RESUMEN
Myotonic Dystrophy Type 1 (DM1) is an autosomal dominant multisystemic disorder for which cardiac features, including conduction delays and arrhythmias, are the second leading cause of disease mortality. DM1 is caused by expanded CTG repeats in the 3' untranslated region of the DMPK gene. Transcription of the expanded DMPK allele produces mRNAs containing long tracts of CUG repeats, which sequester the Muscleblind-Like family of RNA binding proteins, leading to their loss-of-function and the dysregulation of alternative splicing. A well-characterized mis-regulated splicing event in the DM1 heart is the increased inclusion of SCN5A exon 6A rather than the mutually exclusive exon 6B that normally predominates in adult heart. As previous work showed that forced inclusion of Scn5a exon 6A in mice recapitulates cardiac DM1 phenotypes, we tested whether rescue of Scn5a mis-splicing would improve the cardiac phenotypes in a DM1 heart mouse model. We generated mice lacking Scn5a exon 6A to force the expression of the adult SCN5A isoform including exon 6B and crossed these mice to our previously established CUG960 DM1 heart mouse model. We showed that correction Scn5a mis-splicing does not improve the DM1 heart conduction delays and structural changes induced by CUG repeat RNA expression. Interestingly, we found that in addition to Scn5a mis-splicing, Scn5a expression is reduced in heart tissues of CUG960 mice and DM1-affected individuals. These data indicate that Scn5a mis-splicing is not the sole driver of DM1 heart deficits and suggest a potential role for reduced Scn5a expression in DM1 cardiac disease.
Asunto(s)
Empalme Alternativo , Modelos Animales de Enfermedad , Exones , Distrofia Miotónica , Canal de Sodio Activado por Voltaje NAV1.5 , Animales , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Ratones , Distrofia Miotónica/genética , Distrofia Miotónica/patología , Distrofia Miotónica/metabolismo , Empalme Alternativo/genética , Exones/genética , Humanos , Miocardio/metabolismo , Miocardio/patología , Proteína Quinasa de Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/metabolismo , Corazón/fisiopatología , Empalme del ARNRESUMEN
Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease1, screening for cardiotoxicity2 and decisions regarding the clinical management of patients with a critical illness3. However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training4,5. Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.
Asunto(s)
Aprendizaje Profundo , Cardiopatías/diagnóstico , Cardiopatías/fisiopatología , Corazón/fisiología , Corazón/fisiopatología , Modelos Cardiovasculares , Grabación en Video , Fibrilación Atrial , Conjuntos de Datos como Asunto , Ecocardiografía , Insuficiencia Cardíaca/fisiopatología , Hospitales , Humanos , Estudios Prospectivos , Reproducibilidad de los Resultados , Función Ventricular Izquierda/fisiologíaRESUMEN
The heart holds the monumental yet monotonous task of maintaining circulation. Although cardiac function is critical to other organs and to life itself, mammals are not equipped with significant natural capacity to replace heart muscle that has been lost by injury. This deficiency plays a role in leaving millions worldwide vulnerable to heart failure each year. By contrast, certain other vertebrate species such as zebrafish are strikingly good at heart regeneration. A cellular and molecular understanding of endogenous regenerative mechanisms and advances in methodology to transplant cells together project a future in which cardiac muscle regeneration can be therapeutically stimulated in injured human hearts. This review focuses on what has been discovered recently about cardiac regenerative capacity and how natural mechanisms of heart regeneration in model systems are stimulated and maintained.
Asunto(s)
Corazón/fisiopatología , Regeneración , Animales , Diferenciación Celular , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/fisiología , Medicina Regenerativa , Células Madre/fisiologíaRESUMEN
Prompt coronary catheterization and revascularization have markedly improved the outcomes of myocardial infarction, but have also resulted in a growing number of surviving patients with permanent structural damage of the heart, which frequently leads to heart failure. There is an unmet clinical need for treatments for this condition1, particularly given the inability of cardiomyocytes to replicate and thereby regenerate the lost contractile tissue2. Here we show that expression of human microRNA-199a in infarcted pig hearts can stimulate cardiac repair. One month after myocardial infarction and delivery of this microRNA through an adeno-associated viral vector, treated animals showed marked improvements in both global and regional contractility, increased muscle mass and reduced scar size. These functional and morphological findings correlated with cardiomyocyte de-differentiation and proliferation. However, subsequent persistent and uncontrolled expression of the microRNA resulted in sudden arrhythmic death of most of the treated pigs. Such events were concurrent with myocardial infiltration of proliferating cells displaying a poorly differentiated myoblastic phenotype. These results show that achieving cardiac repair through the stimulation of endogenous cardiomyocyte proliferation is attainable in large mammals, however dosage of this therapy needs to be tightly controlled.
Asunto(s)
Muerte Súbita Cardíaca/etiología , MicroARNs/efectos adversos , MicroARNs/genética , MicroARNs/uso terapéutico , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Sus scrofa/genética , Animales , Proliferación Celular/genética , Corazón/fisiología , Corazón/fisiopatología , Masculino , MicroARNs/administración & dosificación , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Regeneración/genéticaRESUMEN
Mutations in cardiac myosin-binding protein C (cMyBP-C) or titin may respectively lead to hypertrophic (HCM) or dilated (DCM) cardiomyopathies. The mechanisms leading to these phenotypes remain unclear because of the challenge of translating cellular abnormalities to whole-heart and system function. We developed and validated a novel computer model of calcium-contraction coupling incorporating the role of cMyBP-C and titin based on the key assumptions: 1) tension in the thick filament promotes cross-bridge attachment mechanochemically, 2) with increasing titin tension, more myosin heads are unlocked for attachment, and 3) cMyBP-C suppresses cross-bridge attachment. Simulated stationary calcium-tension curves, isotonic and isometric contractions, and quick release agreed with experimental data. The model predicted that a loss of cMyBP-C function decreases the steepness of the calcium-tension curve, and that more compliant titin decreases the level of passive and active tension and its dependency on sarcomere length. Integrating this cellular model in the CircAdapt model of the human heart and circulation showed that a loss of cMyBP-C function resulted in HCM-like hemodynamics with higher left ventricular end-diastolic pressures and smaller volumes. More compliant titin led to higher diastolic pressures and ventricular dilation, suggesting DCM-like hemodynamics. The novel model of calcium-contraction coupling incorporates the role of cMyBP-C and titin. Its coupling to whole-heart mechanics translates changes in cellular calcium-contraction coupling to changes in cardiac pump and circulatory function and identifies potential mechanisms by which cMyBP-C and titin abnormalities may develop into HCM and DCM phenotypes. This modeling platform may help identify distinct mechanisms underlying clinical phenotypes in cardiac diseases.
Asunto(s)
Calcio , Proteínas Portadoras , Conectina , Contracción Miocárdica , Humanos , Conectina/metabolismo , Conectina/genética , Proteínas Portadoras/metabolismo , Calcio/metabolismo , Sarcómeros/metabolismo , Modelos Cardiovasculares , Simulación por Computador , Animales , Corazón/fisiopatología , Corazón/fisiologíaRESUMEN
Improving energy provision in the failing heart by augmenting the creatine kinase (CK) system is a desirable therapeutic target. However, over-expression of the creatine transporter (CrT-OE) has shown that very high creatine levels result in cardiac hypertrophy and dysfunction. We hypothesise this is due to insufficient endogenous CK activity to maintain thermodynamically favourable metabolite ratios. If correct, then double transgenic mice (dTg) overexpressing both CrT and the muscle isoform of CK (CKM-OE) would rescue the adverse phenotype. In Study 1, overexpressing lines were crossed and cardiac function assessed by invasive haemodynamics and echocardiography. This demonstrated that CKM-OE was safe, but too few hearts had creatine in the toxic range. In Study 2, a novel CrT-OE line was generated with higher, homogeneous, creatine levels and phenotyped as before. Myocardial creatine was 4-fold higher in CrT-OE and dTg hearts compared to wildtype and was associated with hypertrophy and contractile dysfunction. The inability of dTg hearts to rescue this phenotype was attributed to downregulation of CK activity, as occurs in the failing heart. Nevertheless, combining both studies in a linear regression analysis suggests a modest positive effect of CKM over a range of creatine concentrations. In conclusion, we confirm that moderate elevation of creatine is well tolerated, but very high levels are detrimental. Correlation analysis lends support to the theory that this may be a consequence of limited CK activity. Future studies should focus on preventing CKM downregulation to unlock the potential synergy of augmenting both creatine and CK in the heart.
Asunto(s)
Creatina Quinasa , Creatina , Metabolismo Energético , Ratones Transgénicos , Miocardio , Animales , Creatina/metabolismo , Creatina Quinasa/metabolismo , Ratones , Miocardio/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Corazón/fisiopatología , Corazón/fisiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , EcocardiografíaRESUMEN
Metabolic syndrome (MetS) increases the risk of coronary artery disease, but effects of this condition on the working myocardium remain to be fully elucidated. In the present study we evaluated the consequences of diet-induced metabolic disorders on cardiac function and myocyte performance using female mice fed with Western diet. Animals maintained on regular chow were used as control (Ctrl). Mice on the Western diet (WesD) had increased body weight, impaired glucose metabolism, preserved diastolic and systolic function, but increased left ventricular (LV) mass, with respect to Ctrl animals. Moreover, WesD mice had reduced heart rate variability (HRV), indicative of altered cardiac sympathovagal balance. Myocytes from WesD mice had increased volume, enhanced cell mechanics, and faster kinetics of contraction and relaxation. Moreover, levels of cAMP and protein kinase A (PKA) activity were enhanced in WesD myocytes, and interventions aimed at stabilizing cAMP/PKA abrogated functional differences between Ctrl and WesD cells. Interestingly, in vivo ß-adrenergic receptor (ß-AR) blockade normalized the mechanical properties of WesD myocytes and revealed defective cardiac function in WesD mice, with respect to Ctrl. Collectively, these results indicate that metabolic disorders induced by Western diet enhance the cAMP/PKA signaling pathway, a possible adaptation required to maintain cardiac function.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Síndrome Metabólico , Miocitos Cardíacos , Transducción de Señal , Animales , Síndrome Metabólico/metabolismo , Síndrome Metabólico/etiología , Síndrome Metabólico/patología , Síndrome Metabólico/fisiopatología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Miocitos Cardíacos/metabolismo , Femenino , Ratones , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Dieta Occidental/efectos adversos , Receptores Adrenérgicos beta/metabolismo , Corazón/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Ratones Endogámicos C57BL , Contracción MiocárdicaRESUMEN
Neonatal mouse hearts can regenerate post-injury, unlike adult hearts that form fibrotic scars. The mechanism of thyroid hormone signaling in cardiac regeneration warrants further study. We found that triiodothyronine impairs cardiomyocyte proliferation and heart regeneration in neonatal mice after apical resection. Single-cell RNA-Sequencing on cardiac CD45-positive leukocytes revealed a pro-inflammatory phenotype in monocytes/macrophages after triiodothyronine treatment. Furthermore, we observed that cardiomyocyte proliferation was inhibited by medium from triiodothyronine-treated macrophages, while triiodothyronine itself had no direct effect on the cardiomyocytes in vitro. Our study unveils a novel role of triiodothyronine in mediating the inflammatory response that hinders heart regeneration.
Asunto(s)
Proliferación Celular , Macrófagos , Monocitos , Miocitos Cardíacos , Regeneración , Triyodotironina , Animales , Regeneración/efectos de los fármacos , Triyodotironina/farmacología , Monocitos/metabolismo , Monocitos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones , Inflamación/metabolismo , Inflamación/patología , Animales Recién Nacidos , Corazón/efectos de los fármacos , Corazón/fisiopatología , Ratones Endogámicos C57BLRESUMEN
Conditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV. Four experimental groups were compared: (1) no ischaemia, no EV; (2) ischaemia, no EV; (3) ischaemia with M0-macrophage-dervied EV; (4) ischaemia with M1-macrophage-derived EV. Post-ischaemic ventricular and metabolic recovery were evaluated. During reperfusion, ventricular function was decreased in untreated ischaemic and M1-EV hearts, but not in M0-EV hearts, compared to non-ischaemic hearts (p < 0.05). In parallel with the reduced functional recovery in M1-EV versus M0-EV ischaemic hearts, rates of glycolysis from exogenous glucose and oxidative metabolism tended to be lower, while rates of glycogenolysis and lactate release tended to be higher. EV from M0- and M1-macrophages differentially affect post-ischaemic cardiac recovery, potentially by altering glucose metabolism in a rat model of DCD. Targeted EV therapy may be a useful approach for modulating cardiac energy metabolism and optimizing graft quality in the setting of DCD.
Asunto(s)
Vesículas Extracelulares , Trasplante de Corazón , Macrófagos , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Ratas , Macrófagos/metabolismo , Masculino , Trasplante de Corazón/métodos , Glucosa/metabolismo , Miocardio/metabolismo , Modelos Animales de Enfermedad , Recuperación de la Función , Glucólisis , Corazón/fisiopatología , Corazón/fisiologíaRESUMEN
Mild hyperbaric oxygen therapy (mHBOT) is an adjuvant therapy used in conditions where tissue oxygenation is reduced and is implemented using pressures less than 1.5 ATA and 100% O2 (instead of the classical HBOT at 1.9-3 ATA) which results in cheaper, easier to implement, and equally effective. mHBOT is offered for wellness and beauty and as an anti-aging strategy, in spite of the absence of studies on the cardiovascular system. Consequently, we investigated the impact of mHBOT on the cardiovascular system. Mechanical and energetic parameters of isolated heart submitted to ischemia/reperfusion injury and arterial contractile response from mHBOT-exposed rats were evaluated. In the heart, mHBOT increased pre-ischemic velocity of contraction and ischemic end-diastolic pressure and developed pressure and contractile economy during reperfusion. mHBOT decreased infarct size and increased the plasma nitrite levels. In the artery, mHBOT increased acetylcholine sensitivity. mHBOT protects the heart during ischemia/reperfusion and affects vascular relaxation.
Asunto(s)
Oxigenoterapia Hiperbárica , Daño por Reperfusión Miocárdica , Ratas Wistar , Vasodilatación , Animales , Oxigenoterapia Hiperbárica/métodos , Ratas , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Corazón/fisiología , Corazón/fisiopatología , Contracción MiocárdicaRESUMEN
Post-traumatic stress disorder (PTSD) is a complex psychological disorder provoked by distressing experiences, and it remains without highly effective intervention strategies. The exploration of PTSD's underlying mechanisms is crucial for advancing diagnostic and therapeutic approaches. Current studies primarily explore PTSD through the lens of the central nervous system, investigating concrete molecular alterations in the cerebral area and neural circuit irregularities. However, the body's response to external stressors, particularly the changes in cardiovascular function, is often pronounced, evidenced by notable cardiac dysfunction. Consequently, examining PTSD with a focus on cardiac function is vital for the early prevention and targeted management of the disorder. This review undertakes a comprehensive literature analysis to detail the alterations in brain and heart structures and functions associated with PTSD. It also synthesizes potential mechanisms of heart-brain axis interactions relevant to the development of PTSD. Ultimately, by considering cardiac function, this review proposes novel perspectives for PTSD's prophylaxis and therapy.
Asunto(s)
Encéfalo , Corazón , Trastornos por Estrés Postraumático , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/metabolismo , Trastornos por Estrés Postraumático/terapia , Humanos , Corazón/fisiopatología , Encéfalo/metabolismo , Encéfalo/fisiopatología , AnimalesRESUMEN
Heart growth in the pregnant patient helps maintain cardiovascular function while supporting the growing fetus. However, in some cases, the cardiovascular demand of pregnancy can trigger life-threatening conditions, including hypertensive disorders of pregnancy and peripartum cardiomyopathy. The mechanisms that control heart growth throughout pregnancy are unclear, and treating these diseases remains elusive. We previously developed a computational model that accounts for hormonal and hemodynamic interactions throughout pregnancy and demonstrated its ability to capture realistic cardiac growth in normal rat pregnancy. In this study, we evaluated whether this model could capture heart growth beyond normal pregnancy. After further validation of our normal pregnancy predictions, we tested our model predictions of three rat studies of hypertensive pregnancies. We next simulated the postpartum period and examined the impact of lactation on cardiac growth in rats. We demonstrate that our multiscale model can capture cardiac growth associated with new-onset hypertension during pregnancy and lactation status in the postpartum period. We conclude by elaborating on the potential clinical utility of our model in the future.NEW & NOTEWORTHY Our multiscale model predicts appropriate heart growth beyond normal pregnancy, including elevated heart weights in rats with induced hypertension during pregnancy and in lactating mice and decreased heart weight in nonlactating mice. Our model captures distinct mechanisms that result in similar organ-level growth, highlighting its potential to distinguish healthy from diseased pregnancy-induced growth.
Asunto(s)
Corazón , Hipertensión Inducida en el Embarazo , Modelos Cardiovasculares , Periodo Posparto , Animales , Femenino , Embarazo , Corazón/fisiopatología , Corazón/crecimiento & desarrollo , Hipertensión Inducida en el Embarazo/fisiopatología , Hipertensión Inducida en el Embarazo/metabolismo , Ratas , Simulación por Computador , Lactancia , Modelos Animales de Enfermedad , Presión Sanguínea , Ratas Sprague-DawleyRESUMEN
The Ras-related GTP-binding protein D (RRAGD) gene plays a crucial role in cellular processes. Recently, RRAGD variants found in patients have been implicated in a novel disorder with kidney tubulopathy and dilated cardiomyopathy. Currently, the consequences of RRAGD variants at the organismal level are unknown. Therefore, this study investigated the impact of RRAGD variants on cardiac function using a zebrafish embryo model. Furthermore, the potential usage of rapamycin, an mTOR inhibitor, as a therapy was assessed in this model. Zebrafish embryos were injected with RRAGD p.S76L and p.P119R cRNA and the resulting heart phenotypes were studied. Our findings reveal that overexpression of RRAGD mutants resulted in decreased ventricular fractional shortening, ejection fraction, and pericardial swelling. In RRAGD S76L-injected embryos, lower survival and heartbeat were observed, whereas survival was unaffected in RRAGD P119R embryos. These observations were reversible following therapy with the mTOR inhibitor rapamycin. Moreover, no effects on electrolyte homeostasis were observed. Together, these findings indicate a crucial role of RRAGD in cardiac function. In the future, the molecular mechanisms by which RRAGD variants result in cardiac dysfunction and if the effects of rapamycin are specific for RRAGD-dependent cardiomyopathy should be studied in clinical studies.NEW & NOTEWORTHY The resultant heart-associated phenotypes in the zebrafish embryos of this study serve as a valuable experimental model for this rare cardiomyopathy. Moreover, the potential therapeutic property of rapamycin in cardiac dysfunctions was highlighted, making this study a pivotal step toward prospective clinical applications.
Asunto(s)
Fenotipo , Sirolimus , Proteínas de Pez Cebra , Pez Cebra , Animales , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Sirolimus/farmacología , Modelos Animales de Enfermedad , Inhibidores mTOR/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Mutación , Corazón/fisiopatología , Corazón/efectos de los fármacos , Corazón/embriología , Volumen Sistólico/efectos de los fármacosRESUMEN
Chondroitin sulfate proteoglycans (CSPGs) inhibit sympathetic reinnervation in rodent hearts post-myocardial infarction (MI), causing regional hypoinnervation that is associated with supersensitivity of ß-adrenergic receptors and increased arrhythmia susceptibility. To investigate the role of CSPGs and hypoinnervation in the heart of larger mammals, we used a rabbit model of reperfused MI and tested electrophysiological responses to sympathetic nerve stimulation (SNS). Innervated hearts from MI and sham rabbits were optically mapped using voltage and Ca2+-sensitive dyes. SNS was performed with electrical stimulation of the spinal cord, and ß-adrenergic responsiveness was tested using isoproterenol. Sympathetic nerve density and CSPG expression were evaluated using immunohistochemistry. CSPGs were robustly expressed in the infarct region of all MI hearts, and the presence of CSPGs was associated with reduced sympathetic nerve density in the infarct versus remote region. Action potential duration (APD) dispersion and tendency for induction of ventricular tachycardia/fibrillation (VT/VF) were increased with SNS in MI but not sham hearts. SNS decreased APD at 80% repolarization (APD80) in MI but not sham hearts, whereas isoproterenol decreased APD80 in both groups. Isoproterenol also shortened Ca2+ transient duration at 80% repolarization in both groups but to a greater extent in MI hearts. Our data suggest that sympathetic remodeling post-MI is similar between rodents and rabbits, with CSPGs associated with sympathetic hypoinnervation. Despite a reduction in sympathetic nerve density, the infarct region of MI hearts remained responsive to both physiological SNS and isoproterenol, potentially through preserved or elevated ß-adrenergic responsiveness, which may underlie increased APD dispersion and tendency for VT/VF.NEW & NOTEWORTHY Here, we show that CSPGs are present in the infarcts of rabbit hearts with reperfused MI, where they are associated with reduced sympathetic nerve density. Despite hypoinnervation, sympathetic responsiveness is maintained or enhanced in MI rabbit hearts, which also demonstrate increased APD dispersion and tendency for arrhythmias following sympathetic modulation. Together, this study indicates that the mechanisms of sympathetic remodeling post-MI are similar between rodents and rabbits, with hypoinnervation likely associated with enhanced ß-adrenergic sensitivity.
Asunto(s)
Potenciales de Acción , Modelos Animales de Enfermedad , Infarto del Miocardio , Sistema Nervioso Simpático , Animales , Conejos , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Sistema Nervioso Simpático/fisiopatología , Sistema Nervioso Simpático/metabolismo , Masculino , Isoproterenol/farmacología , Agonistas Adrenérgicos beta/farmacología , Corazón/inervación , Corazón/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Taquicardia Ventricular/fisiopatología , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/etiologíaRESUMEN
Chronic psychological stress is a recognized, yet understudied risk factor for heart disease, with potential sex-specific effects. We investigated whether chronic stress triggers sex-dependent cardiac dysfunction in isolated Wistar rat hearts subjected to ischemia-reperfusion injury. The experimental cohort underwent 1 h of daily restraint stress for 4 wk versus matched controls, followed by euthanasia (sodium pentobarbital) and heart excision for ex vivo perfusion. Blood analysis revealed sex-specific alterations in stress hormones and inflammatory markers. When compared with controls, chronic restraint stress (CRS) males displayed decreased plasma brain-derived neurotrophic factor (BDNF) levels (P < 0.05), whereas CRS females exhibited elevated plasma adrenocorticotropic hormone (ACTH) (P < 0.01) and reduced corticosterone (P < 0.001) alongside lower serum estradiol (P < 0.001) and estradiol/progesterone ratio (P < 0.01). Of note, CRS females showed increased serum cardiac troponin T (P < 0.05) and tumor necrosis factor-α (TNF-α) (P < 0.01) with suppressed interleukin (IL)-1α, IL-1ß, IL-6, and IL-10 levels (P < 0.05) when compared with controls. Ex vivo Langendorff perfusions revealed that CRS female hearts displayed impaired postischemic functional recovery for baseline stroke volume (SV, P < 0.01), work performance (P < 0.05), aortic output (AO, P < 0.05), coronary flow (CF, P < 0.01), and overall cardiac output (CO, P < 0.01) when compared with matched controls and CRS males (P < 0.05). Our findings reveal intriguing sex-specific responses at both the systemic and functional levels in stressed hearts. Here, the dysregulation of stress hormones, proinflammatory state, and potential underlying cardiomyopathy in females following the stress protocol renders them more prone to damage following myocardial ischemia. This study emphasizes the importance of incorporating sex as a biological variable in cardiac research focusing on stress-related cardiomyopathy.NEW & NOTEWORTHY Although chronic psychological stress is a risk factor for cardiovascular diseases, the underlying mechanisms remain poorly understood. This study revealed that chronic restraint stress resulted in systemic changes (dysregulated stress hormones, proinflammatory state) and potential cardiomyopathy in females versus controls and their male counterparts. The stressed female hearts also displayed reduced functional recovery following ex vivo ischemia-reperfusion. This highlights the importance of incorporating sex as a biological variable in cardiac research.
Asunto(s)
Daño por Reperfusión Miocárdica , Ratas Wistar , Estrés Psicológico , Animales , Masculino , Femenino , Estrés Psicológico/fisiopatología , Estrés Psicológico/sangre , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Factores Sexuales , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Función Ventricular Izquierda , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/sangre , Restricción Física , Citocinas/metabolismo , Citocinas/sangre , Corticosterona/sangre , Modelos Animales de Enfermedad , Hormona Adrenocorticotrópica/sangre , Corazón/fisiopatología , Corazón/inervación , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/sangre , Estradiol/sangre , Miocardio/metabolismoRESUMEN
The ability of zebrafish to heal their heart after injury makes them an attractive model for investigating the mechanisms governing the regenerative process. In this study, we show that the gene cellular communication network factor 2a (ccn2a), previously known as ctgfa, is induced in endocardial cells in the injured tissue and regulates CM proliferation and repopulation of the damaged tissue. We find that, whereas in wild-type animals, CMs track along the newly formed blood vessels that revascularize the injured tissue, in ccn2a mutants CM proliferation and repopulation are disrupted, despite apparently unaffected revascularization. In addition, we find that ccn2a overexpression enhances CM proliferation and improves the resolution of transient collagen deposition. Through loss- and gain-of-function as well as pharmacological approaches, we provide evidence that Ccn2a is necessary for and promotes heart regeneration by enhancing the expression of pro-regenerative extracellular matrix genes, and by inhibiting the chemokine receptor gene cxcr3.1 through a mechanism involving Tgfß/pSmad3 signaling. Thus, Ccn2a positively modulates the innate regenerative response of the adult zebrafish heart.
Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Corazón/fisiopatología , Regeneración , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Núcleo Celular/metabolismo , Proliferación Celular , Factor de Crecimiento del Tejido Conjuntivo/genética , Vasos Coronarios/metabolismo , Endocardio/patología , Endocardio/fisiopatología , Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica , Mutación/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación , Transporte de Proteínas , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas de Pez Cebra/genéticaRESUMEN
BACKGROUND: A compromised cardiac autonomic function has been found in subjects with insulin resistance related disorders such as obesity, impaired glucose tolerance (IGT) and type 2 diabetes and confers an increased risk of adverse cardiovascular outcomes. Growing evidence indicate that 1 h plasma glucose levels (1hPG) during an oral glucose tolerance test (OGTT) ≥ 155 mg/dl identify amongst subjects with normal glucose tolerance (NGT) a new category of prediabetes (NGT 1 h-high), harboring an increased risk of cardiovascular organ damage. In this study we explored the relationship between 1 h post-load hyperglycemia and cardiac autonomic dysfunction. METHODS: Presence of cardiac autonomic neuropathy (CAN) defined by cardiovascular autonomic reflex tests (CARTs) and heart rate variability (HRV), assessed by 24-h electrocardiography were evaluated in 88 non-diabetic subjects subdivided on the basis of OGTT data in: NGT with 1 h PG < 155 mg/dl (NGT 1 h-low), NGT 1 h-high and IGT. RESULTS: As compared to subjects with NGT 1 h-low, those with NGT 1 h-high and IGT were more likely to have CARTs defined CAN and reduced values of the 24 h time domain HVR parameters including standard deviation of all normal heart cycles (SDNN), standard deviation of the average RR interval for each 5 min segment (SDANN), square root of the differences between adjacent RR intervals (RMSSD), percentage of beats with a consecutive RR interval difference > 50 ms (PNN50) and Triangular index. Univariate analyses showed that 1hPG, but not fasting and 2hPG, was inversely associated with all the explored HVR parameters and positively with CARTs determined presence of CAN. In multivariate regression analysis models including several confounders we found that 1hPG was an independent contributor of HRV and presence of CAN. CONCLUSION: Subjects with 1hPG ≥ 155 mg/dl have an impaired cardiac autonomic function.
Asunto(s)
Sistema Nervioso Autónomo , Glucemia , Prueba de Tolerancia a la Glucosa , Frecuencia Cardíaca , Hiperglucemia , Humanos , Estudios Transversales , Masculino , Femenino , Persona de Mediana Edad , Sistema Nervioso Autónomo/fisiopatología , Glucemia/metabolismo , Hiperglucemia/fisiopatología , Hiperglucemia/sangre , Hiperglucemia/diagnóstico , Adulto , Factores de Tiempo , Biomarcadores/sangre , Enfermedades del Sistema Nervioso Autónomo/fisiopatología , Enfermedades del Sistema Nervioso Autónomo/diagnóstico , Enfermedades del Sistema Nervioso Autónomo/sangre , Corazón/inervación , Corazón/fisiopatología , Electrocardiografía Ambulatoria , Estado Prediabético/fisiopatología , Estado Prediabético/diagnóstico , Estado Prediabético/sangre , Intolerancia a la Glucosa/diagnóstico , Intolerancia a la Glucosa/fisiopatología , Intolerancia a la Glucosa/sangre , Factores de RiesgoRESUMEN
BACKGROUND AND PURPOSE: The transition to adult services, and subsequent glucocorticoid management, is critical in adults with Duchenne muscular dystrophy. This study aims (1) to describe treatment, functional abilities, respiratory and cardiac status during transition to adulthood and adult stages; and (2) to explore the association between glucocorticoid treatment after loss of ambulation (LOA) and late-stage clinical outcomes. METHODS: This was a retrospective single-centre study on individuals with Duchenne muscular dystrophy (≥16 years old) between 1986 and 2022. Logistic regression, Cox proportional hazards models and survival analyses were conducted utilizing data from clinical records. RESULTS: In all, 112 individuals were included. Mean age was 23.4 ± 5.2 years and mean follow-up was 18.5 ± 5.5 years. At last assessment, 47.2% were on glucocorticoids; the mean dose of prednisone was 0.38 ± 0.13 mg/kg/day and of deflazacort 0.43 ± 0.16 mg/kg/day. At age 16 years, motor function limitations included using a manual wheelchair (89.7%), standing (87.9%), transferring from a wheelchair (86.2%) and turning in bed (53.4%); 77.5% had a peak cough flow <270 L/min, 53.3% a forced vital capacity percentage of predicted <50% and 40.3% a left ventricular ejection fraction <50%. Glucocorticoids after LOA reduced the risk and delayed the time to difficulties balancing in the wheelchair, loss of hand to mouth function, forced vital capacity percentage of predicted <30% and forced vital capacity <1 L and were associated with lower frequency of left ventricular ejection fraction <50%, without differences between prednisone and deflazacort. Glucocorticoid dose did not differ by functional, respiratory or cardiac status. CONCLUSION: Glucocorticoids after LOA preserve late-stage functional abilities, respiratory and cardiac function. It is suggested using functional abilities, respiratory and cardiac status at transition stages for adult services planning.
Asunto(s)
Glucocorticoides , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/fisiopatología , Masculino , Adulto , Glucocorticoides/uso terapéutico , Adulto Joven , Estudios Retrospectivos , Adolescente , Femenino , Pregnenodionas/uso terapéutico , Prednisona/uso terapéutico , Limitación de la Movilidad , Estudios de Cohortes , Corazón/efectos de los fármacos , Corazón/fisiopatologíaRESUMEN
INTRODUCTION: Fat embolism (FE) encompasses conditions in which fatty substance becomes embedded in a tissue/organ. Fat emboli most commonly affect the lungs in a trauma setting. This can lead to both significant pathology locally and systemically including changes in structure, inflammatory response, activation of the renin-angiotensin system, and subsequent hypoxia. In fact, changes in skin, brain, lungs, and kidneys have been noted in FE syndrome. Because there is an extensive record of pathology reports on this condition without evidence of direct cardiac involvement, as well as our studies showing apparent complete recovery after the acute embolism, we hypothesized that structural changes similar to the lung and at the same time course would not be observed in the heart. METHODS: We used a rat model of FE previously described by our group where we have documented significant lung pathology. In this study, we analyzed both pulmonary and cardiac structure, histology, and gene expression at 48 h and 10 wks post fat injection to mimic FE. RESULTS: Despite severe inflammatory evidence and structural changes to the lung and vasculature up to 10 wks after FE, we found no significant alterations to cardiovascular morphometry including lumen patency ratio, adventitia/media ratio, fibrosis content, and heart chamber/wall dimensions in stained histological sections. Additionally, genetic markers of cardiac pathological hypertrophy were not significantly elevated 48 h or 10 wks after fat treatment. Oil Red O staining showed increased fat droplet content within lung and aorta tissue, but not in the myocardium. CONCLUSIONS: Our study suggests that, in contrast to the lungs, the heart is more resistant to the inflammatory and remodeling responses that result from FE, possibly due to the organ-specific differences in fat retention.