RESUMEN
The means by which the physicochemical properties of different cellular components together determine bacterial cell shape remain poorly understood. Here, we investigate a programmed cell-shape change during Bacillus subtilis sporulation, when a rod-shaped vegetative cell is transformed to an ovoid spore. Asymmetric cell division generates a bigger mother cell and a smaller, hemispherical forespore. The septum traps the forespore chromosome, which is translocated to the forespore by SpoIIIE. Simultaneously, forespore size increases as it is reshaped into an ovoid. Using genetics, timelapse microscopy, cryo-electron tomography, and mathematical modeling, we demonstrate that forespore growth relies on membrane synthesis and SpoIIIE-mediated chromosome translocation, but not on peptidoglycan or protein synthesis. Our data suggest that the hydrated nucleoid swells and inflates the forespore, displacing ribosomes to the cell periphery, stretching septal peptidoglycan, and reshaping the forespore. Our results illustrate how simple biophysical interactions between core cellular components contribute to cellular morphology.
Asunto(s)
División Celular Asimétrica/fisiología , Bacillus subtilis/fisiología , Cromosomas Bacterianos/metabolismo , Esporas Bacterianas/metabolismo , Translocación Genética , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Peptidoglicano/biosíntesis , Peptidoglicano/genética , Biosíntesis de Proteínas/fisiología , Esporas Bacterianas/genética , Esporas Bacterianas/ultraestructuraRESUMEN
When DNA is unwound during replication, it becomes overtwisted and forms positive supercoils in front of the translocating DNA polymerase. Unless removed or dissipated, this superhelical tension can impede replication elongation. Topoisomerases, including gyrase and topoisomerase IV in bacteria, are required to relax positive supercoils ahead of DNA polymerase but may not be sufficient for replication. Here, we find that GapR, a chromosome structuring protein in Caulobacter crescentus, is required to complete DNA replication. GapR associates in vivo with positively supercoiled chromosomal DNA, and our biochemical and structural studies demonstrate that GapR forms a dimer-of-dimers that fully encircles overtwisted DNA. Further, we show that GapR stimulates gyrase and topo IV to relax positive supercoils, thereby enabling DNA replication. Analogous chromosome structuring proteins that locate to the overtwisted DNA in front of replication forks may be present in other organisms, similarly helping to recruit and stimulate topoisomerases during DNA replication.
Asunto(s)
Cromosomas Bacterianos/fisiología , ADN Bacteriano/química , ADN Superhelicoidal/metabolismo , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiología , Estructuras Cromosómicas/fisiología , Cromosomas Bacterianos/metabolismo , ADN/fisiología , Replicación del ADN/fisiología , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/fisiología , ADN Bacteriano/fisiología , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , CinéticaRESUMEN
As in eukaryotes, bacterial genomes are not randomly folded. Bacterial genetic information is generally carried on a circular chromosome with a single origin of replication from which two replication forks proceed bidirectionally toward the opposite terminus region. Here, we investigate the higher-order architecture of the Escherichia coli genome, showing its partition into two structurally distinct entities by a complex and intertwined network of contacts: the replication terminus (ter) region and the rest of the chromosome. Outside of ter, the condensin MukBEF and the ubiquitous nucleoid-associated protein (NAP) HU promote DNA contacts in the megabase range. Within ter, the MatP protein prevents MukBEF activity, and contacts are restricted to â¼280 kb, creating a domain with distinct structural properties. We also show how other NAPs contribute to nucleoid organization, such as H-NS, which restricts short-range interactions. Combined, these results reveal the contributions of major evolutionarily conserved proteins in a bacterial chromosome organization.
Asunto(s)
Adenosina Trifosfatasas , Cromosomas Bacterianos , Proteínas de Unión al ADN , Escherichia coli K12 , Complejos Multiproteicos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli K12/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Estructura Cuaternaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismoRESUMEN
Structural maintenance of chromosome (SMC) complexes fold DNA by loop extrusion to support chromosome segregation and genome maintenance. Wadjet systems (JetABCD/MksBEFG/EptABCD) are derivative SMC complexes with roles in bacterial immunity against selfish DNA. Here, we show that JetABCD restricts circular plasmids with an upper size limit of about 100 kb, whereas a linear plasmid evades restriction. Purified JetABCD complexes cleave circular DNA molecules, regardless of the DNA helical topology; cleavage is DNA sequence nonspecific and depends on the SMC ATPase. A cryo-EM structure reveals a distinct JetABC dimer-of-dimers geometry, with the two SMC dimers facing in opposite direction-rather than the same as observed with MukBEF. We hypothesize that JetABCD is a DNA-shape-specific endonuclease and propose the "total extrusion model" for DNA cleavage exclusively when extrusion of an entire plasmid has been completed by a JetABCD complex. Total extrusion cannot be achieved on the larger chromosome, explaining how self-DNA may evade processing.
Asunto(s)
Adenosina Trifosfatasas , División del ADN , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Plásmidos/genética , Cromosomas/metabolismo , ADN/genética , Proteínas de Ciclo Celular/genética , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismoRESUMEN
The physical nature of the bacterial cytoplasm is poorly understood even though it determines cytoplasmic dynamics and hence cellular physiology and behavior. Through single-particle tracking of protein filaments, plasmids, storage granules, and foreign particles of different sizes, we find that the bacterial cytoplasm displays properties that are characteristic of glass-forming liquids and changes from liquid-like to solid-like in a component size-dependent fashion. As a result, the motion of cytoplasmic components becomes disproportionally constrained with increasing size. Remarkably, cellular metabolism fluidizes the cytoplasm, allowing larger components to escape their local environment and explore larger regions of the cytoplasm. Consequently, cytoplasmic fluidity and dynamics dramatically change as cells shift between metabolically active and dormant states in response to fluctuating environments. Our findings provide insight into bacterial dormancy and have broad implications to our understanding of bacterial physiology, as the glassy behavior of the cytoplasm impacts all intracellular processes involving large components.
Asunto(s)
Caulobacter crescentus/citología , Caulobacter crescentus/metabolismo , Escherichia coli/citología , Fenómenos Biofísicos , Caulobacter crescentus/química , Cromosomas Bacterianos/metabolismo , Citoplasma/química , Escherichia coli/química , Escherichia coli/metabolismo , Plásmidos/metabolismoRESUMEN
Bacillus subtilis structural maintenance of chromosomes (SMC) complexes are topologically loaded at centromeric sites adjacent to the replication origin by the partitioning protein ParB. These ring-shaped ATPases then translocate down the left and right chromosome arms while tethering them together. Here, we show that the site-specific recombinase XerD, which resolves chromosome dimers, is required to unload SMC tethers when they reach the terminus. We identify XerD-specific binding sites in the terminus region and show that they dictate the site of unloading in a manner that depends on XerD but not its catalytic residue, its partner protein XerC, or the recombination site dif. Finally, we provide evidence that ParB and XerD homologs perform similar functions in Staphylococcus aureus. Thus, two broadly conserved factors that act at the origin and terminus have second functions in loading and unloading SMC complexes that travel between them.
Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/metabolismo , Integrasas/metabolismo , Staphylococcus aureus/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , ADN Primasa/genética , ADN Primasa/metabolismo , Integrasas/genética , Staphylococcus aureus/genéticaRESUMEN
In the mid-1950s, Arthur Kornberg elucidated the enzymatic synthesis of DNA by DNA polymerase, for which he was recognized with the 1959 Nobel Prize in Physiology or Medicine. He then identified many of the proteins that cooperate with DNA polymerase to replicate duplex DNA of small bacteriophages. However, one major unanswered problem was understanding the mechanism and control of the initiation of chromosome replication in bacteria. In a seminal paper in 1981, Fuller, Kaguni, and Kornberg reported the development of a cell-free enzyme system that could replicate DNA that was dependent on the bacterial origin of DNA replication, oriC. This advance opened the door to a flurry of discoveries and important papers that elucidated the process and control of initiation of chromosome replication in bacteria.
Asunto(s)
Cromosomas Bacterianos , Replicación del ADN , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Historia del Siglo XX , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Bacterias/genética , Bacterias/metabolismo , ADN Bacteriano/metabolismo , ADN Bacteriano/genéticaRESUMEN
The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.
Asunto(s)
Escherichia coli , Plásmidos , Plásmidos/metabolismo , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Segregación Cromosómica , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismoRESUMEN
The tripartite ParABS system mediates chromosome segregation in the majority of bacterial species. Typically, DNA-bound ParB proteins around the parS sites condense the chromosomal DNA into a higher-order multimeric nucleoprotein complex for the ParA-driven partition. Despite extensive studies, the molecular mechanism underlying the dynamic assembly of the partition complex remains unclear. Herein, we demonstrate that Bacillus subtilis ParB (Spo0J), through the multimerization of its N-terminal domain, forms phase-separated condensates along a single DNA molecule, leading to the concurrent organization of DNA into a compact structure. Specifically, in addition to the co-condensation of ParB dimers with DNA, the engagement of well-established ParB condensates with DNA allows for the compression of adjacent DNA and the looping of distant DNA. Notably, the presence of CTP promotes the formation of condensates by a low amount of ParB at parS sites, triggering two-step DNA condensation. Remarkably, parS-centered ParB-DNA co-condensate constitutes a robust nucleoprotein architecture capable of withstanding disruptive forces of tens of piconewton. Overall, our findings unveil diverse modes of DNA compaction enabled by phase-separated ParB and offer new insights into the dynamic assembly and maintenance of the bacterial partition complex.
Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , ADN Bacteriano , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/química , Multimerización de Proteína , Segregación Cromosómica , Cromosomas Bacterianos/química , Cromosomas Bacterianos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Conformación de Ácido NucleicoRESUMEN
We report that the Escherichia coli chromosome includes novel GC-rich genomic structural elements that trigger formation of post-replication gaps upon replisome passage. The two nearly perfect 222 bp repeats, designated Replication Risk Sequences or RRS, are each 650 kb from the terminus sequence dif and flank the Ter macrodomain. RRS sequence and positioning is highly conserved in enterobacteria. At least one RRS appears to be essential unless a 200 kb region encompassing one of them is amplified. The RRS contain a G-quadruplex on the lagging strand which impedes DNA polymerase extension producing lagging strand ssDNA gaps, $ \le$2000 bp long, upon replisome passage. Deletion of both RRS elements has substantial effects on global genome structure and topology. We hypothesize that RRS elements serve as topological relief valves during chromosome replication and segregation. There have been no screens for genomic sequences that trigger transient gap formation. Functional analogs of RRS could be widespread, possibly including some enigmatic G-quadruplexes in eukaryotes.
Asunto(s)
Replicación del ADN , Escherichia coli , G-Cuádruplex , Genoma Bacteriano , Replicación del ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Secuencias Repetitivas de Ácidos Nucleicos/genéticaRESUMEN
The ParABS system, composed of ParA (an ATPase), ParB (a DNA binding protein), and parS (a centromere-like DNA), regulates bacterial chromosome partition. The ParB-parS partition complex interacts with the nucleoid-bound ParA to form the nucleoid-adaptor complex (NAC). In Helicobacter pylori, ParA and ParB homologs are encoded as HpSoj and HpSpo0J (HpParA and HpParB), respectively. We determined the crystal structures of the ATP hydrolysis deficient mutant, HpParAD41A, and the HpParAD41A-DNA complex. We assayed the CTPase activity of HpParB and identified two potential DNA binding modes of HpParB regulated by CTP, one is the specific DNA binding by the DNA binding domain and the other is the non-specific DNA binding through the C-terminal domain under the regulation of CTP. We observed an interaction between HpParAD41A and the N-terminus fragment of HpParB (residue 1-10, HpParBN10) and determined the crystal structure of the ternary complex, HpParAD41A-DNA-HpParBN10 complex which mimics the NAC formation. HpParBN10 binds near the HpParAD41A dimer interface and is clamped by flexible loops, L23 and L34, through a specific cation-π interaction between Arg9 of HpParBN10 and Phe52 of HpParAD41A. We propose a molecular mechanism model of the ParABS system providing insight into chromosome partition in bacteria.
Asunto(s)
Proteínas Bacterianas , Cromosomas Bacterianos , Proteínas de Unión al ADN , Helicobacter pylori , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/química , Cromosomas Bacterianos/genética , Modelos Moleculares , Cristalografía por Rayos X , Unión Proteica , ADN Bacteriano/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Segregación Cromosómica , Adenosina Trifosfato/metabolismo , Sitios de UniónRESUMEN
The accurate distribution of genetic material is crucial for all organisms. In most bacteria, chromosome segregation is achieved by the ParABS system, in which the ParB-bound parS sequence is actively partitioned by ParA. While this system is highly conserved, its adaptation in organisms with unique lifestyles and its regulation between developmental stages remain largely unexplored. Bdellovibrio bacteriovorus is a predatory bacterium proliferating through polyploid replication and non-binary division inside other bacteria. Our study reveals the subcellular dynamics and multi-layered regulation of the ParABS system, coupled to the cell cycle of B. bacteriovorus. We found that ParA:ParB ratios fluctuate between predation stages, their balance being critical for cell cycle progression. Moreover, the parS chromosomal context in non-replicative cells, combined with ParB depletion at cell division, critically contribute to the unique cell cycle-dependent organization of the centromere in this bacterium, highlighting new levels of complexity in chromosome segregation and cell cycle control.
Asunto(s)
Proteínas Bacterianas , Segregación Cromosómica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , División Celular/genética , Segregación Cromosómica/genética , Centrómero/genética , Centrómero/metabolismo , Bacterias/genética , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismoRESUMEN
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Asunto(s)
Proteínas Bacterianas , Cromatina , ADN Bacteriano , ARN Polimerasas Dirigidas por ADN , Regulación Bacteriana de la Expresión Génica , Transcripción Genética , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cromatina/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ADN Superhelicoidal/metabolismo , ADN Superhelicoidal/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Bacterias/metabolismo , Bacterias/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/genéticaRESUMEN
In prokaryotes, DNA can be segregated by three different types of cytoskeletal filaments. The best-understood type of partitioning (par) locus encodes an actin homolog called ParM, which forms dynamically unstable filaments that push plasmids apart in a process reminiscent of mitosis. However, the most common type of par locus, which is present on many plasmids and most bacterial chromosomes, encodes a P loop ATPase (ParA) that distributes plasmids equidistant from one another on the bacterial nucleoid. A third type of par locus encodes a tubulin homolog (TubZ) that forms cytoskeletal filaments that move rapidly with treadmill dynamics.
Asunto(s)
Bacterias/metabolismo , ADN Bacteriano/metabolismo , Actinas/metabolismo , Bacterias/citología , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/metabolismo , Plásmidos/metabolismo , Tubulina (Proteína)/metabolismoRESUMEN
In most bacteria, chromosome segregation is driven by the ParABS system where the CTPase protein ParB loads at the parS site to trigger the formation of a large partition complex. Here, we present in vitro studies of the partition complex for Bacillus subtilis ParB, using single-molecule fluorescence microscopy and AFM imaging to show that transient ParB-ParB bridges are essential for forming DNA condensates. Molecular Dynamics simulations confirm that condensation occurs abruptly at a critical concentration of ParB and show that multimerization is a prerequisite for forming the partition complex. Magnetic tweezer force spectroscopy on mutant ParB proteins demonstrates that CTP hydrolysis at the N-terminal domain is essential for DNA condensation. Finally, we show that transcribing RNA polymerases can steadily traverse the ParB-DNA partition complex. These findings uncover how ParB forms a stable yet dynamic partition complex for chromosome segregation that induces DNA condensation and segregation while enabling replication and transcription.
Asunto(s)
Cromosomas Bacterianos , Bacterias/genética , Proteínas Bacterianas/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismoRESUMEN
Chromosomal maintenance is vital for the survival of bacteria. In Caulobacter crescentus, chromosome replication initiates at ori and segregation is delayed until the nearby centromere-like region parS is replicated. Our understanding of how this sequence of events is regulated remains limited. The segregation of parS has been shown to involve multiple steps including polar release from anchoring protein PopZ, slow movement and fast ParA-dependent movement to the opposite cell pole. In this study, we demonstrate that ParA's competing attractions from PopZ and from DNA are critical for segregation of parS. Interfering with this balance of attractions-by expressing a variant ParA-R195E unable to bind DNA and thus favoring interactions exclusively between ParA-PopZ-results in cell death. Our data revealed that ParA-R195E's sole interactions with PopZ obstruct PopZ's ability to release the polar anchoring of parS, resulting in cells with multiple parS loci fixed at one cell pole. We show that the inability to separate and segregate multiple parS loci from the pole is specifically dependent on the interaction between ParA and PopZ. Collectively, our results reveal that the initial steps in chromosome segregation are highly regulated.
Asunto(s)
Caulobacter crescentus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Centrómero/genética , Centrómero/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , ADN/metabolismoRESUMEN
Dynamic protein gradients are exploited for the spatial organization and segregation of replicated chromosomes. However, mechanisms of protein gradient formation and how that spatially organizes chromosomes remain poorly understood. Here, we have determined the kinetic principles of subcellular localizations of ParA2 ATPase, an essential spatial regulator of chromosome 2 segregation in the multichromosome bacterium, Vibrio cholerae. We found that ParA2 gradients self-organize in V. cholerae cells into dynamic pole-to-pole oscillations. We examined the ParA2 ATPase cycle and ParA2 interactions with ParB2 and DNA. In vitro, ParA2-ATP dimers undergo a rate-limiting conformational switch, catalysed by DNA to achieve DNA-binding competence. This active ParA2 state loads onto DNA cooperatively as higher order oligomers. Our results indicate that the midcell localization of ParB2-parS2 complexes stimulate ATP hydrolysis and ParA2 release from the nucleoid, generating an asymmetric ParA2 gradient with maximal concentration toward the poles. This rapid dissociation coupled with slow nucleotide exchange and conformational switch provides for a temporal lag that allows the redistribution of ParA2 to the opposite pole for nucleoid reattachment. Based on our data, we propose a 'Tug-of-war' model that uses dynamic oscillations of ParA2 to spatially regulate symmetric segregation and positioning of bacterial chromosomes.
Asunto(s)
Adenosina Trifosfatasas , Vibrio cholerae , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos/metabolismo , ADN , Vibrio cholerae/genética , Vibrio cholerae/metabolismoRESUMEN
Genome replication is a fundamental biological activity shared by all organisms. Chromosomal replication proceeds bidirectionally from origins, requiring the loading of two helicases, one for each replisome. However, the molecular mechanisms underpinning helicase loading at bacterial chromosome origins (oriC) are unclear. Here we investigated the essential DNA replication initiation protein DnaD in the model organism Bacillus subtilis. A set of DnaD residues required for ssDNA binding was identified, and photo-crosslinking revealed that this ssDNA binding region interacts preferentially with one strand of oriC. Biochemical and genetic data support the model that DnaD recognizes a new single-stranded DNA (ssDNA) motif located in oriC, the DnaD Recognition Element (DRE). Considered with single particle cryo-electron microscopy (cryo-EM) imaging of DnaD, we propose that the location of the DRE within oriC orchestrates strand-specific recruitment of helicase during DNA replication initiation. These findings significantly advance our mechanistic understanding of bidirectional replication from a bacterial chromosome origin.
Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas de Unión al ADN , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Microscopía por Crioelectrón , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Origen de RéplicaRESUMEN
SMC complexes, loaded at ParB-parS sites, are key mediators of chromosome organization in bacteria. ParA/Soj proteins interact with ParB/Spo0J in a pathway involving adenosine triphosphate (ATP)-dependent dimerization and DNA binding, facilitating chromosome segregation in bacteria. In Bacillus subtilis, ParA/Soj also regulates DNA replication initiation and along with ParB/Spo0J is involved in cell cycle changes during endospore formation. The first morphological stage in sporulation is the formation of an elongated chromosome structure called an axial filament. Here, we show that a major redistribution of SMC complexes drives axial filament formation in a process regulated by ParA/Soj. Furthermore, and unexpectedly, this regulation is dependent on monomeric forms of ParA/Soj that cannot bind DNA or hydrolyze ATP. These results reveal additional roles for ParA/Soj proteins in the regulation of SMC dynamics in bacteria and yet further complexity in the web of interactions involving chromosome replication, segregation and organization, controlled by ParAB and SMC.
Asunto(s)
Bacillus subtilis , Cromosomas Bacterianos , Adenosina Trifosfatasas , Adenosina Trifosfato/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejos MultiproteicosRESUMEN
Cell dimensions of rod-shaped bacteria such as Escherichia coli are connected to mass growth and chromosome replication. During their interdivision cycle (τ min), cells enlarge by elongation only, but at faster growth in richer media, they are also wider. Changes in width W upon nutritional shift-up (shortening τ) occur during the division process. The elusive signal directing the mechanism for W determination is likely related to the tightly linked duplications of the nucleoid (DNA) and the sacculus (peptidoglycan), the only two structures (macromolecules) existing in a single copy that are coupled, temporally and spatially. Six known parameters related to the nucleoid structure and replication are reasonable candidates to convey such a signal, all simple functions of the key number of replication positions n(=C/τ), the ratio between the rates of growth (τ-1) and of replication (C-1). The current analysis of available literature-recorded data discovered that, of these, nucleoid complexity NC[=(2n-1)/(n×ln2)] is by far the most likely parameter affecting cell width W. The exceedingly high correlations found between these two seemingly unrelated measures (NC and W) indicate that coupling between them is of major importance to the species' survival. As an exciting corollary, to the best of our knowledge, a new, indirect approach to estimate DNA replication rate is revealed. Potential involvement of DNA topoisomerases in W determination is also proposed and discussed.