RESUMEN
Duplication is a foundation of molecular evolution and a driver of genomic and complex diseases. Here, we develop a genome editing tool named Amplification Editing (AE) that enables programmable DNA duplication with precision at chromosomal scale. AE can duplicate human genomes ranging from 20 bp to 100 Mb, a size comparable to human chromosomes. AE exhibits activity across various cell types, encompassing diploid, haploid, and primary cells. AE exhibited up to 73.0% efficiency for 1 Mb and 3.4% for 100 Mb duplications, respectively. Whole-genome sequencing and deep sequencing of the junctions of edited sequences confirm the precision of duplication. AE can create chromosomal microduplications within disease-relevant regions in embryonic stem cells, indicating its potential for generating cellular and animal models. AE is a precise and efficient tool for chromosomal engineering and DNA duplication, broadening the landscape of precision genome editing from an individual genetic locus to the chromosomal scale.
Asunto(s)
Duplicación de Gen , Edición Génica , Genoma Humano , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , ADN/genética , Animales , Células Madre Embrionarias/metabolismo , Cromosomas Humanos/genéticaRESUMEN
The 3D organization of chromatin regulates many genome functions. Our understanding of 3D genome organization requires tools to directly visualize chromatin conformation in its native context. Here we report an imaging technology for visualizing chromatin organization across multiple scales in single cells with high genomic throughput. First we demonstrate multiplexed imaging of hundreds of genomic loci by sequential hybridization, which allows high-resolution conformation tracing of whole chromosomes. Next we report a multiplexed error-robust fluorescence in situ hybridization (MERFISH)-based method for genome-scale chromatin tracing and demonstrate simultaneous imaging of more than 1,000 genomic loci and nascent transcripts of more than 1,000 genes together with landmark nuclear structures. Using this technology, we characterize chromatin domains, compartments, and trans-chromosomal interactions and their relationship to transcription in single cells. We envision broad application of this high-throughput, multi-scale, and multi-modal imaging technology, which provides an integrated view of chromatin organization in its native structural and functional context.
Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromosomas Humanos/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Hibridación Fluorescente in Situ/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Línea Celular , Núcleo Celular/genética , Cromatina/genética , Cromosomas Humanos/genética , ADN/genética , ADN/metabolismo , Genómica , Humanos , Procesamiento de Imagen Asistido por Computador , Conformación Molecular , Imagen Multimodal , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , ARN/genética , ARN/metabolismo , Programas InformáticosRESUMEN
Gastroenteropancreatic (GEP) neuroendocrine neoplasm (NEN) that consists of neuroendocrine tumor and neuroendocrine carcinoma (NEC) is a lethal but under-investigated disease owing to its rarity. To fill the scarcity of clinically relevant models of GEP-NEN, we here established 25 lines of NEN organoids and performed their comprehensive molecular characterization. GEP-NEN organoids recapitulated pathohistological and functional phenotypes of the original tumors. Whole-genome sequencing revealed frequent genetic alterations in TP53 and RB1 in GEP-NECs, and characteristic chromosome-wide loss of heterozygosity in GEP-NENs. Transcriptome analysis identified molecular subtypes that are distinguished by the expression of distinct transcription factors. GEP-NEN organoids gained independence from the stem cell niche irrespective of genetic mutations. Compound knockout of TP53 and RB1, together with overexpression of key transcription factors, conferred on the normal colonic epithelium phenotypes that are compatible with GEP-NEN biology. Altogether, our study not only provides genetic understanding of GEP-NEN, but also connects its genetics and biological phenotypes.
Asunto(s)
Bancos de Muestras Biológicas , Tumores Neuroendocrinos/patología , Organoides/patología , Animales , Cromosomas Humanos/genética , Genotipo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Masculino , Ratones , Modelos Genéticos , Mutación/genética , Tumores Neuroendocrinos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fenotipo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Transcriptoma/genética , Secuenciación Completa del GenomaRESUMEN
Correction of disease-causing mutations in human embryos holds the potential to reduce the burden of inherited genetic disorders and improve fertility treatments for couples with disease-causing mutations in lieu of embryo selection. Here, we evaluate repair outcomes of a Cas9-induced double-strand break (DSB) introduced on the paternal chromosome at the EYS locus, which carries a frameshift mutation causing blindness. We show that the most common repair outcome is microhomology-mediated end joining, which occurs during the first cell cycle in the zygote, leading to embryos with non-mosaic restoration of the reading frame. Notably, about half of the breaks remain unrepaired, resulting in an undetectable paternal allele and, after mitosis, loss of one or both chromosomal arms. Correspondingly, Cas9 off-target cleavage results in chromosomal losses and hemizygous indels because of cleavage of both alleles. These results demonstrate the ability to manipulate chromosome content and reveal significant challenges for mutation correction in human embryos.
Asunto(s)
Alelos , Proteína 9 Asociada a CRISPR/metabolismo , Cromosomas Humanos/genética , Embrión de Mamíferos/metabolismo , Animales , Secuencia de Bases , Blastocisto/metabolismo , Ciclo Celular/genética , Línea Celular , Deleción Cromosómica , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Implantación del Embrión/genética , Proteínas del Ojo/genética , Fertilización , Edición Génica , Reordenamiento Génico/genética , Sitios Genéticos , Genoma Humano , Genotipo , Heterocigoto , Células Madre Embrionarias Humanas/metabolismo , Humanos , Mutación INDEL/genética , Ratones , Mitosis , Sistemas de Lectura Abierta/genética , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Accurate measurement of clonal genotypes, mutational processes, and replication states from individual tumor-cell genomes will facilitate improved understanding of tumor evolution. We have developed DLP+, a scalable single-cell whole-genome sequencing platform implemented using commodity instruments, image-based object recognition, and open source computational methods. Using DLP+, we have generated a resource of 51,926 single-cell genomes and matched cell images from diverse cell types including cell lines, xenografts, and diagnostic samples with limited material. From this resource we have defined variation in mitotic mis-segregation rates across tissue types and genotypes. Analysis of matched genomic and image measurements revealed correlations between cellular morphology and genome ploidy states. Aggregation of cells sharing copy number profiles allowed for calculation of single-nucleotide resolution clonal genotypes and inference of clonal phylogenies and avoided the limitations of bulk deconvolution. Finally, joint analysis over the above features defined clone-specific chromosomal aneuploidy in polyclonal populations.
Asunto(s)
Replicación del ADN/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de la Célula Individual , Aneuploidia , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Forma de la Célula , Supervivencia Celular , Cromosomas Humanos/genética , Células Clonales , Elementos Transponibles de ADN/genética , Diploidia , Femenino , Genotipo , Humanos , Masculino , Ratones , Mutación/genética , Filogenia , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Non-coding regions amplified beyond oncogene borders have largely been ignored. Using a computational approach, we find signatures of significant co-amplification of non-coding DNA beyond the boundaries of amplified oncogenes across five cancer types. In glioblastoma, EGFR is preferentially co-amplified with its two endogenous enhancer elements active in the cell type of origin. These regulatory elements, their contacts, and their contribution to cell fitness are preserved on high-level circular extrachromosomal DNA amplifications. Interrogating the locus with a CRISPR interference screening approach reveals a diversity of additional elements that impact cell fitness. The pattern of fitness dependencies mirrors the rearrangement of regulatory elements and accompanying rewiring of the chromatin topology on the extrachromosomal amplicon. Our studies indicate that oncogene amplifications are shaped by regulatory dependencies in the non-coding genome.
Asunto(s)
Cromosomas Humanos/genética , Elementos de Facilitación Genéticos , Amplificación de Genes , Oncogenes , Acetilación , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Cromatina/metabolismo , ADN de Neoplasias/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Genes Relacionados con las Neoplasias , Sitios Genéticos , Glioblastoma/genética , Glioblastoma/patología , Histonas/metabolismo , Humanos , Neuroglía/metabolismoRESUMEN
Meiosis is the cellular program that underlies gamete formation. For this program, crossovers between homologous chromosomes play an essential mechanical role to ensure regular segregation. We present a detailed study of crossover formation in human male and female meiosis, enabled by modeling analysis. Results suggest that recombination in the two sexes proceeds analogously and efficiently through most stages. However, specifically in female (but not male), â¼25% of the intermediates that should mature into crossover products actually fail to do so. Further, this "female-specific crossover maturation inefficiency" is inferred to make major contributions to the high level of chromosome mis-segregation and resultant aneuploidy that uniquely afflicts human female oocytes (e.g., giving Down syndrome). Additionally, crossover levels on different chromosomes in the same nucleus tend to co-vary, an effect attributable to global per-nucleus modulation of chromatin loop size. Maturation inefficiency could potentially reflect an evolutionary advantage of increased aneuploidy for human females.
Asunto(s)
Aneuploidia , Cromosomas Humanos , Meiosis , Caracteres Sexuales , Núcleo Celular/genética , Femenino , Gametogénesis , Humanos , Masculino , Recombinación GenéticaRESUMEN
Eukaryotic cells store their chromosomes in a single nucleus. This is important to maintain genomic integrity, as chromosomes packaged into separate nuclei (micronuclei) are prone to massive DNA damage. During mitosis, higher eukaryotes disassemble their nucleus and release individualized chromosomes for segregation. How numerous chromosomes subsequently reform a single nucleus has remained unclear. Using image-based screening of human cells, we identified barrier-to-autointegration factor (BAF) as a key factor guiding membranes to form a single nucleus. Unexpectedly, nuclear assembly does not require BAF's association with inner nuclear membrane proteins but instead relies on BAF's ability to bridge distant DNA sites. Live-cell imaging and in vitro reconstitution showed that BAF enriches around the mitotic chromosome ensemble to induce a densely cross-bridged chromatin layer that is mechanically stiff and limits membranes to the surface. Our study reveals that BAF-mediated changes in chromosome mechanics underlie nuclear assembly with broad implications for proper genome function.
Asunto(s)
Núcleo Celular/genética , Cromosomas Humanos/metabolismo , ADN/metabolismo , Mitosis , Núcleo Celular/metabolismo , ADN/química , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Huso AcromáticoRESUMEN
The individualization of chromosomes during early mitosis and their clustering upon exit from cell division are two key transitions that ensure efficient segregation of eukaryotic chromosomes. Both processes are regulated by the surfactant-like protein Ki-67, but how Ki-67 achieves these diametric functions has remained unknown. Here, we report that Ki-67 radically switches from a chromosome repellent to a chromosome attractant during anaphase in human cells. We show that Ki-67 dephosphorylation during mitotic exit and the simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface. Experiments and coarse-grained simulations support a model in which the coalescence of chromosome surfaces, driven by co-condensation of Ki-67 and RNA, promotes clustering of chromosomes. Our study reveals how the switch of Ki-67 from a surfactant to a liquid-like condensed phase can generate mechanical forces during genome segregation that are required for re-establishing nuclear-cytoplasmic compartmentalization after mitosis.
Asunto(s)
Segregación Cromosómica , Cromosomas Humanos , Antígeno Ki-67 , Mitosis , Humanos , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Células HeLa , Cromosomas Humanos/metabolismo , Cromosomas Humanos/genética , Fosforilación , AnafaseRESUMEN
Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes.
Asunto(s)
Bacteriófagos , Empaquetamiento del ADN , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/metabolismo , Humanos , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/genética , Cromosomas Humanos/metabolismo , Cromosomas Humanos/genética , ADN Viral/genética , ADN Viral/metabolismoRESUMEN
Deciphering the impact of genetic variants on gene regulation is fundamental to understanding human disease. Although gene regulation often involves long-range interactions, it is unknown to what extent non-coding genetic variants influence distal molecular phenotypes. Here, we integrate chromatin profiling for three histone marks in lymphoblastoid cell lines (LCLs) from 75 sequenced individuals with LCL-specific Hi-C and ChIA-PET-based chromatin contact maps to uncover one of the largest collections of local and distal histone quantitative trait loci (hQTLs). Distal QTLs are enriched within topologically associated domains and exhibit largely concordant variation of chromatin state coordinated by proximal and distal non-coding genetic variants. Histone QTLs are enriched for common variants associated with autoimmune diseases and enable identification of putative target genes of disease-associated variants from genome-wide association studies. These analyses provide insights into how genetic variation can affect human disease phenotypes by coordinated changes in chromatin at interacting regulatory elements.
Asunto(s)
Cromatina/metabolismo , Cromosomas Humanos/metabolismo , Proyecto Genoma Humano , Línea Celular , Cromosomas Humanos/química , Estudios de Cohortes , Femenino , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Humanos , Linfocitos/metabolismo , Masculino , Sitios de Carácter Cuantitativo , Elementos Reguladores de la TranscripciónRESUMEN
Chromatin state variation at gene regulatory elements is abundant across individuals, yet we understand little about the genetic basis of this variability. Here, we profiled several histone modifications, the transcription factor (TF) PU.1, RNA polymerase II, and gene expression in lymphoblastoid cell lines from 47 whole-genome sequenced individuals. We observed that distinct cis-regulatory elements exhibit coordinated chromatin variation across individuals in the form of variable chromatin modules (VCMs) at sub-Mb scale. VCMs were associated with thousands of genes and preferentially cluster within chromosomal contact domains. We mapped strong proximal and weak, yet more ubiquitous, distal-acting chromatin quantitative trait loci (cQTL) that frequently explain this variation. cQTLs were associated with molecular activity at clusters of cis-regulatory elements and mapped preferentially within TF-bound regions. We propose that local, sequence-independent chromatin variation emerges as a result of genetic perturbations in cooperative interactions between cis-regulatory elements that are located within the same genomic domain.
Asunto(s)
Cromatina/química , Regulación de la Expresión Génica , Variación Genética , Genoma Humano , Cromatina/metabolismo , Cromosomas Humanos/química , Genética de Población , Humanos , Sitios de Carácter Cuantitativo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismoRESUMEN
Changes in transcription factor binding sequences result in correlated changes in chromatin composition locally and at sites hundreds of kilobases away. New studies demonstrate that this concordance is mediated via spatial chromatin interactions that constitute regulatory modules of the human genome.
Asunto(s)
Cromatina/química , Cromatina/metabolismo , Cromosomas Humanos/metabolismo , Regulación de la Expresión Génica , Variación Genética , Genoma Humano , Proyecto Genoma Humano , Femenino , Humanos , MasculinoRESUMEN
The breakage-fusion-bridge cycle is a classical mechanism of telomere-driven genome instability in which dysfunctional telomeres are fused to other chromosomal extremities, creating dicentric chromosomes that eventually break at mitosis. Here, we uncover a distinct pathway of telomere-driven genome instability, specifically occurring in cells that maintain telomeres with the alternative lengthening of telomeres mechanism. We show that, in these cells, telomeric DNA is added to multiple discrete sites throughout the genome, corresponding to regions regulated by NR2C/F transcription factors. These proteins drive local telomere DNA addition by recruiting telomeric chromatin. This mechanism, which we name targeted telomere insertion (TTI), generates potential common fragile sites that destabilize the genome. We propose that TTI driven by NR2C/F proteins contributes to the formation of complex karyotypes in ALT tumors.
Asunto(s)
Inestabilidad Genómica , Neoplasias/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Telómero/metabolismo , Cromosomas Humanos/metabolismo , Roturas del ADN de Doble Cadena , Humanos , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Translocación GenéticaRESUMEN
Telomere crisis occurs during tumorigenesis when depletion of the telomere reserve leads to frequent telomere fusions. The resulting dicentric chromosomes have been proposed to drive genome instability. Here, we examine the fate of dicentric human chromosomes in telomere crisis. We observed that dicentric chromosomes invariably persisted through mitosis and developed into 50-200 µm chromatin bridges connecting the daughter cells. Before their resolution at 3-20 hr after anaphase, the chromatin bridges induced nuclear envelope rupture in interphase, accumulated the cytoplasmic 3' nuclease TREX1, and developed RPA-coated single stranded (ss) DNA. CRISPR knockouts showed that TREX1 contributed to the generation of the ssDNA and the resolution of the chromatin bridges. Post-crisis clones showed chromothripsis and kataegis, presumably resulting from DNA repair and APOBEC editing of the fragmented chromatin bridge DNA. We propose that chromothripsis in human cancer may arise through TREX1-mediated fragmentation of dicentric chromosomes formed in telomere crisis.
Asunto(s)
Inestabilidad Cromosómica , Cromosomas Humanos , Inestabilidad Genómica , Neoplasias/genética , Telómero , Aberraciones Cromosómicas , Citocinesis , ADN de Cadena Simple/metabolismo , Exodesoxirribonucleasas/metabolismo , Humanos , Mitosis , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismoRESUMEN
Chromothripsis is a catastrophic cellular event recently described in cancer in which chromosomes undergo massive deletion and rearrangement. Here, we report a case in which chromothripsis spontaneously cured a patient with WHIM syndrome, an autosomal dominant combined immunodeficiency disease caused by gain-of-function mutation of the chemokine receptor CXCR4. In this patient, deletion of the disease allele, CXCR4(R334X), as well as 163 other genes from one copy of chromosome 2 occurred in a hematopoietic stem cell (HSC) that repopulated the myeloid but not the lymphoid lineage. In competitive mouse bone marrow (BM) transplantation experiments, Cxcr4 haploinsufficiency was sufficient to confer a strong long-term engraftment advantage of donor BM over BM from either wild-type or WHIM syndrome model mice, suggesting a potential mechanism for the patient's cure. Our findings suggest that partial inactivation of CXCR4 may have general utility as a strategy to promote HSC engraftment in transplantation.
Asunto(s)
Inestabilidad Cromosómica , Síndromes de Inmunodeficiencia/genética , Verrugas/genética , Animales , Cromosomas Humanos , Modelos Animales de Enfermedad , Haploinsuficiencia , Células Madre Hematopoyéticas/metabolismo , Humanos , Linfocitos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Mosaicismo , Mutación , Células Mieloides/metabolismo , Enfermedades de Inmunodeficiencia Primaria , Receptores CXCR4/genética , Remisión EspontáneaRESUMEN
Extrachromosomal circular DNA (eccDNA) is common in somatic tissue, but its existence and effects in the human germline are unexplored. We used microscopy, long-read DNA sequencing, and new analytic methods to document thousands of eccDNAs from human sperm. EccDNAs derived from all genomic regions and mostly contained a single DNA fragment, although some consisted of multiple fragments. The generation of eccDNA inversely correlates with the meiotic recombination rate, and chromosomes with high coding-gene density and Alu element abundance form the least eccDNA. Analysis of insertions in human genomes further indicates that eccDNA can persist in the human germline when the circular molecules reinsert themselves into the chromosomes. Our results suggest that eccDNA has transient and permanent effects on the germline. They explain how differences in the physical and genetic map might arise and offer an explanation of how Alu elements coevolved with genes to protect genome integrity against deleterious mutations producing eccDNA.
Asunto(s)
Cromosomas Humanos , ADN Circular/metabolismo , Meiosis , Recombinación Genética , Espermatozoides/metabolismo , Elementos Alu , ADN Circular/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , MutaciónRESUMEN
The epitranscriptome has emerged as a new fundamental layer of control of gene expression. Nevertheless, the determination of the transcriptome-wide occupancy and function of RNA modifications remains challenging. Here we have developed Rho-seq, an integrated pipeline detecting a range of modifications through differential modification-dependent rhodamine labeling. Using Rho-seq, we confirm that the reduction of uridine to dihydrouridine (D) by the Dus reductase enzymes targets tRNAs in E. coli and fission yeast. We find that the D modification is also present on fission yeast mRNAs, particularly those encoding cytoskeleton-related proteins, which is supported by large-scale proteome analyses and ribosome profiling. We show that the α-tubulin encoding mRNA nda2 undergoes Dus3-dependent dihydrouridylation, which affects its translation. The absence of the modification on nda2 mRNA strongly impacts meiotic chromosome segregation, resulting in low gamete viability. Applying Rho-seq to human cells revealed that tubulin mRNA dihydrouridylation is evolutionarily conserved.
Asunto(s)
Segregación Cromosómica , Escherichia coli/genética , Meiosis , Procesamiento Postranscripcional del ARN , ARN Bacteriano/genética , ARN de Hongos/genética , ARN Mensajero/genética , Schizosaccharomyces/genética , Uridina/metabolismo , Cromosomas Bacterianos , Cromosomas Fúngicos , Cromosomas Humanos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Células HCT116 , Humanos , Oxidación-Reducción , ARN Bacteriano/metabolismo , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Análisis de Secuencia de ARN , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismoRESUMEN
The short arms of the human acrocentric chromosomes 13, 14, 15, 21 and 22 (SAACs) share large homologous regions, including ribosomal DNA repeats and extended segmental duplications1,2. Although the resolution of these regions in the first complete assembly of a human genome-the Telomere-to-Telomere Consortium's CHM13 assembly (T2T-CHM13)-provided a model of their homology3, it remained unclear whether these patterns were ancestral or maintained by ongoing recombination exchange. Here we show that acrocentric chromosomes contain pseudo-homologous regions (PHRs) indicative of recombination between non-homologous sequences. Utilizing an all-to-all comparison of the human pangenome from the Human Pangenome Reference Consortium4 (HPRC), we find that contigs from all of the SAACs form a community. A variation graph5 constructed from centromere-spanning acrocentric contigs indicates the presence of regions in which most contigs appear nearly identical between heterologous acrocentric chromosomes in T2T-CHM13. Except on chromosome 15, we observe faster decay of linkage disequilibrium in the pseudo-homologous regions than in the corresponding short and long arms, indicating higher rates of recombination6,7. The pseudo-homologous regions include sequences that have previously been shown to lie at the breakpoint of Robertsonian translocations8, and their arrangement is compatible with crossover in inverted duplications on chromosomes 13, 14 and 21. The ubiquity of signals of recombination between heterologous acrocentric chromosomes seen in the HPRC draft pangenome suggests that these shared sequences form the basis for recurrent Robertsonian translocations, providing sequence and population-based confirmation of hypotheses first developed from cytogenetic studies 50 years ago9.
Asunto(s)
Centrómero , Cromosomas Humanos , Recombinación Genética , Humanos , Centrómero/genética , Cromosomas Humanos/genética , ADN Ribosómico/genética , Recombinación Genética/genética , Translocación Genética/genética , Citogenética , Telómero/genéticaRESUMEN
Whole-genome doubling (WGD) is a recurrent event in human cancers and it promotes chromosomal instability and acquisition of aneuploidies1-8. However, the three-dimensional organization of chromatin in WGD cells and its contribution to oncogenic phenotypes are currently unknown. Here we show that in p53-deficient cells, WGD induces loss of chromatin segregation (LCS). This event is characterized by reduced segregation between short and long chromosomes, A and B subcompartments and adjacent chromatin domains. LCS is driven by the downregulation of CTCF and H3K9me3 in cells that bypassed activation of the tetraploid checkpoint. Longitudinal analyses revealed that LCS primes genomic regions for subcompartment repositioning in WGD cells. This results in chromatin and epigenetic changes associated with oncogene activation in tumours ensuing from WGD cells. Notably, subcompartment repositioning events were largely independent of chromosomal alterations, which indicates that these were complementary mechanisms contributing to tumour development and progression. Overall, LCS initiates chromatin conformation changes that ultimately result in oncogenic epigenetic and transcriptional modifications, which suggests that chromatin evolution is a hallmark of WGD-driven cancer.