Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cereb Cortex ; 31(2): 1334-1346, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33063095

RESUMEN

The time course of changes in functional cortical activity during early development has been extensively studied in the rodent visual system. A key period in this process is the time of eye opening, which marks the onset of patterned visual input and active vision. However, vision differs from other systems in that it receives limited patterned sensory input before eye opening, and it remains unclear how findings from vision relate to other systems. Here, we focus on the development of cortical network activity in the olfactory system-which is crucial for survival at birth-by recording field potential and spiking activity from piriform cortex of unanesthetized rat pups from birth (P0) to P21. Our results demonstrate that odors evoke stable 10-15 Hz oscillations in piriform cortex from birth to P15, after which cortical responses undergo rapid changes. This transition is coincident with the emergence of gamma oscillations and fast sniffing behavior and preceded by an increase in spontaneous activity. Neonatal network oscillations and their developmental dynamics exhibit striking similarities with those previously observed in the visual, auditory, and somatosensory systems, providing insight into the network-level mechanisms underlying the development of sensory cortex in general and olfactory processing in particular.


Asunto(s)
Ritmo Gamma/fisiología , Red Nerviosa/crecimiento & desarrollo , Odorantes , Corteza Piriforme/crecimiento & desarrollo , Olfato/fisiología , Animales , Animales Recién Nacidos , Femenino , Masculino , Embarazo , Ratas , Ratas Long-Evans , Mecánica Respiratoria/fisiología
2.
Cereb Cortex ; 30(5): 3015-3029, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31838488

RESUMEN

Establishing a balance between excitation and inhibition is critical for brain functions. However, how inhibitory interneurons (INs) generated in the ventral telencephalon integrate with the excitatory neurons generated in the dorsal telencephalon remains elusive. Previous studies showed that INs migrating tangentially to enter the neocortex (NCx), remain in the migratory stream for days before invading the cortical plate during late corticogenesis. Here we show that in developing mouse cortices, INs in the piriform cortex (PCx; the major olfactory cortex) distribute differently from those in the NCx. We provide evidence that during development INs invade and mature earlier in PCx than in NCx, likely owing to the lack of CXCR4 expression in INs from PCx compared to those in NCx. We analyzed IN distribution patterns in Lhx2 cKO mice, where projection neurons in the lateral NCx are re-fated to generate an ectopic PCx (ePCx). The PCx-specific IN distribution patterns found in ePCx suggest that properties of PCx projection neurons regulate IN distribution. Collectively, our results show that the timing of IN invasion in the developing PCx fundamentally differs from what is known in the NCx. Further, our results suggest that projection neurons instruct the PCx-specific pattern of IN distribution.


Asunto(s)
Interneuronas/fisiología , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Corteza Piriforme/enzimología , Corteza Piriforme/crecimiento & desarrollo , Factores de Edad , Animales , Ratones , Ratones Noqueados , Ratones Transgénicos , Neocórtex/citología , Neurogénesis/fisiología , Corteza Piriforme/citología
3.
Learn Mem ; 27(1): 20-32, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31843979

RESUMEN

Studies have shown that neonate rodents exhibit high ability to learn a preference for novel odors associated with thermo-tactile stimuli that mimics maternal care. Artificial odors paired with vigorous strokes in rat pups younger than 10 postnatal days (P), but not older, rapidly induce an orientation-approximation behavior toward the conditioned odor in a two-choice preference test. The olfactory bulb (OB) and the anterior olfactory cortex (aPC), both modulated by norepinephrine (NE), have been identified as part of a neural circuit supporting this transitory olfactory learning. One possible explanation at the neuronal level for why the odor-stroke pairing induces consistent orientation-approximation behavior in P10, is the coincident activation of prior existent neurons in the aPC mediating this behavior. Specifically, odor-stroke conditioning in P10 pups, promoting orientation-approximation behavior in the former but not in the latter. In order to test this hypothesis, we performed in vitro patch-clamp recordings of the aPC pyramidal neurons from rat pups from two age groups (P5-P8 and P14-P17) and built computational models for the OB-aPC neural circuit based on this physiological data. We conditioned the P5-P8 OB-aPC artificial circuit to an odor associated with NE activation (representing the process of maternal odor learning during mother-infant interactions inside the nest) and then evaluated the response of the OB-aPC circuit to the presentation of the conditioned odor. The results show that the number of responsive aPC neurons to the presentation of the conditioned odor in the P14-P17 OB-aPC circuit was lower than in the P5-P8 circuit, suggesting that at P14-P17, the reduced number of responsive neurons to the conditioned (maternal) odor might not be coincident with the responsive neurons for a second conditioned odor.


Asunto(s)
Aprendizaje/fisiología , Conducta Materna , Bulbo Olfatorio/fisiología , Corteza Piriforme/fisiología , Células Piramidales/fisiología , Olfato/fisiología , Animales , Conducta Animal , Condicionamiento Clásico , Femenino , Masculino , Potenciales de la Membrana , Modelos Neurológicos , Norepinefrina/fisiología , Odorantes , Bulbo Olfatorio/crecimiento & desarrollo , Percepción Olfatoria , Corteza Piriforme/crecimiento & desarrollo
4.
Learn Mem ; 27(12): 493-502, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33199474

RESUMEN

During the first ten postnatal days (P), infant rodents can learn olfactory preferences for novel odors if they are paired with thermo-tactile stimuli that mimic components of maternal care. After P10, the thermo-tactile pairing becomes ineffective for conditioning. The current explanation for this change in associative learning is the alteration in the norepinephrine (NE) inputs from the locus coeruleus (LC) to the olfactory bulb (OB) and the anterior piriform cortex (aPC). By combining patch-clamp electrophysiology and computational simulations, we showed in a recent work that a transitory high responsiveness of the OB-aPC circuit to the maternal odor is an alternative mechanism that could also explain early olfactory preference learning and its cessation after P10. That result relied solely on the maturational properties of the aPC pyramidal cells. However, the GABAergic system undergoes important changes during the same period. To address the importance of the maturation of the GABAergic system for early olfactory learning, we incorporated data from the GABA inputs, obtained from in vitro patch-clamp experiment in the aPC of rat pups aged P5-P7 reported here, to the model proposed in our previous publication. In the younger than P10 OB-aPC circuit with GABA synaptic input, the number of responsive aPC pyramidal cells to the conditioned maternal odor was amplified in 30% compared to the circuit without GABAergic input. When compared with the circuit with other younger than P10 OB-aPC circuit with adult GABAergic input profile, this amplification was 88%. Together, our results suggest that during the olfactory preference learning in younger than P10, the GABAergic synaptic input presumably acts by depolarizing the aPC pyramidal neurons in such a way that it leads to the amplification of the pyramidal neurons response to the conditioned maternal odor. Furthermore, our results suggest that during this developmental period, the aPC pyramidal cells themselves seem to resolve the apparent lack of GABAergic synaptic inhibition by a strong firing adaptation in response to increased depolarizing inputs.


Asunto(s)
Aprendizaje/fisiología , Odorantes , Vías Olfatorias/crecimiento & desarrollo , Vías Olfatorias/fisiología , Percepción Olfatoria/fisiología , Corteza Piriforme/crecimiento & desarrollo , Corteza Piriforme/fisiología , Ácido gamma-Aminobutírico/fisiología , Envejecimiento/psicología , Animales , Animales Recién Nacidos , Femenino , Masculino , Modelos Neurológicos , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/fisiología , Corteza Olfatoria , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Ratas , Sinapsis/fisiología
5.
Cereb Cortex ; 29(1): 1-16, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29136113

RESUMEN

Piriform cortex (PC) is a 3-layer paleocortex receiving primary afferent input from the olfactory bulb. The past decade has seen significant progress in understanding the synaptic, cellular and functional organization of PC, but PC embryogenesis continues to be enigmatic. Here, using birthdating strategies and clonal analyses, we probed the early development and laminar specificity of neurogenesis/gliogenesis as it relates to the organization of the PC. Our data demonstrate a temporal sequence of laminar-specific neurogenesis following the canonical "inside-out" pattern, with the notable exception of PC Layer II which exhibited an inverse "outside-in" temporal neurogenic pattern. Of interest, we found no evidence of a neurogenic gradient along the anterior to posterior axis, although the timing of neuronal migration and laminar development was delayed rostrally by approximately 24 h. To begin probing if lineage affected cell fate in the PC, we labeled PC neuroblasts using a multicolor technique and analyzed their laminar organization. Our results suggested that PC progenitors were phenotypically committed to reach specific layers early in the development. Collectively, these studies shed new light on the determinants of the laminar specificity of neuronal/glial organization in PC and the likely role of subpopulations of committed progenitors in regulating PC embryogenesis.


Asunto(s)
Linaje de la Célula/fisiología , Movimiento Celular/fisiología , Neurogénesis/fisiología , Neuroglía/fisiología , Corteza Piriforme/citología , Corteza Piriforme/crecimiento & desarrollo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Embarazo
6.
Cell Mol Neurobiol ; 34(8): 1183-97, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25118614

RESUMEN

Macrophage migration inhibitory factor (MIF) functions as a pleiotropic protein, participating in a vast array of cellular and biological processes. Abnormal expression of MIF has been implicated in many neurological diseases, including Parkinson's disease, epilepsy, Alzheimer's Disease, stroke, and neuropathic pain. However, the expression patterns of mif transcript and MIF protein from the early postnatal period through adulthood in the mouse brain are still poorly understood. We therefore investigated the temporal and spatial expression of MIF in the mouse neocortex during postnatal development in detail and partially in posterior piriform cortices (pPC). As determined by quantitative real-time PCR (qPCR), mif transcript gradually increased during development, with the highest level noted at postnatal day 30 (P30) followed by a sharp decline at P75. In contrast, Western blotting results showed that MIF increased constantly from P7 to P75. The highest level of MIF was at P75, while the lowest level of MIF was at P7. Immunofluorescence histochemistry revealed that MIF-immunoreactive (ir) cells were within the entire depth of the developed neocortex, and MIF was heterogeneously distributed among cortical cells, especially at P7, P14, P30, and P75; MIF was abundant in the pyramidal layer within pPC. Double immunostaining showed that all the mature neurons were MIF-ir and all the intensely stained MIF-ir cells were parvalbumin positive (Pv +) at adult. Moreover, it was demonstrated that MIF protein localized in the perikaryon, processes, presynaptic structures, and the nucleus in neurons. Taken together, the developmentally regulated expression and the subcellular localization of MIF should form a platform for an analysis of MIF neurodevelopmental biology and MIF-related nerve diseases.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos/metabolismo , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Corteza Piriforme/crecimiento & desarrollo , Corteza Piriforme/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Factores Inhibidores de la Migración de Macrófagos/genética , Ratones , Neocórtex/citología , Neuronas/metabolismo , Corteza Piriforme/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Transfección
7.
Brain Struct Funct ; 224(4): 1647-1658, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30923887

RESUMEN

The protein doublecortin is mainly expressed in migrating neuroblasts and immature neurons. The X-linked gene MECP2, associated to several neurodevelopmental disorders such as Rett syndrome, encodes the protein methyl-CpG-binding protein 2 (MeCP2), a regulatory protein that has been implicated in neuronal maturation and refinement of olfactory circuits. Here, we explored doublecortin immunoreactivity in the brain of young adult female Mecp2-heterozygous and male Mecp2-null mice and their wild-type littermates. The distribution of doublecortin-immunoreactive somata in neurogenic brain regions was consistent with previous reports in rodents, and no qualitative differences were found between genotypes or sexes. Quantitatively, we found a significant increase in doublecortin cell density in the piriform cortex of Mecp2-null males as compared to WT littermates. A similar increase was seen in a newly identified population of doublecortin cells in the olfactory tubercle. In these olfactory structures, however, the percentage of doublecortin immature neurons that also expressed NeuN was not different between genotypes. By contrast, we found no significant differences between genotypes in doublecortin immunoreactivity in the olfactory bulbs. Nonetheless, in the periglomerular layer of Mecp2-null males, we observed a specific decrease of immature neurons co-expressing doublecortin and NeuN. Overall, no differences were evident between Mecp2-heterozygous and WT females. In addition, no differences could be detected between genotypes in the density of doublecortin-immunoreactive cells in the hippocampus or striatum of either males or females. Our results suggest that MeCP2 is involved in neuronal maturation in a region-dependent manner.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Neuronas/fisiología , Neuropéptidos/fisiología , Tubérculo Olfatorio/crecimiento & desarrollo , Tubérculo Olfatorio/metabolismo , Corteza Piriforme/crecimiento & desarrollo , Corteza Piriforme/metabolismo , Animales , Recuento de Células , Proteínas de Dominio Doblecortina , Femenino , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Vías Olfatorias/citología , Vías Olfatorias/crecimiento & desarrollo , Vías Olfatorias/metabolismo , Tubérculo Olfatorio/citología , Corteza Piriforme/citología
8.
Psychopharmacology (Berl) ; 236(2): 657-670, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30415279

RESUMEN

RATIONALE: Animal studies have shown that early postnatal propofol administration is involved in neurobehavioral alterations in adults. However, the underlying mechanism is not clear. METHODS: We used c-Fos immunohistochemistry to identify activated neurons in brain regions of neonatal mice under propofol exposure and performed behavioral tests to observe the long-term consequences. RESULTS: Exposure to propofol (30g or 60 mg/kg) on P7 produced significant c-Fos expression in the deep layers of the piriform cortex on P8. Double immunofluorescence of c-Fos with interneuron markers in the piriform cortex revealed that c-Fos was specifically induced in calbindin (CB)-positive interneurons. Repeated propofol exposure from P7 to P9 induced behavioral deficits in adult mice, such as olfactory function deficit in a buried food test, decreased sociability in a three-chambered choice task, and impaired recognitive ability of learning and memory in novel object recognition tests. However, locomotor activity in the open-field test was not generally affected. Propofol treatment also significantly decreased the number of CB-positive interneurons in the piriform cortex of mice on P21 and adulthood. CONCLUSIONS: These results suggest that CB-positive interneurons in the piriform cortex are vulnerable to propofol exposure during the neonatal period, and these neurons are involved in the damage effects of propofol on behavior changes. These data provide a new target of propofol neurotoxicity and may elucidate the mechanism of neurobehavioral deficits in adulthood.


Asunto(s)
Conducta Animal/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Interneuronas/efectos de los fármacos , Corteza Piriforme/efectos de los fármacos , Propofol/farmacología , Reconocimiento en Psicología/efectos de los fármacos , Animales , Animales Recién Nacidos , Aprendizaje/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad , Corteza Piriforme/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Conducta Social
9.
Int J Dev Neurosci ; 71: 1-9, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30055229

RESUMEN

The morphological and functional development of inhibitory circuit in the anterior piriform cortex (aPC) during the first three postnatal weeks may be crucial for the development of odor preference learning in infant rodents. As first step toward testing this hypothesis, we examined the normal development of GABAergic synaptic transmission in the aPC of rat pups during the postnatal days (P) 5-8 and 14-17. Whole cell patch-clamp recordings of layer 2/3 (L2/3) aPC pyramidal cells revealed a significant increase in spontaneous (sIPSC) and miniature (mIPSC) inhibitory postsynaptic current frequencies and a decrease in mIPSC rise and decay-time constant at P14-P17. Moreover, as the development of neocortical inhibitory circuit can be driven by sensory experience, we recorded sIPSC and mIPSC onto L2/3 aPC pyramidal cells from unilateral naris-occluded animals. Early partial olfactory deprivation caused by naris occlusion do not affected the course of age-dependent increase IPSC frequency onto L2/3 aPC pyramidal cell. However, this age-dependent increase of sIPSC and mIPSC frequencies were lower on aPC pyramidal cells ipsilateral to the occlusion side. In addition, the age-dependent increase in sIPSC frequency and amplitude were more pronounced on aPC pyramidal cells contralateral to the occlusion. While mIPSC kinetics were not affected by age or olfactory deprivation, at P5-P8, the sIPSC decay-time constant on aPC pyramidal cells of both hemispheres of naris-occluded animals were significantly higher when compared to sham. These results demonstrated that the GABAergic synaptic transmission on the aPC changed during postnatal development by increasing inhibitory inputs on L2/3 pyramidal cells, with increment in frequency of both sIPSC and mIPSC and faster kinetics of mIPSC. Our data suggested that the maturation of GABAergic synaptic transmission was little affected by early partial olfactory deprivation. These results could contribute to unravel the mechanisms underlying the development of odor processing and olfactory preference learning.


Asunto(s)
Potenciales Postsinápticos Inhibidores/fisiología , Corteza Piriforme/citología , Corteza Piriforme/crecimiento & desarrollo , Transmisión Sináptica/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Bicuculina/análogos & derivados , Bicuculina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Ácido Quinurénico/farmacología , Masculino , Técnicas de Placa-Clamp , Corteza Piriforme/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/efectos de la radiación , Ratas , Ratas Wistar , Privación Sensorial , Bloqueadores de los Canales de Sodio/farmacología , Transmisión Sináptica/efectos de los fármacos , Tetrodotoxina/farmacología
10.
Neurosci Lett ; 600: 121-6, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26067404

RESUMEN

Exposure to urethane anesthesia reportedly produces selective neuronal cell loss in the piriform cortex of young brains; however, resulting functional deficits have not been investigated. The present study found abnormalities in piriform cortex activity of isolated brains in vitro that were harvested from guinea pigs exposed to urethane anesthesia at 14 days of age. Current source density (CSD) analysis and voltage-sensitive dye (VSD) imaging experiments were conducted 48h after urethane injection. We applied paired-pulse stimulation to the lateral olfactory tract (LOT) and assessed short-interval intra-cortical inhibition in the piriform cortex. CSD analysis revealed that a current sink in layer Ib remained active in response to successive stimuli, with an inter-stimulus interval of 30-60 ms, which was typically strongly inhibited. VSD imaging demonstrated stronger and extended neural activity in the urethane-treated piriform cortex, even in response to a second stimulus delivered in short succession. We identified gamma-aminobutyric acid (GABA) ergic neurons in the piriform cortex of sham and urethane-treated animals and found a decrease in GABA-immunoreactive cell density in the urethane group. These results suggest that urethane exposure induces loss of GABAergic interneurons and a subsequent reduction in paired-pulse inhibition in the immature piriform cortex.


Asunto(s)
Anestésicos Generales/efectos adversos , Neuronas/efectos de los fármacos , Corteza Piriforme/efectos de los fármacos , Uretano/efectos adversos , Animales , Recuento de Células , Estimulación Eléctrica , Cobayas , Neuronas/patología , Neuronas/fisiología , Bulbo Olfatorio/fisiopatología , Corteza Piriforme/crecimiento & desarrollo , Corteza Piriforme/patología , Corteza Piriforme/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA