Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 836
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8012): 710-716, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693265

RESUMEN

Phosphatidylcholine and phosphatidylethanolamine, the two most abundant phospholipids in mammalian cells, are synthesized de novo by the Kennedy pathway from choline and ethanolamine, respectively1-6. Despite the essential roles of these lipids, the mechanisms that enable the cellular uptake of choline and ethanolamine remain unknown. Here we show that the protein encoded by FLVCR1, whose mutation leads to the neurodegenerative syndrome posterior column ataxia and retinitis pigmentosa7-9, transports extracellular choline and ethanolamine into cells for phosphorylation by downstream kinases to initiate the Kennedy pathway. Structures of FLVCR1 in the presence of choline and ethanolamine reveal that both metabolites bind to a common binding site comprising aromatic and polar residues. Despite binding to a common site, FLVCR1 interacts in different ways with the larger quaternary amine of choline in and with the primary amine of ethanolamine. Structure-guided mutagenesis identified residues that are crucial for the transport of ethanolamine, but dispensable for choline transport, enabling functional separation of the entry points into the two branches of the Kennedy pathway. Altogether, these studies reveal how FLVCR1 is a high-affinity metabolite transporter that serves as the common origin for phospholipid biosynthesis by two branches of the Kennedy pathway.


Asunto(s)
Colina , Etanolamina , Proteínas de Transporte de Membrana , Humanos , Sitios de Unión , Transporte Biológico/genética , Colina/química , Colina/metabolismo , Etanolamina/química , Etanolamina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosforilación , Mutagénesis
2.
Nature ; 630(8016): 501-508, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778100

RESUMEN

Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily1. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome2-7. Earlier studies concluded that FLVCR1 may function as a haem exporter8-12, whereas FLVCR2 was suggested to act as a haem importer13, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters14-16. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation-π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.


Asunto(s)
Colina , Etanolamina , Proteínas de Transporte de Membrana , Humanos , Sitios de Unión , Transporte Biológico , Cationes/química , Cationes/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química , Colina/metabolismo , Colina/química , Etanolamina/metabolismo , Etanolamina/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Conformación Proteica , Receptores Virales/metabolismo , Receptores Virales/química , Especificidad por Sustrato , Triptófano/metabolismo , Triptófano/química , Tirosina/metabolismo , Tirosina/química , Mutación
3.
Mol Pharm ; 21(2): 535-549, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38271213

RESUMEN

We report an efficient sustainable two-step anion exchange synthetic procedure for the preparation of choline API ionic liquids (Cho-API-ILs) that contain active pharmaceutical ingredients (APIs) as anions combined with choline-based cations. We have evaluated the in vitro cytotoxicity for the synthesized compounds using three different cells lines, namely, HEK293 (normal kidney cell line), SW480, and HCT 116 (colon carcinoma cells). The solubility of APIs and Cho-API-ILs was evaluated in water/buffer solutions and was found higher for Cho-API-ILs. Further, we have investigated the antimicrobial potential of the pure APIs, ILs, and Cho-API-ILs against clinically relevant microorganisms, and the results demonstrated the promise of Cho-API-ILs as potent antimicrobial agents to treat bacterial infections. Moreover, the aggregation and adsorption properties of the Cho-API-ILs were observed by using a surface tension technique. The aggregation behavior of these Cho-API-ILs was further supported by conductivity and pyrene probe fluorescence. The thermodynamics of aggregation for Cho-API-ILs has been assessed from the temperature dependence of surface tension. The micellar size and their stability have been studied by dynamic light scattering, transmission electron microscopy, and zeta potential. Therefore, the duality in the nature of Cho-API-ILs has been explored with the upgradation of their physical, chemical, and biopharmaceutical properties, which enhance the opportunities for advances in pharmaceutical sciences.


Asunto(s)
Antiinfecciosos , Líquidos Iónicos , Humanos , Solubilidad , Líquidos Iónicos/química , Células HEK293 , Micelas , Colina/química
4.
Phys Chem Chem Phys ; 26(20): 14766-14776, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716816

RESUMEN

Hybrid ionic fluids (HIFs) are newly emerging and fascinating sustainable solvent media, which are attracting a great deal of scientific interest in protecting the native structure of proteins. For a few decades, there has been a demand to consider ionic liquids (ILs) and deep eutectic solvents (DESs) as biocompatible solvent media for enzymes; however, in some cases, these solvent media also show limitations. Therefore, this work focuses on synthesising novel HIFs to intensify the properties of existing ILs and DESs by mixing them. Herein, HIFs have been synthesised by the amalgamation of a deep eutectic solvent (DES) and an ionic liquid (IL) with a common cation or anion. Later on, the stability and activity of hen's egg white lysozyme (Lyz) in the presence of biocompatible solvent media and HIFs were studied by various techniques such as UV-vis, steady-state fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and dynamic light scattering (DLS) measurements. This work emphasises the effect of a DES (synthesised using 1 : 2 choline chloride and malonic acid) [Maline], ILs (1-butyl-3-methylimidazolium chloride [BMIM]Cl or choline acetate [Chn][Ac]) and their corresponding HIFs on the structure and functionality of Lyz. Moreover, we also studied the secondary structure, thermal stability, enzymatic activity and thermodynamic profile of Lyz at pH = 7 in the presence of varying concentrations (0.1 to 0.5 M) of [BMIM]Cl and [Chn][Ac] ILs, Maline as a DES, and Maline [BMIM]Cl (HIF1) and Maline [Chn][Ac] (HIF2). Spectroscopic results elucidate that ILs affect the activity and structural stability of Lyz. In contrast, the stability and activity are inhibited by DES and are enhanced by HIFs at all the studied concentrations. Overall, the experimental results studied explicitly elucidate that the structure and stability of Lyz are maintained in the presence of HIF1 while these properties are intensified in HIF2. This study shows various applications in biocompatible green solvents, particularly in the stability and functionality of proteins, due to their unique combination where the properties counteract the negative effect of either DESs or ILs in HIFs.


Asunto(s)
Disolventes Eutécticos Profundos , Estabilidad de Enzimas , Líquidos Iónicos , Muramidasa , Líquidos Iónicos/química , Muramidasa/química , Muramidasa/metabolismo , Disolventes Eutécticos Profundos/química , Solventes/química , Animales , Pollos , Colina/química
5.
Phys Chem Chem Phys ; 26(22): 16218-16233, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38804505

RESUMEN

The micellization of choline-based anionic surface-active ionic liquids (SAILs) having lauroyl sarcosinate [Sar]-, dodecylsulfate [DS]-, and deoxycholate [Doc]- as counter-ions was investigated in an aqueous medium. Density functional theory (DFT) was employed to investigate the net interactional energy (Enet), extent of non-covalent interactions, and band gap of the choline-based SAILs. The critical micelle concentration (cmc) along with various parameters related to the surface adsorption, counter-ion binding (ß), and polarity of the cores of the micelles were deduced employing surface tension measurements, conductometric titrations and fluorescence spectroscopy, respectively. A dynamic light scattering (DLS) system equipped with zeta-potential measurement set-up and small-angle neutron scattering (SANS) were used to predict the size, zeta-potential, and morphology, respectively, of the formed micelles. Thermodynamic parameters such as standard Gibb's free energy and standard enthalpy change of micellization were calculated using isothermal titration calorimetry (ITC). Upon comparing with sodium salt analogues, it was established that the micellization was predominantly governed by the extent of hydration of [Cho]+, the head groups of the respective anions, and the degree of counter-ion binding (ß). Considering the concentration dependence of the enzyme-SAIL interactions, aqueous solutions of the synthesized SAILs at two different concentrations (below and above the cmc) were utilized as the medium for testing the enzymatic activity of cellulase. The activity of cellulase was found to be ∼7- to ∼13-fold higher compared to that observed in buffers in monomeric solutions of the SAILs and followed the order: [Cho][Sar] > [Cho][DS] > [Cho][Doc]. In the micellar solution, a ∼4- to 5-fold increase in enzymatic activity was observed.


Asunto(s)
Celulasa , Colina , Líquidos Iónicos , Micelas , Agua , Líquidos Iónicos/química , Colina/química , Colina/análogos & derivados , Celulasa/química , Celulasa/metabolismo , Agua/química , Termodinámica , Tensoactivos/química , Teoría Funcional de la Densidad
6.
Mikrochim Acta ; 191(7): 399, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877162

RESUMEN

Nicotine (3-(1-methyl-2-pyrrolidinyl)pyridine) is one of the most common addictive substances, causing the trace detection of nicotine to be very necessary. Herein, we designed and prepared a functionalized nanocomposite CS-PAA (NaYF4:19.5%Yb,0.5%Tm@NaYF4-PAA) using a simple method. The nicotine concentration was quantitatively detected through the inhibition of choline oxidase activity by nicotine and the luminescence intensity of CS-PAA being quenched by Fe3+. The mechanism of Fe3+ quenching CS-PAA emission was inferred by luminescence lifetime and UV-vis absorption spectra characterization. During the nicotine detection, both excitation (980 nm) and emission (802 nm) wavelengths of CS-PAA enable the avoidance of the interference of background fluorescence in complicated food objects, thus providing high selectivity and sensitivity with a linear range of 5-750 ng/mL and a limit of detection of 9.3 nM. The method exhibits an excellent recovery and relative standard deviation, indicating high accuracy and repeatability of the detection of nicotine.


Asunto(s)
Colina , Límite de Detección , Nicotina , Nicotina/análisis , Nicotina/química , Colina/química , Colina/análisis , Nanocompuestos/química , Mediciones Luminiscentes/métodos , Oxidorreductasas de Alcohol/química , Luminiscencia
7.
Phytochem Anal ; 35(1): 53-63, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37545032

RESUMEN

INTRODUCTION: Deep eutectic solvents (DESs) are promising extractants with tuneable properties. However, there is a lack of reports about the influence of the nature of the original DES on obtaining the metabolomic profile of a plant. OBJECTIVE: The aim of this study is to investigate the possibility of obtaining Iris sibirica L. chromatographical profiles with DESs based on various hydrogen bond donors and acceptors as extraction solvents. METHODOLOGY: DESs were prepared by mixing choline chloride or tetrabutylammonium bromide with various hydrogen bond donors and investigated for the extraction of bioactive substances from biotechnological raw materials of I. sibirica L. The obtained extracts were analysed by HPLC with diode array detector (DAD) and Q-MS. RESULTS: Chromatographic profiles for I. sibirica L. extracts by eight choline chloride DESs and six tetrabutylammonium DESs have been obtained. It has been found that selective recovery of bioactive substances can be achieved by varying the composition of DESs. Eleven phenolic compounds were identified in I. sibirica L. using HPLC-MS. Phase separation was observed with acetonitrile for four DESs. New flavonoid derivatives have been found in DES extracts compared with methanol extracts. CONCLUSION: The results showed the possibility of DES usage for extraction without water addition. Selectivity of DESs varies depending on the chemical composition of hydrogen bond donors and acceptors. Choline chloride is a more suitable hydrogen bond acceptor for the flavonoid extraction. Choline chloride-lactic acid (1:1) DES has demonstrated a metabolic profile that was the closest to the methanol one and enhanced the extraction up to 2.6-fold.


Asunto(s)
Disolventes Eutécticos Profundos , Género Iris , Metanol , Solventes/química , Flavonoides , Extractos Vegetales/química , Colina/química , Fitoquímicos
8.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891947

RESUMEN

Esterquats constitute a unique group of quaternary ammonium salts (QASs) that contain an ester bond in the structure of the cation. Despite the numerous advantages of this class of compounds, only two mini-reviews discuss the subject of esterquats: the first one (2007) briefly summarizes their types, synthesis, and structural elements required for a beneficial environmental profile and only briefly covers their applications whereas the second one only reviews the stability of selected betaine-type esterquats in aqueous solutions. The rationale for writing this review is to critically reevaluate the relevant literature and provide others with a "state-of-the-art" snapshot of choline-type esterquats and betaine-type esterquats. Hence, the first part of this survey thoroughly summarizes the most important scientific reports demonstrating effective synthesis routes leading to the formation of both types of esterquats. In the second section, the susceptibility of esterquats to hydrolysis is explained, and the influence of various factors, such as the pH, the degree of salinity, or the temperature of the solution, was subjected to thorough analysis that includes quantitative components. The next two sections refer to various aspects associated with the ecotoxicity of esterquats. Consequently, their biodegradation and toxic effects on microorganisms are extensively analyzed as crucial factors that can affect their commercialization. Then, the reported applications of esterquats are briefly discussed, including the functionalization of macromolecules, such as cotton fabric as well as their successful utilization on a commercial scale. The last section demonstrates the most essential conclusions and reported drawbacks that allow us to elucidate future recommendations regarding the development of these promising chemicals.


Asunto(s)
Betaína , Cationes , Colina , Betaína/química , Betaína/análogos & derivados , Colina/química , Colina/análogos & derivados , Cationes/química , Ésteres/química , Compuestos de Amonio Cuaternario/química , Humanos
9.
J Environ Manage ; 356: 120615, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518499

RESUMEN

Anaerobic digestion (AD) is a prevalent waste activated sludge (WAS) treatment, and optimizing methane production is a core focus of AD. Two DESs were developed in this study and significantly increased methane production, including choline chloride-urea (ChCl-Urea) 390% and chloride-ethylene glycol (ChCl-EG) 540%. Results showed that ChCl-Urea mainly disrupted extracellular polymeric substances (EPS) structures, aiding in initial sludge solubilization during pretreatment. ChCl-EG, instead, induced sludge self-driven organic solubilization and enhanced hydrolysis and acidification processes during AD process. Based on the extent to which the two DESs promoted AD for methane production, the AD process can be divided into stage Ⅰ and stage Ⅱ. In stage Ⅰ, ChCl-EG promoted methanogenesis more significantly, microbiological analysis showed both DESs enriched aceticlastic methanogens-Methanosarcina. Notably, ChCl-Urea particularly influenced polysaccharide-related metabolism, whereas ChCl-EG targeted protein-related metabolism. In stage Ⅱ, ChCl-Urea was more dominant than ChCl-EG, ChCl-Urea bolstered metabolism and ChCl-EG promoted genetic information processing in this stage. In essence, this study investigated the microbial mechanism of DES-enhanced sludge methanogenesis and provided a reference for future research.


Asunto(s)
Disolventes Eutécticos Profundos , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Colina/química , Metano , Urea/química , Reactores Biológicos
10.
Molecules ; 29(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338357

RESUMEN

With a growing focus on green chemistry, the extraction of natural products with natural deep eutectic solvents (NADES), which are eutectic mixtures of hydrogen bond donors and acceptors, has become an ever-expanding field of research. However, the use of NADES for the extraction of spilanthol from Acmella oleracea (L.) R.K.Jansen has not yet been investigated. Therefore, in this study, 20 choline chloride-based NADES, and for comparison, ethanol, were used as green extraction agents for spilanthol from Acmella oleracea flower heads. The effects of time, water addition, and temperature on NADES extractions were investigated and analysed by HPLC-DAD quantification. Additionally, UHPLC-DAD-ESI-MSn results for dichloromethane extracts, as well as the isolation of spilanthol and other main constituents as reference compounds, are reported. The best green extraction results were achieved by choline chloride (ChCl) with 1,2-propanediol (P, 1:2 molar ratio, +20% water) at 244.58 µg/mL, comparable to yields with ethanol (245.93 µg/mL). Methylurea (MeU, 1:2, +20% water) also showed promising results as a hydrogen bond donor in combination with choline chloride (208.12 µg/mL). In further experiments with NADES ChCl/P (1:2) and ChCl/MeU (1:2), extraction time had the least effect on spilanthol extraction with NADES, while yield decreased with water addition over 20% and increased with extraction temperature up to 80 °C. NADES are promising extraction agents for the extraction of spilanthol, and these findings could lead to applicable extracts for medicinal purposes, due to their non-toxic constituents.


Asunto(s)
Asteraceae , Disolventes Eutécticos Profundos , Alcamidas Poliinsaturadas , Solventes/química , Extractos Vegetales/química , Agua/química , Etanol , Colina/química
11.
Angew Chem Int Ed Engl ; 63(2): e202315125, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38010210

RESUMEN

Deep eutectic solvents (DESs), heralded for their synthesis simplicity, economic viability, and reduced volatility and flammability, have found increasing application in biocatalysis. However, challenges persist due to a frequent diminution in enzyme activity and stability. Herein, we developed a general protein engineering strategy, termed corner engineering, to acquire DES-resistant and thermostable enzymes via precise tailoring of the transition region in enzyme structure. Employing Bacillus subtilis lipase A (BSLA) as a model, we delineated the engineering process, yielding five multi-DESs resistant variants with highly improved thermostability, such as K88E/N89 K exhibited up to a 10.0-fold catalytic efficiency (kcat /KM ) increase in 30 % (v/v) choline chloride (ChCl): acetamide and 4.1-fold in 95 % (v/v) ChCl: ethylene glycol accompanying 6.7-fold thermal resistance improvement than wild type at ≈50 °C. The generality of the optimized approach was validated by two extra industrial enzymes, endo-ß-1,4-glucanase PvCel5A (used for biofuel production) and esterase Bs2Est (used for plastics degradation). The molecular investigations revealed that increased water molecules at substrate binding cleft and finetuned helix formation at the corner region are two dominant determinants governing elevated resistance and thermostability. This study, coupling corner engineering with obtained molecular insights, illuminates enzyme-DES interaction patterns and fosters the rational design of more DES-resistant and thermostable enzymes in biocatalysis and biotransformation.


Asunto(s)
Disolventes Eutécticos Profundos , Agua , Solventes/química , Lipasa/metabolismo , Biocatálisis , Colina/química
12.
Chembiochem ; 24(21): e202300540, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37615422

RESUMEN

Natural deep eutectic solvents (NADESs) are emerging sustainable alternatives to conventional organic solvents. Beyond their role as laboratory solvents, NADESs are increasingly explored in drug delivery and as therapeutics. Their increasing applications notwithstanding, our understanding of how they interact with biomolecules at multiple levels - metabolome, proteome, and transcriptome - within human cell remain poor. Here, we deploy integrated metabolomics, proteomics, and transcriptomics to probe how NADESs perturb the molecular landscape of human cells. In a human cell line model, we found that an archetypal NADES derived from choline and geranic acid (CAGE) significantly altered the metabolome, proteome, and transcriptome. CAGE upregulated indole-3-lactic acid and 4-hydroxyphenyllactic acid levels, resulting in ligand-independent activation of aryl hydrocarbon receptor to signal the transcription of genes with implications for inflammation, immunomodulation, cell development, and chemical detoxification. Further, treating the cell line with CAGE downregulated glutamine biosynthesis, a nutrient rapidly proliferating cancer cells require. CAGE's ability to attenuate glutamine levels is potentially relevant for cancer treatment. These findings suggest that NADESs, even when derived from natural components like choline, can indirectly modulate cell biology at multiple levels, expanding their applications beyond chemistry to biomedicine and biotechnology.


Asunto(s)
Disolventes Eutécticos Profundos , Glutamina , Humanos , Solventes/química , Receptores de Hidrocarburo de Aril , Ligandos , Proteoma , Colina/química
13.
Chem Rec ; 23(8): e202200295, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36960931

RESUMEN

Bio-compatible ionic liquids (Bio-ILs) represent a class of solvents with peculiar properties and exhibit huge potential for their applications in different fields of chemistry. Ever since they were discovered, researchers have used bio-ILs in diverse fields such as biomass dissolution, CO2 sequestration, and biodegradation of pesticides. This review highlights the ongoing research studies focused on elucidating the microscopic structure of bio-ILs based on cholinium cation ([Ch]+ ) and amino acid ([AA]- ) anions using the state-of-the-art a b i n i t i o ${ab\hskip0.25eminitio}$ and classical molecular dynamics (MD) simulations. The microscopic structure associated with these green ILs guides their suitability for specific applications. ILs of this class differ in the side chain of the amino acid anions, and varying the side chain significantly affects the structure of these ILs and thus helps in tuning the efficiency of biomass dissolution. This review demonstrates the central role of the side chain on the morphology of choline amino acid ([Ch][AA]) bio-ILs. The seemingly matured field of bio-ILs and their employment in various applications still holds significant potential, and the insights on their microscopic structure would steer the field of target specific application of these green ILs.


Asunto(s)
Aminoácidos , Líquidos Iónicos , Aminoácidos/química , Líquidos Iónicos/química , Colina/química , Simulación de Dinámica Molecular , Aniones/química
14.
Phys Chem Chem Phys ; 25(30): 20519-20532, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37470288

RESUMEN

The stabilization of proteins has been a major challenge for their practical utilization in industrial applications. Proteins can easily lose their native conformation in the presence of denaturants, which unfolds the protein structure. Since the introduction of deep eutectic solvents (DESs), there are numerous studies in which DESs act as promising co-solvents that are biocompatible with biomolecules. DESs have emerged as sustainable biocatalytic media and an alternative to conventional organic solvents and ionic liquids (ILs). However, the superiority of DESs over the deleterious influence of denaturants on proteins is often neglected. To address this, we present the counteracting ability of biocompatible DESs, namely, choline chloride-glycerol (DES-1) and choline chloride-urea (DES-2), against the structural changes induced in ß-lactoglobulin (Blg) by carboxylated multiwalled carbon nanotubes (CA-MWCNTs). The work is substantiated with various spectroscopic and thermal studies. The spectroscopic results revealed that the fluorescence emission intensity enhances for the protein in DESs. Contrary to this, the emission intensity extremely quenches in the presence of CA-MWCNTs. However, in the mixture of DESs and CA-MWCNTs, there was a slight increase in the fluorescence intensity. Circular dichroism spectral studies reflect the reappearance of the native band that was lost in the presence of CA-MWCNTs, which is a good indicator of the counteraction ability of DESs. Further, thermal fluorescence studies showed that the protein exhibited extremely great thermal stability in both DESs as well as in the mixture of DES-CA-MWCNTs compared to the protein in buffer. This study is also supported by dynamic light scattering and zeta potential measurements; the results reveal that DESs were successfully able to maintain the protein structure. The addition of CA-MWCNTs results in complex formation with the protein, which is indicated by the increased hydrodynamic size of the protein. The presence of DESs in the mixture of CA-MWCNTs and DESs was quite successful in eliminating the negative impact of CA-MWCNTs on protein structural alteration. DES-1 proved to be superior to DES-2 over counteraction against CA-MWCNTs and maintained the native conformation of the protein. Overall, both DESs act as recoiling media for both native and unfolded (denatured by CA-MWCNTs) Blg structures. Both the DESs can be described as potential co-solvents for Blg with increased structural and thermal stability of the protein. To the best of our knowledge, this study for the first time has demonstrated the role of choline-based DESs in the mixture with CA-MWCNTs in the structural transition of Blg. The DESs in the mixture successfully enhance the stability of the protein by reducing the perturbation caused by CA-MWCNTs and then amplifying the advantages of the DESs present in the mixture. Overall, these results might find implications for understanding the role of DES-CA-MWCNT mixtures in protein folding/unfolding and pave a new direction for the development of eco-friendly protein-protective solvents.


Asunto(s)
Nanotubos de Carbono , Disolventes Eutécticos Profundos , Lactoglobulinas/química , Solventes/química , Colina/química
15.
Phys Chem Chem Phys ; 25(29): 20093-20108, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37462948

RESUMEN

Although deep eutectic solvents (DESs) are regarded as useful substitutes for both ionic liquids and common organic solvents for storage and applications of biomolecules, it is still unclear whether all DESs or only specific types of DESs will be suitable for the said purpose. In view of this, the current study aims to report on the structure and conformational dynamics of BSA in the presence of two DESs, namely ethaline (choline chloride:ethylene glycol) and BMEG (benzyltrimethyl ammonium chloride:ethylene glycol), having the same hydrogen bond donor but with a distinct hydrogen bond acceptor, so that how small changes in one constituent of a DES alter the protein-DES interaction at the molecular level can be understood. The protein-DES interaction is investigated by exploiting both ensemble-averaged measurements like steady-state and time-resolved fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and single-molecule sensitive techniques based on fluorescence correlation spectroscopy (FCS). Interestingly, the results obtained from these studies have demonstrated that while a very small quantity of BMEG completely unfolds the native structure of the protein, it remains in a partially unfolded state even at very high ethaline content. More interestingly, it has been found that at very high concentrations of BMEG, the unfolded protein undergoes enhanced protein-protein interaction resulting in the aggregation of BSA. All of the results obtained from these investigations have essentially suggested that both protein-DES interaction and interspecies interaction among the constituent of DESs play a crucial role in governing the overall stability and conformational dynamics of the protein in DESs.


Asunto(s)
Colina , Albúmina Sérica Bovina , Colina/química , Espectrometría de Fluorescencia , Disolventes Eutécticos Profundos , Solventes/química , Glicol de Etileno/química
16.
Proc Natl Acad Sci U S A ; 117(25): 14552-14560, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513689

RESUMEN

Both inorganic fertilizer inputs and crop yields have increased globally, with the concurrent increase in the pollution of water bodies due to nitrogen leaching from soils. Designing agroecosystems that are environmentally friendly is urgently required. Since agroecosystems are highly complex and consist of entangled webs of interactions between plants, microbes, and soils, identifying critical components in crop production remain elusive. To understand the network structure in agroecosystems engineered by several farming methods, including environmentally friendly soil solarization, we utilized a multiomics approach on a field planted with Brassica rapa We found that the soil solarization increased plant shoot biomass irrespective of the type of fertilizer applied. Our multiomics and integrated informatics revealed complex interactions in the agroecosystem showing multiple network modules represented by plant traits heterogeneously associated with soil metabolites, minerals, and microbes. Unexpectedly, we identified soil organic nitrogen induced by soil solarization as one of the key components to increase crop yield. A germ-free plant in vitro assay and a pot experiment using arable soils confirmed that specific organic nitrogen, namely alanine and choline, directly increased plant biomass by acting as a nitrogen source and a biologically active compound. Thus, our study provides evidence at the agroecosystem level that organic nitrogen plays a key role in plant growth.


Asunto(s)
Brassica rapa/crecimiento & desarrollo , Producción de Cultivos , Productos Agrícolas/crecimiento & desarrollo , Nitrógeno/metabolismo , Suelo/química , Alanina/química , Alanina/metabolismo , Biomasa , Brassica rapa/metabolismo , Colina/química , Colina/metabolismo , Productos Agrícolas/metabolismo , Conjuntos de Datos como Asunto , Redes y Vías Metabólicas/efectos de la radiación , Metabolómica , Microbiota/fisiología , Microbiota/efectos de la radiación , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Rizosfera , Microbiología del Suelo , Luz Solar
17.
Chem Biodivers ; 20(8): e202300575, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37417922

RESUMEN

Application of deep eutectic solvents in synthesis of different heterocyclic compounds was proven very efficient. These solvents are a new generation of green solvents showing excellent potential for different purposes, where they are used as environmentally acceptable substitute for toxic and volatile organic solvents. This research describes their application in the synthesis of series of quinazolinone Schiff bases in combination with microwave, ultrasound-assisted and mechanochemical methods. First, a model reaction was performed in 20 different deep eutectic solvents to find the best solvent and then reaction conditions (solvent, temperature and reaction time) were optimized for each method. Afterwards, 40 different quinazolinone derivatives were synthesized in choline chloride/malonic acid (1 : 1) DES by each method and compared by their yields. Here we show that deep eutectic solvents can be very efficient in the synthesis of quinazolinone derivatives as an excellent substitution for volatile organic solvents. With green chemistry approach in mind, we have also performed a calculation on compounds' toxicity and solubility, showing that most of them possess toxic and mutagenic properties with low water solubility.


Asunto(s)
Colina , Disolventes Eutécticos Profundos , Solventes , Colina/química
18.
Molecules ; 28(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36903651

RESUMEN

Deep eutectic solvents (DESs) and ionic liquids (ILs) offer novel opportunities for several pharmaceutical applications. Their tunable properties offer control over their design and applications. Choline chloride (CC)-based DESs (referred to as Type III eutectics) offer superior advantages for various pharmaceutical and therapeutic applications. Here, CC-based DESs of tadalafil (TDF), a selective phosphodiesterase type 5 (PDE-5) enzyme inhibitor, were designed for implementation in wound healing. The adopted approach provides formulations for the topical application of TDF, hence avoiding systemic exposure. To this end, the DESs were chosen based on their suitability for topical application. Then, DES formulations of TDF were prepared, yielding a tremendous increase in the equilibrium solubility of TDF. Lidocaine (LDC) was included in the formulation with TDF to provide a local anaesthetic effect, forming F01. The addition of propylene glycol (PG) to the formulation was attempted to reduce the viscosity, forming F02. The formulations were fully characterised using NMR, FTIR and DCS techniques. According to the obtained characterisation results, the drugs were soluble in the DES with no detectable degradation. Our results demonstrated the utility of F01 in wound healing in vivo using cut wound and burn wound models. Significant retraction of the cut wound area was observed within three weeks of the application of F01 when compared with DES. Furthermore, the utilisation of F01 resulted in less scarring of the burn wounds than any other group including the positive control, thus rendering it a candidate formula for burn dressing formulations. We demonstrated that the slower healing process associated with F01 resulted in less scarring potential. Lastly, the antimicrobial activity of the DES formulations was demonstrated against a panel of fungi and bacterial strains, thus providing a unique wound healing process via simultaneous prevention of wound infection. In conclusion, this work presents the design and application of a topical vehicle for TDF with novel biomedical applications.


Asunto(s)
Antiinfecciosos , Quemaduras , Líquidos Iónicos , Antiinfecciosos/farmacología , Colina/química , Cicatriz , Líquidos Iónicos/química , Preparaciones Farmacéuticas , Inhibidores de Fosfodiesterasa 5/farmacología , Solventes/química , Tadalafilo/farmacología , Cicatrización de Heridas , Animales
19.
Molecules ; 28(19)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37836770

RESUMEN

The current work was aimed at the development of a topical drug delivery system for azelaic acid (AzA) for acne treatment. The systems tested for this purpose were deep eutectic systems (DESs) prepared from choline chloride (CC), malonic acid (MA), and PEG 400. Three CC to MA and eight different MA: CC: PEG400 ratios were tested. The physical appearance of the tested formulations ranged from solid and liquid to semisolid. Only those that showed liquid formulations of suitable viscosity were considered for further investigations. A eutectic mixture made from MA: CC: PEG400 1:1:6 (MCP 116) showed the best characteristics in terms of viscosity, contact angle, spreadability, partition coefficient, and in vitro diffusion. Moreover, the MCP116 showed close rheological properties to the commercially available market lead acne treatment product (Skinorin®). In addition, the formula showed synergistic antibacterial activity between the MA moiety of the DES and the AzA. In vitro diffusion studies using polyamide membranes demonstrated superior diffusion of MCP116 over the pure drug and the commercial product. No signs of skin irritation and edema were observed when MCP116 was applied to rabbit skin. Additionally, the MCP116 was found to be, physically and chemically, highly stable at 4, 25, and 40 °C for a one-month stability study.


Asunto(s)
Acné Vulgar , Fármacos Dermatológicos , Animales , Conejos , Ácidos Dicarboxílicos/química , Fármacos Dermatológicos/uso terapéutico , Piel , Preparaciones Farmacéuticas , Colina/química , Acné Vulgar/tratamiento farmacológico , Solventes/química
20.
Electrophoresis ; 43(18-19): 1832-1840, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35512275

RESUMEN

In recent years, attention has been turned finding new sources of phenolic compounds, antioxidant molecules, main by-products from the agri-food chain like barley malt rootlets (BMRs). Traditionally, phenolic compounds are extracted from food matrices using different procedures, for example, solid-liquid, liquid-liquid, or solid-phase extraction techniques employing organic solvents. With the advent of green chemistry, attention has been paid to the search for green, nontoxic, inexpensive, and nonflammable solvents and the natural deep eutectic solvents (NADESs) respect these characteristics. The aim of this project was to develop and optimize an environmentally friendly, inexpensive, and rapid extraction method for phenolic compounds from BMRs using natural DESs as extractive solvents. Several natural DESs were tested as extractive solvents and, among them, the best results in terms of total phenolic content were obtained using a choline chloride-malic acid (1:2 molar ratio)-based mixture. Box-Behnken experimental design guaranteed the extraction of 9.51 ± 0.83 gallic acid equivalent/g of BMRs, under the following optimal extraction conditions: 1:21 solid-to-liquid ratio, 80°C as extraction temperature, 43 min as the time of extraction, and 29% as a percentage of added water in the NADESs. Phenolic acids and flavonoids were detected in the BMRs extract through HPLC-PDA/MS analysis.


Asunto(s)
Productos Biológicos , Hordeum , Antioxidantes , Colina/química , Disolventes Eutécticos Profundos , Flavonoides/química , Ácido Gálico , Fenoles , Extractos Vegetales/química , Solventes/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA