Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.963
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 630(8015): 206-213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778111

RESUMEN

Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer1-4. A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge5,6. A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the 'click' SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted ß- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias de la Próstata , Radioisótopos , Radiofármacos , Animales , Humanos , Masculino , Ratones , Antígenos de Superficie/química , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Fluoruros/química , Fluoruros/metabolismo , Glutamato Carboxipeptidasa II/química , Glutamato Carboxipeptidasa II/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Terapia Molecular Dirigida/métodos , Proyectos Piloto , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/radioterapia , Radioisótopos/uso terapéutico , Radiofármacos/química , Radiofármacos/uso terapéutico , Radiofármacos/metabolismo , Radiofármacos/farmacocinética , Compuestos de Azufre/química , Compuestos de Azufre/metabolismo , Tirosina/metabolismo , Tirosina/química , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Immunol Rev ; 313(1): 64-70, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36089768

RESUMEN

The evolutionary history of complement suggests that the alternative pathway arose prior to the arrival of the classical and lectin pathways. In these pathways, target specificity is provided by antibodies and sugar specific lectins. While these efficient initiation systems dominate activation on most targets, the alternative pathway produces most of the C3b and 80%-90% of the C5b-9. While the tickover process, originally proposed by Peter Lachmann, provided ancient hosts with a crude self/non-self-discriminatory system that initiated complement attack on everything foreign, tickover clearly plays a more minor role in complement activation in modern organisms possessing classical and lectin pathways. Spontaneous activation of the alternative pathway via tickover may play a major role in human pathologies where tissue damage is complement-mediated. The molecular mechanism of tickover is still not convincingly proven. Prevailing hypotheses include (a) spontaneous hydrolysis of the thioester in C3 forming the C3b-like C3(H2 O) in solution and (b) "enhanced tickover" in which surfaces cause specific or non-specific contact activated conformational changes in C3. Theoretical considerations, including computer simulations, suggest that the latter mechanism is more likely and that more research needs to be devoted to understanding interactions between biological surfaces and C3.


Asunto(s)
Complemento C3 , Complemento C3b , Humanos , Complemento C3/metabolismo , Complemento C3b/metabolismo , Activación de Complemento , Anticuerpos , Compuestos de Azufre , Vía Alternativa del Complemento
3.
Proc Natl Acad Sci U S A ; 119(30): e2123022119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858422

RESUMEN

The formation of carbon-carbon bonds from prebiotic precursors such as carbon dioxide represents the foundation of all primordial life processes. In extant organisms, this reaction is carried out by the carbon monoxide dehydrogenase (CODH)/acetyl coenzyme A synthase (ACS) enzyme, which performs the cornerstone reaction in the ancient Wood-Ljungdahl metabolic pathway to synthesize the key biological metabolite, acetyl-CoA. Despite its significance, a fundamental understanding of this transformation is lacking, hampering efforts to harness analogous chemistry. To address these knowledge gaps, we have designed an artificial metalloenzyme within the azurin protein scaffold as a structural, functional, and mechanistic model of ACS. We demonstrate the intermediacy of the NiI species and requirement for ordered substrate binding in the bioorganometallic carbon-carbon bond-forming reaction from the one-carbon ACS substrates. The electronic and geometric structures of the nickel-acetyl intermediate have been characterized using time-resolved optical, electron paramagnetic resonance, and X-ray absorption spectroscopy in conjunction with quantum chemical calculations. Moreover, we demonstrate that the nickel-acetyl species is chemically competent for selective acyl transfer upon thiol addition to biosynthesize an activated thioester. Drawing an analogy to the native enzyme, a mechanism for thioester generation by this ACS model has been proposed. The fundamental insight into the enzymatic process provided by this rudimentary ACS model has implications for the evolution of primitive ACS-like proteins. Ultimately, these findings offer strategies for development of highly active catalysts for sustainable generation of liquid fuels from one-carbon substrates, with potential for broad applications across diverse fields ranging from energy storage to environmental remediation.


Asunto(s)
Aldehído Oxidorreductasas , Azurina , Ésteres , Complejos Multienzimáticos , Níquel , Origen de la Vida , Compuestos de Azufre , Aldehído Oxidorreductasas/química , Azurina/química , Catálisis , Ésteres/síntesis química , Modelos Químicos , Complejos Multienzimáticos/química , Níquel/química , Compuestos de Azufre/síntesis química
4.
Infect Immun ; 92(3): e0042223, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38289071

RESUMEN

Listeria monocytogenes (Lm) is a Gram-positive facultative intracellular pathogen that leads a biphasic lifecycle, transitioning its metabolism and selectively inducing virulence genes when it encounters mammalian hosts. Virulence gene expression is controlled by the master virulence regulator PrfA, which is allosterically activated by the host- and bacterially derived glutathione (GSH). The amino acid cysteine is the rate-limiting substrate for GSH synthesis in bacteria and is essential for bacterial growth. Unlike many bacteria, Lm is auxotrophic for cysteine and must import exogenous cysteine for growth and virulence. GSH is enriched in the host cytoplasm, and previous work suggests that Lm utilizes exogenous GSH for PrfA activation. Despite these observations, the import mechanism(s) for GSH remains elusive. Analysis of known GSH importers predicted a homologous importer in Lm comprised of the Ctp ABC transporter and the OppDF ATPases of the Opp oligopeptide importer. Here, we demonstrated that the Ctp complex is a high-affinity GSH/GSSG importer that is required for Lm growth at physiologically relevant concentrations. Furthermore, we demonstrated that OppDF is required for GSH/GSSG import in an Opp-independent manner. These data support a model where Ctp and OppDF form a unique complex for GSH/GSSG import that supports growth and pathogenesis. In addition, we show that Lm utilizes the inorganic sulfur sources thiosulfate and H2S for growth in a CysK-dependent manner in the absence of other cysteine sources. These findings suggest a pathoadaptive role for partial cysteine auxotrophy in Lm, where locally high GSH/GSSG or inorganic sulfur concentrations may signal arrival to distinct host niches.


Asunto(s)
Listeria monocytogenes , Animales , Cisteína/metabolismo , Disulfuro de Glutatión/genética , Disulfuro de Glutatión/metabolismo , Compuestos de Azufre/metabolismo , Glutatión , Azufre/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mamíferos
5.
J Am Chem Soc ; 146(2): 1388-1395, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38176024

RESUMEN

Site-specific covalent conjugation offers a powerful tool to identify and understand protein-protein interactions. In this study, we discover that sulfur fluoride exchange (SuFEx) warheads effectively crosslink the Escherichia coli acyl carrier protein (AcpP) with its partner BioF, a key pyridoxal 5'-phosphate (PLP)-dependent enzyme in the early steps of biotin biosynthesis by targeting a tyrosine residue proximal to the active site. We identify the site of crosslink by MS/MS analysis of the peptide originating from both partners. We further evaluate the BioF-AcpP interface through protein crystallography and mutational studies. Among the AcpP-interacting BioF surface residues, three critical arginine residues appear to be involved in AcpP recognition so that pimeloyl-AcpP can serve as the acyl donor for PLP-mediated catalysis. These findings validate an evolutionary gain-of-function for BioF, allowing the organism to build biotin directly from fatty acid biosynthesis through surface modifications selective for salt bridge formation with acidic AcpP residues.


Asunto(s)
Biotina , Fluoruros , Compuestos de Azufre , Espectrometría de Masas en Tándem , Biotina/metabolismo , Escherichia coli/metabolismo , Ácidos Grasos/metabolismo
6.
Appl Environ Microbiol ; 90(2): e0201523, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38299812

RESUMEN

Fungi have the capacity to assimilate a diverse range of both inorganic and organic sulfur compounds. It has been recognized that all sulfur sources taken up by fungi are in soluble forms. In this study, we present evidence that fungi can utilize gaseous carbonyl sulfide (COS) for the assimilation of a sulfur compound. We found that the filamentous fungus Trichoderma harzianum strain THIF08, which has constitutively high COS-degrading activity, was able to grow with COS as the sole sulfur source. Cultivation with 34S-labeled COS revealed that sulfur atom from COS was incorporated into intracellular metabolites such as glutathione and ergothioneine. COS degradation by strain THIF08, in which as much of the moisture derived from the agar medium as possible was removed, indicated that gaseous COS was taken up directly into the cell. Escherichia coli transformed with a COS hydrolase (COSase) gene, which is clade D of the ß-class carbonic anhydrase subfamily enzyme with high specificity for COS but low activity for CO2 hydration, showed that the COSase is involved in COS assimilation. Comparison of sulfur metabolites of strain THIF08 revealed a higher relative abundance of reduced sulfur compounds under the COS-supplemented condition than the sulfate-supplemented condition, suggesting that sulfur assimilation is more energetically efficient with COS than with sulfate because there is no redox change of sulfur. Phylogenetic analysis of the genes encoding COSase, which are distributed in a wide range of fungal taxa, suggests that the common ancestor of Ascomycota, Basidiomycota, and Mucoromycota acquired COSase at about 790-670 Ma.IMPORTANCEThe biological assimilation of gaseous CO2 and N2 involves essential processes known as carbon fixation and nitrogen fixation, respectively. In this study, we found that the fungus Trichoderma harzianum strain THIF08 can grow with gaseous carbonyl sulfide (COS), the most abundant and ubiquitous gaseous sulfur compound, as a sulfur source. When the fungus grew in these conditions, COS was assimilated into sulfur metabolites, and the key enzyme of this assimilation process is COS hydrolase (COSase), which specifically degrades COS. Moreover, the pathway was more energy efficient than the typical sulfate assimilation pathway. COSase genes are widely distributed in Ascomycota, Basidiomycota, and Mucoromycota and also occur in some Chytridiomycota, indicating that COS assimilation is widespread in fungi. Phylogenetic analysis of these genes revealed that the acquisition of COSase in filamentous fungi was estimated to have occurred at about 790-670 Ma, around the time that filamentous fungi transitioned to a terrestrial environment.


Asunto(s)
Hypocreales , Óxidos de Azufre , Trichoderma , Gases , Dióxido de Carbono , Suelo , Filogenia , Compuestos de Azufre , Azufre/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Hidrolasas/metabolismo , Sulfatos , Trichoderma/genética , Trichoderma/metabolismo
7.
Invest New Drugs ; 42(1): 70-79, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38085423

RESUMEN

In recent years, a number of novel pharmaceutical agents have received approval for the management of acute myeloid leukemia (AML). However, there is still ample opportunity for enhancing efficacy. The Wee1 inhibitor adavosertib (ADA) shows promise for the treatment of AML. Based on the effect of drugs on DNA damage, we conducted a combination study involving ADA and fimepinostat (CUDC-907), a dual inhibitor of PI3K and histone deacetylase (HDAC). We observed that the combination of CUDC-907 and ADA exhibited a synergistic effect in enhancing the antileukemic activity in both AML cell lines and primary patient samples, demonstrating through flow cytometry analysis and MTT assay, respectively. Additionally, our study revealed that CUDC-907 has the ability to augment ADA-induced DNA damage, as determined by the measurement of γH2AX levels and the implementation of the alkaline comet assay. Through the utilization of western blotting analyses, targeted inhibitors, and ectopic overexpression, we propose that the downregulation of Wee1, CHK1, RNR, and c-Myc are the potential mechanisms. Our data support the development of ADA in combination with CUDC-907 for the treatment of AML.


Asunto(s)
Leucemia Mieloide Aguda , Morfolinas , Pirazoles , Pirimidinas , Pirimidinonas , Compuestos de Azufre , Humanos , Daño del ADN , Leucemia Mieloide Aguda/tratamiento farmacológico
8.
J Org Chem ; 89(11): 8005-8010, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38804706

RESUMEN

Trace palladium in synthetic materials can be rapidly and inexpensively semiquantified by a catalysis-based fluorometric method that converts resorufin allyl ether to resorufin. However, whether sulfur compounds would interfere with this method has not been systematically studied. Herein, we show that although thiourea in solution interferes with quantification, sulfide, thiol, and thiocarbamate do not. The fluorometric method can also detect palladium bound to sulfur-based scavenger resin and outperform inductively coupled plasma mass spectrometry for detecting trace palladium in ibuprofen.


Asunto(s)
Fluorometría , Ibuprofeno , Paladio , Paladio/química , Ibuprofeno/química , Ibuprofeno/análisis , Catálisis , Fluorometría/métodos , Estructura Molecular , Compuestos de Azufre/química , Compuestos de Azufre/análisis
9.
Environ Sci Technol ; 58(17): 7357-7366, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38568220

RESUMEN

Although sulfur cycling in acid mine drainage (AMD)-contaminated rice paddy soils is critical to understanding and mitigating the environmental consequences of AMD, potential sources and transformations of organosulfur compounds in such soils are poorly understood. We used sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy to quantify organosulfur compounds in paddy soils from five AMD-contaminated sites and one AMD-uncontaminated reference site near the Dabaoshan sulfide mining area in South China. We also determined the sulfur stable isotope compositions of water-soluble sulfate (δ34SWS), adsorbed sulfate (δ34SAS), fulvic acid sulfur (δ34SFAS), and humic acid sulfur (δ34SHAS) in these samples. Organosulfate was the dominant functional group in humic acid sulfur (HAS) in both AMD-contaminated (46%) and AMD-uncontaminated paddy soils (42%). Thiol/organic monosulfide contributed a significantly lower proportion of HAS in AMD-contaminated paddy soils (8%) compared to that in AMD-uncontaminated paddy soils (21%). Within contaminated soils, the concentration of thiol/organic monosulfide was positively correlated with cation exchange capacity (CEC), moisture content (MC), and total Fe (TFe). δ34SFAS ranged from -6.3 to 2.7‰, similar to δ34SWS (-6.9 to 8.9‰), indicating that fulvic acid sulfur (FAS) was mainly derived from biogenic S-bearing organic compounds produced by assimilatory sulfate reduction. δ34SHAS (-11.0 to -1.6‰) were more negative compared to δ34SWS, indicating that dissimilatory sulfate reduction and abiotic sulfurization of organic matter were the main processes in the formation of HAS.


Asunto(s)
Minería , Oryza , Contaminantes del Suelo , Suelo , Suelo/química , Oryza/química , Sustancias Húmicas , Azufre , Compuestos de Azufre
10.
Anal Bioanal Chem ; 416(11): 2871-2882, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581531

RESUMEN

Antarctic seaweeds are vital components of polar marine ecosystems, playing a crucial role in nutrient cycling and supporting diverse life forms. The sulfur content in these organisms is particularly interesting due to its implication in biogeochemical processes and potential impacts on local and global environmental systems. In this study, we present a comprehensive characterization of seaweed collected in the Antarctic in terms of their total sulfur content and its distribution among different classes of species, including thiols, using various methods and high-sensitivity techniques. The data presented in this paper are unprecedented in the scientific literature. These methods allowed for the determination of total sulfur content and the distribution of sulfur compounds in different fractions, such as water-soluble and proteins, as well as the speciation of sulfur compounds in these fractions, providing valuable insights into the chemical composition of these unique marine organisms. Our results revealed that the total sulfur concentration in Antarctic seaweeds varied widely across different species, ranging from 5.5 to 56 g kg-1 dry weight. Furthermore, our investigation into the sulfur speciation revealed the presence of various sulfur compounds, including sulfate, and some thiols, which were quantified in all ten seaweed species evaluated. The concentration of these individual sulfur species also displayed considerable variability among the studied seaweeds. This study provides the first in-depth examination of total sulfur content and sulfur speciation in brown and red Antarctic seaweeds.


Asunto(s)
Algas Marinas , Algas Marinas/química , Regiones Antárticas , Peso Molecular , Ecosistema , Azufre/metabolismo , Compuestos de Azufre/metabolismo , Verduras , Compuestos de Sulfhidrilo/metabolismo
11.
Nature ; 563(7731): 412-415, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429546

RESUMEN

Algae produce massive amounts of dimethylsulfoniopropionate (DMSP), which fuel the organosulfur cycle1,2. On a global scale, several petagrams of this sulfur species are produced annually, thereby driving fundamental processes and the marine food web1. An important DMSP transformation product is dimethylsulfide, which can be either emitted to the atmosphere3,4 or oxidized to dimethylsulfoxide (DMSO) and other products5. Here we report the discovery of a structurally unusual metabolite, dimethylsulfoxonium propionate (DMSOP), that is synthesized by several DMSP-producing microalgae and marine bacteria. As with DMSP, DMSOP is a low-molecular-weight zwitterionic metabolite that carries both a positively and a negatively charged functional group. Isotope labelling studies demonstrate that DMSOP is produced from DMSP, and is readily metabolized to DMSO by marine bacteria. DMSOP was found in near nanomolar amounts in field samples and in algal culture media, and thus represents-to our knowledge-a previously undescribed biogenic source for DMSO in the marine environment. The estimated annual oceanic production of oxidized sulfur from this pathway is in the teragram range, similar to the calculated dimethylsulfide flux to the atmosphere3. This sulfoxonium metabolite is therefore a key metabolite of a previously undescribed pathway in the marine sulfur cycle. These findings highlight the importance of DMSOP in the marine organosulfur cycle.


Asunto(s)
Organismos Acuáticos/metabolismo , Bacterias/metabolismo , Microalgas/metabolismo , Compuestos de Azufre/metabolismo , Bacterias/crecimiento & desarrollo , Dimetilsulfóxido/metabolismo , Marcaje Isotópico , Microalgas/crecimiento & desarrollo , Oxidación-Reducción , Fitoplancton/citología , Fitoplancton/metabolismo , Sulfuros/metabolismo , Compuestos de Sulfonio/metabolismo , Compuestos de Azufre/química
12.
Nature ; 561(7721): 109-112, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30111837

RESUMEN

Intensive agriculture currently relies on pesticides to maximize crop yield1,2. Neonicotinoids are the most widely used insecticides globally3, but increasing evidence of negative impacts on important pollinators4-9 and other non-target organisms10 has led to legislative reassessment and created demand for the development of alternative products. Sulfoximine-based insecticides are the most likely successor11, and are either licensed for use or under consideration for licensing in several worldwide markets3, including within the European Union12, where certain neonicotinoids (imidacloprid, clothianidin and thiamethoxam) are now banned from agricultural use outside of permanent greenhouse structures. There is an urgent need to pre-emptively evaluate the potential sub-lethal effects of sulfoximine-based pesticides on pollinators11, because such effects are rarely detected by standard ecotoxicological assessments, but can have major impacts at larger ecological scales13-15. Here we show that chronic exposure to the sulfoximine-based insecticide sulfoxaflor, at dosages consistent with potential post-spray field exposure, has severe sub-lethal effects on bumblebee (Bombus terrestris) colonies. Field-based colonies that were exposed to sulfoxaflor during the early growth phase produced significantly fewer workers than unexposed controls, and ultimately produced fewer reproductive offspring. Differences between the life-history trajectories of treated and control colonies first became apparent when individuals exposed as larvae began to emerge, suggesting that direct or indirect effects on a small cohort may have cumulative long-term consequences for colony fitness. Our results caution against the use of sulfoximines as a direct replacement for neonicotinoids. To avoid continuing cycles of novel pesticide release and removal, with concomitant impacts on the environment, a broad evidence base needs to be assessed prior to the development of policy and regulation.


Asunto(s)
Abejas/efectos de los fármacos , Abejas/fisiología , Insecticidas/efectos adversos , Piridinas/efectos adversos , Compuestos de Azufre/efectos adversos , Animales , Femenino , Insecticidas/administración & dosificación , Masculino , Dinámica Poblacional , Piridinas/administración & dosificación , Reproducción/efectos de los fármacos , Compuestos de Azufre/administración & dosificación
13.
Clin Oral Investig ; 28(6): 341, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801476

RESUMEN

OBJECTIVES: The purpose of this systemic review and meta-analysis was to explore the association between halitosis and periodontitis in observational studies. MATERIALS AND METHODS: A systematic search covered PubMed, Web of Science, Embase, Scopus, and Cochrane Library until August 18, 2023. Nine observational studies (585 cases, 1591 controls) were analyzed using Stata 17, with odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses considered halitosis assessment methods. RESULTS: The review found a positive association between halitosis and periodontitis. Significant differences were observed with organoleptic test (OR = 4.05, 95% CI: 1.76, 9.30, p < 0.01) and volatile sulfur compound readings (OR = 4.52, 95% CI: 1.89, 10.83, p < 0.01). CONCLUSIONS: A positive association was observed between halitosis and periodontitis, supported by significant differences in both organoleptic and volatile sulfur compound readings. However, conclusive findings are limited by statistical heterogeneity, emphasizing the need for additional research. CLINICAL RELEVANCE: Understanding the halitosis and periodontitis association is clinically significant, informing potential interventions for improved oral health. Further research is vital to refine understanding and guide effective clinical strategies, acknowledging the limitations in current findings.


Asunto(s)
Halitosis , Periodontitis , Halitosis/etiología , Humanos , Periodontitis/complicaciones , Compuestos de Azufre/análisis , Estudios Observacionales como Asunto
14.
J Environ Manage ; 351: 119954, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38169252

RESUMEN

Bioleaching technologies have been shown to be an environmentally friendly and economically beneficial tool for extracting metals from spent lithium-ion batteries (LIBs). However, conventional bioleaching methods have exhibited low efficiency in recovering metals from spent LIBs. Therefore, relied on the sustainability principle of using waste to treat waste, this study employed pyrite (FeS2) as an energy substance with reducing properties and investigated its effects in combination with elemental sulfur (S0) or FeSO4 on metals bioleaching from spent LIBs. Results demonstrated that the bioleaching efficiency was significantly higher in the leaching system constructed with FeS2 + S0, than in the FeS2 + FeSO4 or FeS2 system. When the pulp densities of FeS2, S0 and spent LIBs were 10 g L-1, 5 g L-1 and 10 g L-1, respectively, the leaching efficiency of Li, Ni, Co and Mn all reached 100%. Mechanistic analysis reveals that in the FeS2 + S0 system, the activity and acid-producing capabilities of iron-sulfur oxidizing bacteria were enhanced, promoting the generation of Fe (Ⅱ) and reducible sulfur compounds. Simultaneously, bio-acids were shown to disrupt the structure of the LIBs, thereby increasing the contact area between Fe (Ⅱ) and sulfur compounds containing high-valence metals. This effectively promoted the reduction of high-valence metals, thereby enhancing their leaching efficiency. Overall, the FeS2 + S0 bioleaching process constructed in this study, improved the leaching efficiency of LIBs while also effectively utilizing waste, providing technical support for the comprehensive and sustainable management of solid waste.


Asunto(s)
Hierro , Litio , Sulfuros , Litio/química , Metales , Azufre , Compuestos de Azufre , Suministros de Energía Eléctrica , Reciclaje
15.
J Environ Manage ; 354: 120321, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377755

RESUMEN

Due to the malodorous effects and health risks of volatile sulfur compounds (VSCs) emitted from wastewater treatment plants (WWTPs), odor collection devices have been extensively utilized; however, their effectiveness has rarely been tested. In the present investigation, the characteristics of VSCs released in a WWTP equipped with gas collection hoods are methodically examined by gas chromatography. The obtained results indicate that the concentration of VSCs in the ambient air can be substantially reduced, and the primary treatment unit still achieves the highest concentration of VSCs. Compared to WWTPs without odor collection devices, the concentration of H2S in this WWTP is not dominant, but its sensory effects and health risks are still not negligible. Additionally, research on the emission of VSCs from sludge reveals that the total VSCs emitted from dewatering sludge reaches the highest level. Volatile organic sulfur compounds play a dominant role in the component and sensory effects of VSCs released by sludge. This study provides both data and theoretical support for analyzing the effectiveness of odor collection devices in WWTPs, as well as reducing the source of VSCs. The findings can be effectively employed to optimize these devices and improve their performance.


Asunto(s)
Compuestos Orgánicos Volátiles , Purificación del Agua , Compuestos de Azufre/análisis , Compuestos de Azufre/química , Aguas del Alcantarillado , Odorantes/análisis , Medición de Riesgo , Compuestos Orgánicos Volátiles/análisis
16.
Water Sci Technol ; 89(3): 811-822, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38358504

RESUMEN

Advanced oxidation technologies based on hydroxyl radical (•OH) and sulfate radical (SO4-•) are two common types of advanced oxidation technologies, but there are not many reports on the application of advanced oxidation methods in actual wastewater pretreatment. This article compares the pre-treatment performance of Fe2+/H2O2 and Fe2+/Persulfate systems in actual pharmaceutical wastewater, and combines EEM, GC-MS, and toxicity testing results to explore the differences in TOC, COD, and NH3-N removal rates, optimal catalyst dosage, applicable pH range, toxicity of effluent after reaction, and pollutant structure between the two systems. The results indicate that the Fe2+/H2O2 system has a higher pollutant removal rate (TOC: 71.9%, COD: 66.9%, NH3-N: 34.1%), but also requires a higher catalyst (Fe2+) concentration (6.0 g/L), and its effluent exhibits characteristic peaks of aromatic proteins. The Fe2+/Persulfate system has a wider pH range (pH ≈ 3-7) and is more advantageous in treating wastewater containing more cyclic organic compounds, but the effluent contains some sulfur-containing compounds. In addition, toxicity tests have shown that the toxicity reduction effect of the Fe2+/Persulfate system is stronger than that of the Fe2+/H2O2 system.


Asunto(s)
Contaminantes Ambientales , Peróxido de Hidrógeno , Aguas Residuales , Cromatografía de Gases y Espectrometría de Masas , Compuestos de Azufre , Preparaciones Farmacéuticas
17.
Appl Environ Microbiol ; 89(2): e0197022, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36688659

RESUMEN

Biodesulfurization poses as an ideal replacement to the high cost hydrodesulfurization of the recalcitrant heterocyclic sulfur compounds, such as dibenzothiophene (DBT) and its derivatives. The increasingly stringent limits on fuel sulfur content intensify the need for improved desulfurization biocatalysts, without sacrificing the calorific value of the fuel. Selective sulfur removal in a wide range of biodesulfurization strains, as well as in the model biocatalyst Rhodococcus qingshengii IGTS8, occurs via the 4S metabolic pathway that involves the dszABC operon, which encodes enzymes that catalyze the generation of 2-hydroxybiphenyl and sulfite from DBT. Here, using a homologous recombination process, we generate two recombinant IGTS8 biocatalysts, harboring native or rearranged, nonrepressible desulfurization operons, within the native dsz locus. The alleviation of sulfate-, methionine-, and cysteine-mediated dsz repression is achieved through the exchange of the native promoter Pdsz, with the nonrepressible Pkap1 promoter. The Dsz-mediated desulfurization from DBT was monitored at three growth phases, through HPLC analysis of end product levels. Notably, an 86-fold enhancement of desulfurization activity was documented in the presence of selected repressive sulfur sources for the recombinant biocatalyst harboring a combination of three targeted genetic modifications, namely, a dsz operon rearrangement, a native promoter exchange, and a dszA-dszB overlap removal. In addition, transcript level comparison highlighted the diverse effects of our genetic engineering approaches on dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. IMPORTANCE Rhodococcus is perhaps the most promising biodesulfurization genus and is able to withstand the harsh process conditions of a biphasic biodesulfurization process. In the present work, we constructed an advanced biocatalyst harboring a combination of three genetic modifications, namely, an operon rearrangement, a promoter exchange, and a gene overlap removal. Our homologous recombination approach generated stable biocatalysts that do not require antibiotic addition, while harboring nonrepressible desulfurization operons that present very high biodesulfurization activities and are produced in simple and low-cost media. In addition, transcript level quantification validated the effects of our genetic engineering approaches on recombinant strains' dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. Based on these findings, the present work can pave the way for further strain and process optimization studies that could eventually lead to an economically viable biodesulfurization process.


Asunto(s)
Rhodococcus , Compuestos de Azufre , Compuestos de Azufre/metabolismo , Azufre/metabolismo , Rhodococcus/metabolismo , ARN Mensajero/metabolismo
18.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37279910

RESUMEN

Yeasts undergo intensive metabolic changes during the early stages of fermentation. Previous reports suggest the early production of hydrogen sulfide (H2S) is associated with the release of a range of volatile sulfur compounds (VSCs), as well as the production of varietal thiol compounds 3-sulfanylhexan-1-ol (3SH) and 3-sulfanylhexyl acetate (3SHA) from six-carbon precursors, including (E)-hex-2-enal. In this study, we investigated the early H2S potential, VSCs/thiol output, and precursor metabolism of 11 commonly used laboratory and commercial Saccharomyces cerevisiae strains in chemically defined synthetic grape medium (SGM) within 12 h after inoculation. Considerable variability in early H2S potential was observed among the strains surveyed. Chemical profiling suggested that early H2S production correlates with the production of dimethyl disulfide, 2-mercaptoethanol, and diethyl sulfide, but not with 3SH or 3SHA. All strains were capable of metabolizing (E)-hex-2-enal, while the F15 strain showed significantly higher residue at 12 h. Early production of 3SH, but not 3SHA, can be detected in the presence of exogenous (E)-hex-2-enal and H2S. Therefore, the natural variability of early yeast H2S production contributes to the early output of selected VSCs, but the threshold of which is likely not high enough to contribute substantially to free varietal thiols in SGM.


Asunto(s)
Sulfuro de Hidrógeno , Vitis , Vino , Saccharomyces cerevisiae/metabolismo , Sulfuro de Hidrógeno/metabolismo , Compuestos de Sulfhidrilo/análisis , Compuestos de Sulfhidrilo/metabolismo , Fermentación , Compuestos de Azufre/química , Compuestos de Azufre/metabolismo , Vitis/metabolismo , Vino/análisis
19.
Biotechnol Bioeng ; 120(10): 3092-3098, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37218382

RESUMEN

Microbial desulfurization has been extensively studied as a promising alternative to the widely applied chemical desulfurization process. Sulfur removal from petroleum and its products becomes essential, as the environmental regulations become increasingly stringent. Rhodococcus qingshengii IGTS8 has gained ground as a naturally occurring model biocatalyst, due to its superior specific activity for desulfurization of dibenzothiophene (DBT). Recalcitrant organic sulfur compounds-DBT included-are preferentially removed by selective carbon-sulfur bond cleavage to avoid a reduction in the calorific value of the fuel. The process, however, still has not reached economically sustainable levels, as certain limitations have been identified. One of those bottlenecks is the repression of catalytic activity caused by ubiquitous sulfur sources such as inorganic sulfate, methionine, or cysteine. Herein, we report an optimized culture medium for wild-type stain IGTS8 that completely alleviates the sulfate-mediated repression of biodesulfurization activity without modification of the natural biocatalyst. Medium C not only promotes growth in the presence of several sulfur sources, including DBT, but also enhances biodesulfurization of resting cells grown in the presence of up to 5 mM sulfate. Based on the above, the present work can be considered as a step towards the development of a more viable commercial biodesulfurization process.


Asunto(s)
Rhodococcus , Sulfatos , Compuestos de Azufre , Azufre , Rhodococcus/genética , Fenotipo , Biodegradación Ambiental
20.
Arch Microbiol ; 205(10): 336, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737927

RESUMEN

Biodesulfurization is a promising alternative for removing sulfur molecules from the polycyclic aromatic sulfur compounds (PASC) found in petroleum. PASC consists of recalcitrant molecules that can degrade fuel quality and cause a range of health and environmental problems. Therefore, identifying bacteria capable of degrading PASC is essential for handling these recalcitrant molecules. Microorganisms in environments exposed to petroleum derivatives have evolved specific enzymatic machinery, such as the 4S pathway associated with the dszABC genes, which are directly linked to sulfur removal and utilization as nutrient sources in the biodesulfurization process. In this study, bacteria were isolated from a bioreactor containing landfarm soil that had been periodically fed with petroleum for 12 years, using a medium containing dibenzothiophene (DBT), 4.6-dimethylbenzothiophene, 4-methylbenzothiophene, or benzothiophene. This study aimed to identify microorganisms capable of degrading PASC in such environments. Among the 20 colonies isolated from an inoculum containing DBT as the sole sulfur source, only four isolates exhibited amplification of the dszA gene in the dszABC operon. The production of 2-hydroxybiphenyl (HPB) and a decrease in DBT were detected during the growth curve and resting cell assays. The isolates were identified using 16S rRNA sequencing belonging to the genera Stutzerimonas and Pseudomonas. These isolates demonstrated significant potential for biodesulfurization and/or degradation of PASC. All isolates possessed the potential to be utilized in the biotechnological processes of biodesulfurization and degradation of recalcitrant PASC molecules.


Asunto(s)
Petróleo , Compuestos Policíclicos , Compuestos de Azufre , ARN Ribosómico 16S/genética , Azufre , Reactores Biológicos , Bacterias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA