Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 540(7631): 80-85, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27842381

RESUMEN

In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNASec) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNASec recodes a UGA stop codon next to a downstream mRNA stem-loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNASec binding by SelB and show large-scale rearrangements of Sec-tRNASec. Upon initial binding of SelB-Sec-tRNASec to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNASec covering the sarcin-ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNASec away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Ribosomas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Codón de Terminación/química , Codón de Terminación/genética , Codón de Terminación/metabolismo , Microscopía por Crioelectrón , Endorribonucleasas/metabolismo , Activación Enzimática , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas Fúngicas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Dominios Proteicos , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , ARN de Transferencia Aminoácido-Específico/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Ribosomas/química , Ribosomas/enzimología , Ribosomas/ultraestructura , Ricina/metabolismo , Selenocisteína/metabolismo
2.
Nature ; 524(7566): 493-496, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26245381

RESUMEN

Termination of protein synthesis occurs when a translating ribosome encounters one of three universally conserved stop codons: UAA, UAG or UGA. Release factors recognize stop codons in the ribosomal A-site to mediate release of the nascent chain and recycling of the ribosome. Bacteria decode stop codons using two separate release factors with differing specificities for the second and third bases. By contrast, eukaryotes rely on an evolutionarily unrelated omnipotent release factor (eRF1) to recognize all three stop codons. The molecular basis of eRF1 discrimination for stop codons over sense codons is not known. Here we present cryo-electron microscopy (cryo-EM) structures at 3.5-3.8 Å resolution of mammalian ribosomal complexes containing eRF1 interacting with each of the three stop codons in the A-site. Binding of eRF1 flips nucleotide A1825 of 18S ribosomal RNA so that it stacks on the second and third stop codon bases. This configuration pulls the fourth position base into the A-site, where it is stabilized by stacking against G626 of 18S rRNA. Thus, eRF1 exploits two rRNA nucleotides also used during transfer RNA selection to drive messenger RNA compaction. In this compacted mRNA conformation, stop codons are favoured by a hydrogen-bonding network formed between rRNA and essential eRF1 residues that constrains the identity of the bases. These results provide a molecular framework for eukaryotic stop codon recognition and have implications for future studies on the mechanisms of canonical and premature translation termination.


Asunto(s)
Codón de Terminación/química , Codón de Terminación/metabolismo , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Codón/química , Codón/genética , Codón/metabolismo , Codón de Terminación/genética , Microscopía por Crioelectrón , Eucariontes , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleótidos/química , Nucleótidos/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 18S/genética , Ribosomas/química , Ribosomas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
3.
J Biol Chem ; 293(32): 12472-12479, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941456

RESUMEN

Accurate translation termination by release factors (RFs) is critical for the integrity of cellular proteomes. Premature termination on sense codons, for example, results in truncated proteins, whose accumulation could be detrimental to the cell. Nevertheless, some sense codons are prone to triggering premature termination, but the structural basis for this is unclear. To investigate premature termination, we determined a cryo-EM structure of the Escherichia coli 70S ribosome bound with RF1 in response to a UAU (Tyr) sense codon. The structure reveals that RF1 recognizes a UAU codon similarly to a UAG stop codon, suggesting that sense codons induce premature termination because they structurally mimic a stop codon. Hydrophobic interaction between the nucleobase of U3 (the third position of the UAU codon) and conserved Ile-196 in RF1 is important for misreading the UAU codon. Analyses of RNA binding in ribonucleoprotein complexes or by amino acids reveal that Ile-U packing is a frequent protein-RNA-binding motif with key functional implications. We discuss parallels with eukaryotic translation termination by the release factor eRF1.


Asunto(s)
Codón de Terminación/metabolismo , Codón/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/metabolismo , Ribosomas/metabolismo , Codón/química , Codón/genética , Codón de Terminación/química , Codón de Terminación/genética , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Conformación Proteica , Ribosomas/química
4.
RNA Biol ; 16(12): 1682-1696, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31432740

RESUMEN

Selenoproteins are a unique class of proteins that contain the 21st amino acid, selenocysteine (Sec). Addition of Sec into a protein is achieved by recoding of the UGA stop codon. All 25 mammalian selenoprotein mRNAs possess a 3' UTR stem-loop structure, the Selenocysteine Insertion Sequence (SECIS), which is required for Sec incorporation. It is widely believed that the SECIS is the major RNA element that controls Sec insertion, however recent findings in our lab suggest otherwise for Selenoprotein S (SelS). Here we report that the first 91 nucleotides of the SelS 3' UTR contain a proximal stem loop (PSL) and a conserved sequence we have named the SelS Positive UGA Recoding (SPUR) element. We developed a SelS-V5/UGA surrogate assay for UGA recoding, which was validated by mass spectrometry to be an accurate measure of Sec incorporation in cells. Using this assay, we show that point mutations in the SPUR element greatly reduce recoding in the reporter; thus, the SPUR is required for readthrough of the UGA-Sec codon. In contrast, deletion of the PSL increased Sec incorporation. This effect was reversed when the PSL was replaced with other stem-loops or an unstructured sequence, suggesting that the PSL does not play an active role in Sec insertion. Additional studies revealed that the position of the SPUR relative to the UGA-Sec codon is important for optimal UGA recoding. Our identification of the SPUR element in the SelS 3' UTR reveals a more complex regulation of Sec incorporation than previously realized.


Asunto(s)
Bioensayo , Codón de Terminación/metabolismo , Secuencias Invertidas Repetidas , Terminación de la Cadena Péptídica Traduccional , Selenoproteínas/biosíntesis , Regiones no Traducidas 3' , Animales , Línea Celular Tumoral , Codón de Terminación/química , Secuencia Conservada , Células HEK293 , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Espectrometría de Masas , Conformación de Ácido Nucleico , Mutación Puntual , Ratas , Selenocisteína/química , Selenocisteína/metabolismo , Selenoproteínas/genética
5.
Nature ; 500(7460): 107-10, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23812587

RESUMEN

During normal translation, the binding of a release factor to one of the three stop codons (UGA, UAA or UAG) results in the termination of protein synthesis. However, modification of the initial uridine to a pseudouridine (Ψ) allows efficient recognition and read-through of these stop codons by a transfer RNA (tRNA), although it requires the formation of two normally forbidden purine-purine base pairs. Here we determined the crystal structure at 3.1 Å resolution of the 30S ribosomal subunit in complex with the anticodon stem loop of tRNA(Ser) bound to the ΨAG stop codon in the A site. The ΨA base pair at the first position is accompanied by the formation of purine-purine base pairs at the second and third positions of the codon, which show an unusual Watson-Crick/Hoogsteen geometry. The structure shows a previously unsuspected ability of the ribosomal decoding centre to accommodate non-canonical base pairs.


Asunto(s)
Emparejamiento Base , Codón de Terminación/genética , Codón de Terminación/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Secuencia de Bases , Codón de Terminación/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , Seudouridina/química , Seudouridina/genética , Seudouridina/metabolismo , ARN de Transferencia de Serina/química , ARN de Transferencia de Serina/genética , ARN de Transferencia de Serina/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/genética
6.
Amino Acids ; 50(9): 1145-1167, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29948343

RESUMEN

Selenium (Se) is an essential trace element for several organisms and is mostly present in proteins as L-selenocysteine (Sec or U). Sec is synthesized on its L-seryl-tRNASec to produce Sec-tRNASec molecules by a dedicated selenocysteine synthesis machinery and incorporated into selenoproteins at specified in-frame UGA codons. UGA-Sec insertion is signaled by an mRNA stem-loop structure called the SElenoCysteine Insertion Sequence (SECIS). tRNASec transcription regulation and folding have been described showing its importance to Sec biosynthesis. Here, we discuss structural aspects of Sec-tRNASec and its role in Sec biosynthesis as well as Sec incorporation into selenoproteins. Defects in the Sec biosynthesis or incorporation pathway have been correlated with pathological conditions.


Asunto(s)
ARN de Transferencia de Cisteína/genética , Selenocisteína/biosíntesis , Animales , Codón de Terminación/química , Codón de Terminación/genética , Codón de Terminación/metabolismo , Humanos , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Cisteína/química , ARN de Transferencia de Cisteína/metabolismo , Selenocisteína/genética
7.
RNA Biol ; 15(4-5): 427-440, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28901832

RESUMEN

Posttranslational modification (PTM) is a key mechanism for regulating diverse protein functions, and thus critically affects many essential biological processes. Critical for systematic study of the effects of PTMs is the ability to obtain recombinant proteins with defined and homogenous modifications. To this end, various synthetic and chemical biology approaches, including genetic code expansion and protein chemical modification methods, have been developed. These methods have proven effective for generating site-specific authentic modifications or structural mimics, and have demonstrated their value for in vitro and in vivo functional studies of diverse PTMs. This review will discuss recent advances in chemical biology strategies and their application to various PTM studies.


Asunto(s)
Técnicas de Química Sintética/métodos , Código Genético , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Acetilación , Codón de Terminación/química , Codón de Terminación/metabolismo , Glicosilación , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Metilación , Nitratos/metabolismo , Fosforilación , Proteoma/genética , Selenocisteína/metabolismo , Sulfatos/metabolismo , Ubiquitinación
8.
RNA Biol ; 15(4-5): 441-452, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28837402

RESUMEN

Pyrrolysine is the 22nd proteinogenic amino acid encoded into proteins in response to amber (TAG) codons in a small number of archaea and bacteria. The incorporation of pyrrolysine is facilitated by a specialized aminoacyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNAPyl). The secondary structure of tRNAPyl contains several unique features not found in canonical tRNAs. Numerous studies have demonstrated that the PylRS/tRNAPyl pair from archaea is orthogonal in E. coli and eukaryotic hosts, which has led to the widespread use of this pair for the genetic incorporation of non-canonical amino acids. In this brief review we examine the work that has been done to elucidate the structure of tRNAPyl, its interaction with PylRS, and survey recent progress on the use of tRNAPyl as a tool for genetic code expansion.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Escherichia coli/genética , Ingeniería Genética/métodos , Lisina/análogos & derivados , Methanosarcina/genética , ARN de Transferencia/genética , Aminoacil-ARNt Sintetasas/metabolismo , Codón de Terminación/química , Codón de Terminación/metabolismo , Escherichia coli/metabolismo , Código Genético , Lisina/metabolismo , Methanosarcina/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo
9.
RNA Biol ; 15(4-5): 461-470, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29447106

RESUMEN

Selenocysteine (Sec), a rare genetically encoded amino acid with unusual chemical properties, is of great interest for protein engineering. Sec is synthesized on its cognate tRNA (tRNASec) by the concerted action of several enzymes. While all other aminoacyl-tRNAs are delivered to the ribosome by the elongation factor Tu (EF-Tu), Sec-tRNASec requires a dedicated factor, SelB. Incorporation of Sec into protein requires recoding of the stop codon UGA aided by a specific mRNA structure, the SECIS element. This unusual biogenesis restricts the use of Sec in recombinant proteins, limiting our ability to study the properties of selenoproteins. Several methods are currently available for the synthesis selenoproteins. Here we focus on strategies for in vivo Sec insertion at any position(s) within a recombinant protein in a SECIS-independent manner: (i) engineering of tRNASec for use by EF-Tu without the SECIS requirement, and (ii) design of a SECIS-independent SelB route.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Proteínas Bacterianas/genética , Escherichia coli/genética , Ingeniería Genética/métodos , ARN de Transferencia/genética , Selenocisteína/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Proteínas Bacterianas/metabolismo , Codón de Terminación/química , Codón de Terminación/metabolismo , Escherichia coli/metabolismo , Código Genético , Modelos Moleculares , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
10.
RNA Biol ; 15(4-5): 471-479, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29879865

RESUMEN

In many organisms, the UGA stop codon is recoded to insert selenocysteine (Sec) into proteins. Sec incorporation in bacteria is directed by an mRNA element, known as the Sec-insertion sequence (SECIS), located downstream of the Sec codon. Unlike other aminoacyl-tRNAs, Sec-tRNASec is delivered to the ribosome by a dedicated elongation factor, SelB. We recently identified a series of tRNASec-like tRNA genes distributed across Bacteria that also encode a canonical tRNASec. These tRNAs contain sequence elements generally recognized by cysteinyl-tRNA synthetase (CysRS). While some of these tRNAs contain a UCA Sec anticodon, most have a GCA Cys anticodon. tRNASec with GCA anticodons are known to recode UGA codons. Here we investigate the clostridial Desulfotomaculum nigrificans tRNASec-like tRNACys, and show that this tRNA is acylated by CysRS, recognized by SelB, and capable of UGA recoding with Cys in Escherichia coli. We named this non-canonical group of tRNACys as 'tRNAReC' (Recoding with Cys). We performed a comprehensive survey of tRNAReC genes to establish their phylogenetic distribution, and found that, in a particular lineage of clostridial Pelotomaculum, the Cys identity elements of tRNAReC had mutated. This novel tRNA, which contains a UCA anticodon, is capable of Sec incorporation in E. coli, albeit with lower efficiency relative to Pelotomaculum tRNASec. We renamed this unusual tRNASec derived from tRNAReC as 'tRNAReU' (Recoding with Sec). Together, our results suggest that tRNAReC and tRNAReU may serve as safeguards in the production of selenoproteins and - to our knowledge - they provide the first example of programmed codon-anticodon mispairing in bacteria.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Proteínas Bacterianas/genética , Cisteína/metabolismo , Escherichia coli/genética , ARN de Transferencia de Cisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Anticodón/genética , Anticodón/metabolismo , Proteínas Bacterianas/metabolismo , Codón de Terminación/química , Codón de Terminación/metabolismo , Desulfotomaculum/genética , Desulfotomaculum/metabolismo , Escherichia coli/metabolismo , Código Genético , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Peptococcaceae/genética , Peptococcaceae/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia de Cisteína/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Selenoproteínas/biosíntesis
11.
Nat Chem Biol ; 11(7): 496-503, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26030730

RESUMEN

Serine phosphorylation is a key post-translational modification that regulates diverse biological processes. Powerful analytical methods have identified thousands of phosphorylation sites, but many of their functions remain to be deciphered. A key to understanding the function of protein phosphorylation is access to phosphorylated proteins, but this is often challenging or impossible. Here we evolve an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair that directs the efficient incorporation of phosphoserine (pSer (1)) into recombinant proteins in Escherichia coli. Moreover, combining the orthogonal pair with a metabolically engineered E. coli enables the site-specific incorporation of a nonhydrolyzable analog of pSer. Our approach enables quantitative decoding of the amber stop codon as pSer, and we purify, with yields of several milligrams per liter of culture, proteins bearing biologically relevant phosphorylations that were previously challenging or impossible to access--including phosphorylated ubiquitin and the kinase Nek7, which is synthetically activated by a genetically encoded phosphorylation in its activation loop.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Fosfoserina/metabolismo , Procesamiento Proteico-Postraduccional , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Secuencia de Bases , Codón de Terminación/química , Codón de Terminación/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Código Genético , Modelos Moleculares , Datos de Secuencia Molecular , Quinasas Relacionadas con NIMA , Conformación de Ácido Nucleico , Fosforilación , Fosfoserina/química , Ingeniería de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina/química , Ubiquitina/genética , Ubiquitina/metabolismo
12.
J Chem Inf Model ; 57(9): 2321-2328, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28825483

RESUMEN

In translation termination, the eukaryotic release factor (eRF1) recognizes mRNA stop codons (UAA, UAG, or UGA) in a ribosomal A site and triggers release of the nascent polypeptide chain from P-site tRNA. eRF1 is highly selective for U in the first position and a combination of purines (except two consecutive guanines, i.e., GG) in the second and third positions. Eukaryotes decode all three stop codons with a single release factor eRF1, instead of two (RF1 and RF2), in bacteria. Furthermore, unlike bacterial RF1/RF2, eRF1 stabilizes the compact U-turn mRNA configuration in the ribosomal A site by accommodating four nucleotides instead of three. Despite the available cryo-EM structures (resolution ∼3.5-3.8 Å), the energetic principle for eRF1 selectivity toward a stop codon remains a fundamentally unsolved problem. Using cryo-EM structures of eukaryotic translation termination complexes as templates, we carried out molecular dynamics free energy simulations of cognate and near-cognate complexes to quantitatively address the energetics of stop codon recognition by eRF1. Our results suggest that eRF1 has a higher discriminatory power against sense codons, compared to that reported earlier for RF1/RF2. The compact mRNA formed specific intra-mRNA interactions, which itself contributed to stop codon specificity. Furthermore, the specificity is enhanced by the loss of protein-mRNA interactions and, most importantly, by desolvation of the incorrect codons in the near-cognate complexes. Our work provides a clue to how eRF1 discriminates between cognate and near-cognate codons during protein synthesis.


Asunto(s)
Codón de Terminación/metabolismo , Factores de Terminación de Péptidos/metabolismo , Emparejamiento Base , Codón de Terminación/química , Codón de Terminación/genética , Simulación de Dinámica Molecular , Factores de Terminación de Péptidos/química , Unión Proteica , Conformación Proteica , Especificidad por Sustrato , Termodinámica
13.
Nature ; 465(7300): 947-50, 2010 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-20512119

RESUMEN

In termination of protein synthesis, the bacterial release factors RF1 and RF2 bind to the ribosome through specific recognition of messenger RNA stop codons and trigger hydrolysis of the bond between the nascent polypeptide and the transfer RNA at the peptidyl-tRNA site, thereby releasing the newly synthesized protein. The release factors are highly specific for a U in the first stop-codon position and recognize different combinations of purines in the second and third positions, with RF1 reading UAA and UAG and RF2 reading UAA and UGA. With recently determined crystal structures of termination complexes, it has become possible to decipher the energetics of stop-codon reading by computational analysis and to clarify the origin of the high release-factor binding accuracy. Here we report molecular dynamics free-energy calculations on different cognate and non-cognate termination complexes. The simulations quantitatively explain the basic principles of decoding in all three codon positions and reveal the key elements responsible for specificity of the release factors. The overall reading mechanism involves hitherto unidentified interactions and recognition switches that cannot be described in terms of a tripeptide anticodon model. Further simulations of complexes with tRNA(Trp), the tRNA recognizing the triplet codon for Trp, explain the observation of a 'leaky' stop codon and highlight the fundamentally different third position reading by RF2, which leads to a high stop-codon specificity with strong discrimination against the Trp codon. The simulations clearly illustrate the versatility of codon reading by protein, which goes far beyond tRNA mimicry.


Asunto(s)
Bacterias/metabolismo , Codón de Terminación/química , Codón de Terminación/metabolismo , Factores de Terminación de Péptidos/metabolismo , Ribosomas/metabolismo , Bacterias/química , Bacterias/genética , Codón de Terminación/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Unión Proteica/genética , Estructura Terciaria de Proteína , ARN de Transferencia/metabolismo , Ribosomas/genética
14.
EMBO J ; 29(15): 2577-85, 2010 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-20588254

RESUMEN

We report the crystal structure of a termination complex containing release factor RF1 bound to the 70S ribosome in response to an amber (UAG) codon at 3.6-A resolution. The amber codon is recognized in the 30S subunit-decoding centre directly by conserved elements of domain 2 of RF1, including T186 of the PVT motif. Together with earlier structures, the mechanisms of recognition of all three stop codons by release factors RF1 and RF2 can now be described. Our structure confirms that the backbone amide of Q230 of the universally conserved GGQ motif is positioned to contribute directly to the catalysis of the peptidyl-tRNA hydrolysis reaction through stabilization of the leaving group and/or transition state. We also observe synthetic-negative interactions between mutations in the switch loop of RF1 and in helix 69 of 23S rRNA, revealing that these structural features interact functionally in the termination process. These findings are consistent with our proposal that structural rearrangements of RF1 and RF2 are critical to accurate translation termination.


Asunto(s)
Proteínas Bacterianas/química , Codón de Terminación/química , Factores de Terminación de Péptidos/química , Thermus thermophilus/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Biocatálisis , Codón de Terminación/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Thermus thermophilus/metabolismo
15.
Anim Genet ; 45(4): 600-3, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24814776

RESUMEN

Classical genetic studies in European rabbits (Oryctolagus cuniculus) suggested the presence of two alleles at the brown coat colour locus: a wild-type B allele that gives dense black pigment throughout the coat and a recessive b allele that in the homozygous condition (b/b genotype) produces brown rabbits that are unable to develop black pigmentation. In several other species, this locus is determined by mutations in the tyrosinase-related protein 1 (TYRP1) gene, encoding a melanocyte enzyme needed for the production of dark eumelanin. In this study, we investigated the rabbit TYRP1 gene as a strong candidate for the rabbit brown coat colour locus. A total of 3846 bp of the TYRP1 gene were sequenced in eight rabbits of different breeds and identified 23 single nucleotide polymorphisms (SNPs; 12 in intronic regions, five in exons and six in the 3'-untranslated region) and an insertion/deletion of 13 bp, in the 3'-untranslated region, organised in a few haplotypes. A mutation in exon 2 (g.41360196G>A) leads to a premature stop codon at position 190 of the deduced amino acid sequence (p.Trp190ter). Therefore, translation predicts a truncated TYRP1 protein lacking almost completely the tyrosinase domain. Genotyping 203 rabbits of 32 different breeds identified this mutation only in brown Havana rabbits. Its potential functional relevance in disrupting the TYRP1 protein and its presence only in brown animals strongly argue for this non-sense mutation being a causative mutation for the recessive b allele at the brown locus in Oryctolagus cuniculus.


Asunto(s)
Oxidorreductasas/genética , Pigmentación , Conejos/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Codón sin Sentido/química , Codón sin Sentido/genética , Codón sin Sentido/metabolismo , Codón de Terminación/química , Codón de Terminación/genética , Codón de Terminación/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Reacción en Cadena de la Polimerasa/veterinaria , Polimorfismo de Longitud del Fragmento de Restricción , Polimorfismo de Nucleótido Simple , Conejos/genética , Especificidad de la Especie
16.
Nucleic Acids Res ; 39(16): 7134-46, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21602268

RESUMEN

Positioning of release factor eRF1 toward adenines and the ribose-phosphate backbone of the UAAA stop signal in the ribosomal decoding site was studied using messenger RNA (mRNA) analogs containing stop signal UAA/UAAA and a photoactivatable cross-linker at definite locations. The human eRF1 peptides cross-linked to these analogs were identified. Cross-linkers on the adenines at the 2nd, 3rd or 4th position modified eRF1 near the conserved YxCxxxF loop (positions 125-131 in the N domain), but cross-linker at the 4th position mainly modified the tripeptide 26-AAR-28. This tripeptide cross-linked also with derivatized 3'-phosphate of UAA, while the same cross-linker at the 3'-phosphate of UAAA modified both the 26-28 and 67-73 fragments. A comparison of the results with those obtained earlier with mRNA analogs bearing a similar cross-linker at the guanines indicates that positioning of eRF1 toward adenines and guanines of stop signals in the 80S termination complex is different. Molecular modeling of eRF1 in the 80S termination complex showed that eRF1 fragments neighboring guanines and adenines of stop signals are compatible with different N domain conformations of eRF1. These conformations vary by positioning of stop signal purines toward the universally conserved dipeptide 31-GT-32, which neighbors guanines but is oriented more distantly from adenines.


Asunto(s)
Adenina/química , Codón de Terminación/química , Guanina/química , Factores de Terminación de Péptidos/química , Humanos , Modelos Moleculares , Terminación de la Cadena Péptídica Traduccional , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/química , Proteínas Ribosómicas/química
17.
Chem Biodivers ; 9(9): 2035-49, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22976989

RESUMEN

Mg(2+)-Responsive riboswitches represent a fascinating example of bifunctional RNAs that sense Mg(2+) ions with high selectivity and autonomously regulate the expression of Mg(2+)-transporter proteins. The mechanism of the mgtA riboswitch is scarcely understood, and a detailed structural analysis is called for to study how this RNA can selectively recognize Mg(2+) and respond by switching between two alternative stem loop structures. In this work, we investigated the structure and Mg(2+)-binding properties of the lower part of the antiterminator loop C from the mgtA riboswitch of Yersinia enterocolitica by solution NMR and report a discrete Mg(2+)-binding site embedded in the AU-rich sequence. At the position of Mg(2+) binding, the helical axis exhibits a distinct kink accompanied by a widening of the major groove, which accommodates the Mg(2+)-binding pocket. An unusually large overlap between two adenine residues on the opposite strands suggests that the bending may be sequence-induced by strong stacking interactions, enabling Mg(2+) to bind at this so-far not described metal-ion binding site.


Asunto(s)
Elementos Ricos en Adenilato y Uridilato/genética , Codón de Terminación/química , Magnesio/química , Riboswitch/genética , Secuencias de Aminoácidos , Sitios de Unión , Codón de Terminación/genética , Espectroscopía de Resonancia Magnética
18.
Curr Genet ; 57(3): 213-22, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21484258

RESUMEN

Expression and processing of mitochondrial gene transcripts are fundamental to mitochondrial function, but information from early vertebrates like teleost fishes is essentially lacking. We have analyzed mitogenome sequences of ten codfishes (family Gadidae), and provide complete sequences from three new species (Saithe, Pollack and Blue whiting). Characterization of the mitochondrial mRNAs in Saithe and Atlantic cod identified a set of ten poly(A) transcripts, and six UAA stop codons are generated by posttranscriptional polyadenylation. Structural assessment of poly(A) sites is consistent with an RNaseP cleavage activity 5' of tRNA acceptor-like stems. COI, ND5 and ND6 mRNAs were found to harbor 3' UTRs with antisense potential extending into neighboring gene regions. While the 3' UTR of COI mRNA is complementary to the tRNA(Ser UCN) and highly similar to that detected in human mitochondria, the ND5 and ND6 3' UTRs appear more heterogenic. Deep sequencing confirms expression of all mitochondrial mRNAs and rRNAs, and provides information about the precise 5' ends in mature transcripts. Our study supports an overall evolutionary conservation in mitochondrial RNA processing events among vertebrates, but reveals some unique 5' and 3' end characteristics in codfish mRNAs with implications to antisense regulation of gene expression.


Asunto(s)
Gadiformes/genética , Mitocondrias/genética , Poli A/genética , ARN Mensajero/química , ARN de Transferencia/química , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Animales , Elementos sin Sentido (Genética)/química , Elementos sin Sentido (Genética)/metabolismo , Secuencia de Bases , Codón de Terminación/química , Gadiformes/metabolismo , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Poli A/metabolismo , Poliadenilación , ARN Mensajero/análisis , ARN Mitocondrial , ARN de Transferencia/análisis
19.
Biochemistry ; 48(47): 11178-84, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19874047

RESUMEN

Recognition of stop codons by class I release factors is a fundamental step in the termination phase of protein synthesis. Since premature termination is costly to the cell, release factors have to efficiently discriminate between stop and sense codons. To understand the mechanism of discrimination between stop and sense codons, we developed a new, pre-steady state kinetic assay to monitor the interaction of RF1 with the ribosome. Our results show that RF1 associates with similar association rate constants with ribosomes programmed with stop or sense codons. However, dissociation of RF1 from sense codons is as much as 3 orders of magnitude faster than from stop codons. Interestingly, the affinity of RF1 for ribosomes programmed with different sense codons does not correlate with the defects in peptide release. Thus, discrimination against sense codons is achieved with both an increase in the dissociation rates and a decrease in the rate of peptide release. These results suggest that sense codons inhibit conformational changes necessary for RF1 to stably bind to the ribosome and catalyze peptide release.


Asunto(s)
Codón de Terminación/metabolismo , Terminación de la Cadena Péptídica Traduccional/fisiología , Factores de Terminación de Péptidos/metabolismo , Ribosomas/metabolismo , Codón/análisis , Codón/metabolismo , Codón de Terminación/química , Codón de Terminación/genética , Cristalografía por Rayos X , Cinética , Microscopía Fluorescente , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Unión Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/química , Ribosomas/genética
20.
Proteins ; 74(4): 1008-17, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18767149

RESUMEN

Selenocysteine (Sec) is incorporated into proteins in response to UGA codons. This residue is frequently found at the catalytic sites of oxidoreductases. In this study, we characterized the selenoproteome of an anaerobic bacterium, Clostridium sp. (also known as Alkaliphilus oremlandii) OhILA, and identified 13 selenoprotein genes, five of which have not been previously described. One of the detected selenoproteins was methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that repairs oxidatively damaged methionines in a stereospecific manner. To date, little is known about MsrA from anaerobes. We characterized this selenoprotein MsrA which had a single Sec residue at the catalytic site but no cysteine (Cys) residues in the protein sequence. Its SECIS (Sec insertion sequence) element did not resemble those in Escherichia coli. Although with low translational efficiency, the expression of the Clostridium selenoprotein msrA gene in E. coli could be demonstrated by (75)Se metabolic labeling, immunoblot analyses, and enzyme assays, indicating that its SECIS element was recognized by the E. coli Sec insertion machinery. We found that the Sec-containing MsrA exhibited at least a 20-fold higher activity than its Cys mutant form, indicating a critical role of Sec in the catalytic activity of the enzyme. Furthermore, our data revealed that the Clostridium MsrA was inefficiently reducible by thioredoxin, which is a typical reducing agent for MsrA, suggesting the use of alternative electron donors in this anaerobic bacterium that directly act on the selenenic acid intermediate and do not require resolving Cys residues.


Asunto(s)
Proteínas Bacterianas/química , Clostridium/metabolismo , Oxidorreductasas/química , Proteoma/metabolismo , Selenoproteínas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Clostridium/clasificación , Codón de Terminación/química , Codón de Terminación/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Metionina Sulfóxido Reductasas , Datos de Secuencia Molecular , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA