycerol lipase tagged with DHTz-labeled small molecule covalent inhibitor. Beyond spatiotemporally controlled labeling, CABL also improves the efficiency of "ordinary" tetrazine ligations by rescuing the reactivity of commonly used 3-aryl-6-methyltetrazine reporters that become partially reduced to DHTzs inside cells. The spatiotemporal control and fast rates of photoactivation and labeling of CABL should enable a range of biomolecular labeling applications in living systems.


Asunto(s)
Colorantes Fluorescentes/química , Luz , Catálisis , Reacción de Cicloadición , Ciclooctanos/química , Escherichia coli/metabolismo , Colorantes Fluorescentes/síntesis química , Células HeLa , Compuestos Heterocíclicos con 1 Anillo/síntesis química , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Cinética , Proteínas Luminiscentes/química , Microscopía Fluorescente , Oxidación-Reducción
13.
J Am Chem Soc ; 144(6): 2804-2815, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35108003

RESUMEN

Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film.


Asunto(s)
Ciclooctanos/química , Colorantes Fluorescentes/química , Geles/química , Fenazinas/química , Poliuretanos/química , Ciclooctanos/síntesis química , Fluorescencia , Colorantes Fluorescentes/síntesis química , Conformación Molecular , Fenazinas/síntesis química , Estrés Mecánico
14.
Chembiochem ; 23(23): e202200539, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36333105

RESUMEN

Tetrazine (Tz)-trans-cyclooctene (TCO) ligation is an ultra-fast and highly selective reaction and it is particularly suited to label biomolecules under physiological conditions. As such, a 3 H-Tz based synthon would have wide applications for in vitro/ex vivo assays. In this study, we developed a 3 H-labeled Tz and characterized its potential for application to pretargeted autoradiography. Several strategies were explored to synthesize such a Tz. However, classical approaches such as reductive halogenation failed. For this reason, we designed a Tz containing an aldehyde and explored the possibility of reducing this group with NaBT4 . This approach was successful and resulted in [3 H]-(4-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)phenyl)methan-t-ol with a radiochemical yield of 22 %, a radiochemical purity of 96 % and a molar activity of 0.437 GBq/µmol (11.8 Ci/mmol). The compound was successfully applied to pretargeted autoradiography. Thus, we report the synthesis of the first 3 H-labeled Tz and its successful application as a labeling building block.


Asunto(s)
Compuestos Heterocíclicos , Radiofármacos , Línea Celular Tumoral , Radiofármacos/química , Ciclooctanos/química
15.
Chembiochem ; 23(20): e202200363, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-35921044

RESUMEN

Bond-cleavage reactions triggered by bioorthogonal tetrazine ligation have emerged as strategies to chemically control the function of (bio)molecules and achieve activation of prodrugs in living systems. While most of these approaches make use of caged amines, current methods for the release of phenols are limited by unfavorable reaction kinetics or insufficient stability of the Tz-responsive reactants. To address this issue, we have implemented a self-immolative linker that enables the connection of cleavable trans-cyclooctenes (TCO) and phenols via carbamate linkages. Based on detailed investigation of the reaction mechanism with several Tz, revealing up to 96 % elimination after 2 hours, we have developed a TCO-caged prodrug with 750-fold reduced cytotoxicity compared to the parent drug and achieved in situ activation upon Tz/TCO click-to-release.


Asunto(s)
Compuestos Heterocíclicos , Profármacos , Fenoles , Compuestos Heterocíclicos/química , Ciclooctanos/química , Aminas , Carbamatos , Línea Celular Tumoral
16.
Bioconjug Chem ; 33(12): 2361-2369, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36459098

RESUMEN

Despite a range of covalent protein modifications, few techniques exist for quantification of protein bioconjugation in cells. Here, we describe a novel method for quantifying in cellulo protein bioconjugation through covalent bond formation with HaloTag. This approach utilizes unnatural amino acid (UAA) mutagenesis to selectively install a small and bioorthogonally reactive handle onto the surface of a protein. We utilized the fast kinetics and high selectivity of inverse electron-demand Diels-Alder cycloadditions to evaluate reactions of tetrazine phenylalanine (TetF) with strained trans-cyclooctene-chloroalkane (sTCO-CA) and trans-cyclooctene lysine (TCOK) with tetrazine-chloroalkane (Tet-CA). Following bioconjugation, the chloroalkane ligand is exposed for labeling by the HaloTag enzyme, allowing for straightforward quantification of bioconjugation via simple western blot analysis. We demonstrate the versatility of this tool for quickly and accurately determining the bioconjugation efficiency of different UAA/chloroalkane pairs and for different sites on different proteins of interest, including EGFP and the estrogen-related receptor ERRα.


Asunto(s)
Compuestos Heterocíclicos , Proteínas , Animales , Proteínas/química , Aminoácidos/química , Fenilalanina , Ciclooctanos/química , Reacción de Cicloadición , Mamíferos/metabolismo
17.
J Org Chem ; 87(3): 1679-1688, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34743518

RESUMEN

Catalytic enantiodifferentiating photoisomerization of cyclooctene (1Z) included and sensitized by regioisomeric 6-O-(o-, m-, and p-methoxybenzoyl)-ß-cyclodextrins (CDs) was performed under a variety of solvent conditions for higher enantioselectivities. The enantiomeric excess (ee) of chiral (E)-isomer (1E) produced was a critical function of all the internal and external factors examined, in particular, the sensitizer structure and the solvent conditions, to afford (R)-1E in record-high ee's of up to 67% upon sensitization with the meta-substituted ß-CD host in water and salt solutions but neither in 50% aqueous ethanol nor with the ortho- and para-substituted hosts. The mechanistic origin of the sudden ee enhancement achieved under the specific conditions is discussed on the basis of the circular dichroism spectral behaviors upon substrate inclusion and the compensatory enthalpy-entropy relationship of the activation parameters for the enantiodifferentiating photoisomerization.


Asunto(s)
beta-Ciclodextrinas , Ciclooctanos/química , Conformación Molecular , Fotoquímica , Solventes/química , beta-Ciclodextrinas/química
18.
Macromol Rapid Commun ; 43(12): e2100655, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34888977

RESUMEN

Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click-reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine - trans-cyclooctene (TCO) ligation is especially promising and is already widely applied for pretargeted imaging and therapy. Indirect radiolabeling of TCO-functionalized macromolecules with substoichiometric amounts of radioactive tetrazines is a convenient way to monitor the fate of those macromolecules by means of positron emission tomography (PET) imaging after their administration into the test subject. In this work, the preparation is reported of TCO-containing graft copolymers, namely PeptoBrushes (polyglutamic acid-graft-polysarcosine), novel [11 C]carboxylated tetrazines, and their combined use in radiolabeling the polymer by inverse electron demand Diels Alder reaction, to investigate it is potential for an application in pretarget imaging or injectable brachytherapy. The procedure for [11 C]tetrazine production is easy and scalable, while indirect TCO-PeptoBrushes labeling with these [11 C]tetrazines is mild, fast, and quantitative. This strategy allows facile 11 C-labeling of diverse TCO-functionalized macromolecules, so that their localization and distribution shortly after injection can be assessed by PET.


Asunto(s)
Ciclooctanos , Tomografía de Emisión de Positrones , Radioisótopos de Carbono , Química Clic/métodos , Reacción de Cicloadición , Ciclooctanos/química , Tomografía de Emisión de Positrones/métodos
19.
Molecules ; 27(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408515

RESUMEN

The effect-directed detection (EDD) of Schisandra rubriflora fruit and leaves extracts was performed to assess their pharmacological properties. The EDD comprised TLC-direct bioautography against Bacillus subtilis, a DPPH assay, as well as α-glucosidase, lipase, tyrosinase, and acetylcholinesterase (AChE) inhibition assays. The leaf extracts showed stronger antioxidant activity than the fruit extract as well as inhibition of tyrosinase and lipase. The fruit extract was found to be extremely active against B. subtilis and to inhibit α-glucosidase and AChE slightly more than the leaf extracts. UHPLC-MS/MS analysis was carried out for the bioactive fractions and pointed to the possible anti-dementia properties of the dibenzocyclooctadiene lignans found in the upper TLC fractions. Gomisin N (518 mg/100 g DW), schisanhenol (454 mg/100 g DW), gomisin G (197 mg/100 g DW), schisandrin A (167 mg/100 g DW), and gomisin O (150 mg/100 g DW) were the quantitatively dominant compounds in the fruit extract. In total, twenty-one lignans were found in the bioactive fractions.


Asunto(s)
Lignanos , Schisandra , Acetilcolinesterasa , Ciclooctanos/química , Frutas/química , Lignanos/química , Lipasa/análisis , Monofenol Monooxigenasa , Extractos Vegetales/química , Schisandra/química , Espectrometría de Masas en Tándem , alfa-Glucosidasas
20.
J Am Chem Soc ; 143(35): 14306-14313, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34448563

RESUMEN

Single-molecule spectroscopy (SMS) of a dual fluorescent flapping molecular probe (N-FLAP) enabled real-time nanoscale monitoring of local free volume dynamics in polystyrenes. The SMS study was realized by structural improvement of a previously reported flapping molecule by nitrogen substitution, leading to increased brightness (22 times) of the probe. In a polystyrene thin film at the temperature of 5 K above the glass transition, the spectra of a single N-FLAP molecule undergo frequent jumps between short- and long-wavelength forms, the latter one indicating planarization of the molecule in the excited state. The observed spectral jumps were statistically analyzed to reveal the dynamics of the molecular environment. The analysis together with MD and QM/MM calculations show that the excited-state planarization of the flapping probe occurs only when sufficiently large polymer free volume of more than, at least, 280 Å3 is available close to the molecule, and that such free volume lasts for an average of 1.2 s.


Asunto(s)
Ciclooctanos/química , Colorantes Fluorescentes/química , Fenazinas/química , Poliestirenos/química , Simulación de Dinámica Molecular , Estructura Molecular , Imagen Individual de Molécula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA