Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.211
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(4): 712-728.e14, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35063084

RESUMEN

Tau (MAPT) drives neuronal dysfunction in Alzheimer disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established interactions of Tau with presynaptic vesicle proteins during activity-dependent Tau secretion and mapped the Tau-binding sites to the cytosolic domains of integral synaptic vesicle proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau's interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multimodal and dynamic Tau interactomes with exquisite spatial resolution shed light on Tau's role in neuronal function and disease and highlight potential therapeutic targets to block Tau-mediated pathogenesis.


Asunto(s)
Mitocondrias/metabolismo , Degeneración Nerviosa/metabolismo , Mapas de Interacción de Proteínas , Sinapsis/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Aminoácidos/metabolismo , Biotinilación , Encéfalo/metabolismo , Encéfalo/patología , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Metabolismo Energético , Demencia Frontotemporal/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Degeneración Nerviosa/patología , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Proteómica , Índice de Severidad de la Enfermedad , Fracciones Subcelulares/metabolismo , Tauopatías/genética , Proteínas tau/química
2.
Cell ; 184(3): 689-708.e20, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482083

RESUMEN

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a GGGGCC repeat expansion in the C9orf72 gene. We developed a platform to interrogate the chromatin accessibility landscape and transcriptional program within neurons during degeneration. We provide evidence that neurons expressing the dipeptide repeat protein poly(proline-arginine), translated from the C9orf72 repeat expansion, activate a highly specific transcriptional program, exemplified by a single transcription factor, p53. Ablating p53 in mice completely rescued neurons from degeneration and markedly increased survival in a C9orf72 mouse model. p53 reduction also rescued axonal degeneration caused by poly(glycine-arginine), increased survival of C9orf72 ALS/FTD-patient-induced pluripotent stem cell (iPSC)-derived motor neurons, and mitigated neurodegeneration in a C9orf72 fly model. We show that p53 activates a downstream transcriptional program, including Puma, which drives neurodegeneration. These data demonstrate a neurodegenerative mechanism dynamically regulated through transcription-factor-binding events and provide a framework to apply chromatin accessibility and transcription program profiles to neurodegeneration.


Asunto(s)
Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Degeneración Nerviosa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Axones/metabolismo , Proteína C9orf72/genética , Muerte Celular , Células Cultivadas , Corteza Cerebral/patología , Cromatina/metabolismo , Daño del ADN , Modelos Animales de Enfermedad , Drosophila , Ratones Endogámicos C57BL , Degeneración Nerviosa/patología , Estabilidad Proteica , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo
3.
Genes Dev ; 32(15-16): 1045-1059, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30012555

RESUMEN

Ubiquitous deficiency in the survival motor neuron (SMN) protein causes death of motor neurons-a hallmark of the neurodegenerative disease spinal muscular atrophy (SMA)-through poorly understood mechanisms. Here, we show that the function of SMN in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) regulates alternative splicing of Mdm2 and Mdm4, two nonredundant repressors of p53. Decreased inclusion of critical Mdm2 and Mdm4 exons is most prominent in SMA motor neurons and correlates with both snRNP reduction and p53 activation in vivo. Importantly, increased skipping of Mdm2 and Mdm4 exons regulated by SMN is necessary and sufficient to synergistically elicit robust p53 activation in wild-type mice. Conversely, restoration of full-length Mdm2 and Mdm4 suppresses p53 induction and motor neuron degeneration in SMA mice. These findings reveal that loss of SMN-dependent regulation of Mdm2 and Mdm4 alternative splicing underlies p53-mediated death of motor neurons in SMA, establishing a causal link between snRNP dysfunction and neurodegeneration.


Asunto(s)
Empalme Alternativo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas/genética , Animales , Muerte Celular , Exones , Ratones , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatología , Células 3T3 NIH , Degeneración Nerviosa/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Proteína p53 Supresora de Tumor/metabolismo
4.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38692735

RESUMEN

Sterile alpha and TIR motif containing 1 (SARM1) is an inducible NADase that localizes to mitochondria throughout neurons and senses metabolic changes that occur after injury. Minimal proteomic changes are observed upon either SARM1 depletion or activation, suggesting that SARM1 does not exert broad effects on neuronal protein homeostasis. However, whether SARM1 activation occurs throughout the neuron in response to injury and cell stress remains largely unknown. Using a semiautomated imaging pipeline and a custom-built deep learning scoring algorithm, we studied degeneration in both mixed-sex mouse primary cortical neurons and male human-induced pluripotent stem cell-derived cortical neurons in response to a number of different stressors. We show that SARM1 activation is differentially restricted to specific neuronal compartments depending on the stressor. Cortical neurons undergo SARM1-dependent axon degeneration after mechanical transection, and SARM1 activation is limited to the axonal compartment distal to the injury site. However, global SARM1 activation following vacor treatment causes both cell body and axon degeneration. Context-specific stressors, such as microtubule dysfunction and mitochondrial stress, induce axonal SARM1 activation leading to SARM1-dependent axon degeneration and SARM1-independent cell body death. Our data reveal that compartment-specific SARM1-mediated death signaling is dependent on the type of injury and cellular stressor.


Asunto(s)
Proteínas del Dominio Armadillo , Corteza Cerebral , Proteínas del Citoesqueleto , Células Madre Pluripotentes Inducidas , Neuronas , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Dominio Armadillo/genética , Animales , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Ratones , Neuronas/metabolismo , Neuronas/patología , Masculino , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Humanos , Femenino , Células Madre Pluripotentes Inducidas/metabolismo , Degeneración Nerviosa/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/genética , Células Cultivadas , Ratones Endogámicos C57BL , Estrés Fisiológico/fisiología , Axones/metabolismo , Axones/patología , Mitocondrias/metabolismo
5.
Annu Rev Neurosci ; 40: 189-210, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28772101

RESUMEN

A pathway from the natively unfolded microtubule-associated protein Tau to a highly structured amyloid fibril underlies human Tauopathies. This ordered assembly causes disease and represents the gain of toxic function. In recent years, evidence has accumulated to suggest that Tau inclusions form first in a small number of brain cells, from where they propagate to other regions, resulting in neurodegeneration and disease. Propagation of pathology is often called prion-like, which refers to the capacity of an assembled protein to induce the same abnormal conformation in a protein of the same kind, initiating a self-amplifying cascade. In addition, prion-like encompasses the release of protein aggregates from brain cells and their uptake by neighboring cells. In mice, the intracerebral injection of Tau inclusions induces the ordered assembly of monomeric Tau, followed by its spreading to distant brain regions. Conformational differences between Tau aggregates from transgenic mouse brain and in vitro assembled recombinant protein account for the greater seeding potency of brain aggregates. Short fibrils constitute the major species of seed-competent Tau in the brains of transgenic mice. The existence of multiple human Tauopathies with distinct fibril morphologies has led to the suggestion that different molecular conformers (or strains) of aggregated Tau exist.


Asunto(s)
Degeneración Nerviosa/metabolismo , Ovillos Neurofibrilares/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Degeneración Nerviosa/patología , Ovillos Neurofibrilares/patología , Fosforilación , Tauopatías/patología
6.
Mol Psychiatry ; 29(5): 1265-1280, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228889

RESUMEN

Early and progressive dysfunctions of the dopaminergic system from the Ventral Tegmental Area (VTA) have been described in Alzheimer's Disease (AD). During the long pre-symptomatic phase, alterations in the function of Parvalbumin interneurons (PV-INs) are also observed, resulting in cortical hyperexcitability represented by subclinical epilepsy and aberrant gamma-oscillations. However, it is unknown whether the dopaminergic deficits contribute to brain hyperexcitability in AD. Here, using the Tg2576 mouse model of AD, we prove that reduced hippocampal dopaminergic innervation, due to VTA dopamine neuron degeneration, impairs PV-IN firing and gamma-waves, weakens the inhibition of pyramidal neurons and induces hippocampal hyperexcitability via lower D2-receptor-mediated activation of the CREB-pathway. These alterations coincide with reduced PV-IN numbers and Perineuronal Net density. Importantly, L-DOPA and the selective D2-receptor agonist quinpirole rescue p-CREB levels and improve the PV-IN-mediated inhibition, thus reducing hyperexcitability. Moreover, similarly to quinpirole, sumanirole - another D2-receptor agonist and a known anticonvulsant - not only increases p-CREB levels in PV-INs but also restores gamma-oscillations in Tg2576 mice. Conversely, blocking the dopaminergic transmission with sulpiride (a D2-like receptor antagonist) in WT mice reduces p-CREB levels in PV-INs, mimicking what occurs in Tg2576. Overall, these findings support the hypothesis that the VTA dopaminergic system integrity plays a key role in hippocampal PV-IN function and survival, disclosing a relevant contribution of the reduced dopaminergic tone to aberrant gamma-waves, hippocampal hyperexcitability and epileptiform activity in early AD.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Hipocampo , Interneuronas , Ratones Transgénicos , Área Tegmental Ventral , Animales , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/fisiopatología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/patología , Neuronas Dopaminérgicas/metabolismo , Interneuronas/metabolismo , Interneuronas/fisiología , Parvalbúminas/metabolismo , Dopamina/metabolismo , Receptores de Dopamina D2/metabolismo , Masculino , Células Piramidales/metabolismo , Levodopa/farmacología , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Degeneración Nerviosa/metabolismo , Quinpirol/farmacología , Ritmo Gamma/fisiología , Ratones Endogámicos C57BL
7.
Cell ; 143(4): 564-78, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21074048

RESUMEN

Polyglutamylation is a posttranslational modification that generates glutamate side chains on tubulins and other proteins. Although this modification has been shown to be reversible, little is known about the enzymes catalyzing deglutamylation. Here we describe the enzymatic mechanism of protein deglutamylation by members of the cytosolic carboxypeptidase (CCP) family. Three enzymes (CCP1, CCP4, and CCP6) catalyze the shortening of polyglutamate chains and a fourth (CCP5) specifically removes the branching point glutamates. In addition, CCP1, CCP4, and CCP6 also remove gene-encoded glutamates from the carboxyl termini of proteins. Accordingly, we show that these enzymes convert detyrosinated tubulin into Δ2-tubulin and also modify other substrates, including myosin light chain kinase 1. We further analyze Purkinje cell degeneration (pcd) mice that lack functional CCP1 and show that microtubule hyperglutamylation is directly linked to neurodegeneration. Taken together, our results reveal that controlling the length of the polyglutamate side chains on tubulin is critical for neuronal survival.


Asunto(s)
Carboxipeptidasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Degeneración Nerviosa/metabolismo , Ácido Poliglutámico/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Supervivencia Celular , Cerebelo/patología , Humanos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Bulbo Olfatorio/patología , Alineación de Secuencia , Tubulina (Proteína)/metabolismo
8.
Mol Ther ; 32(6): 1760-1778, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38659223

RESUMEN

Glaucoma is characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons, and its risk increases with aging. Yet comprehensive insights into the complex mechanisms are largely unknown. Here, we found that anti-aging molecule Sirt6 was highly expressed in RGCs. Deleting Sirt6 globally or specifically in RGCs led to progressive RGC loss and optic nerve degeneration during aging, despite normal intraocular pressure (IOP), resembling a phenotype of normal-tension glaucoma. These detrimental effects were potentially mediated by accelerated RGC senescence through Caveolin-1 upregulation and by the induction of mitochondrial dysfunction. In mouse models of high-tension glaucoma, Sirt6 level was decreased after IOP elevation. Genetic overexpression of Sirt6 globally or specifically in RGCs significantly attenuated high tension-induced degeneration of RGCs and their axons, whereas partial or RGC-specific Sirt6 deletion accelerated RGC loss. Importantly, therapeutically targeting Sirt6 with pharmacological activator or AAV2-mediated gene delivery ameliorated high IOP-induced RGC degeneration. Together, our studies reveal a critical role of Sirt6 in preventing RGC and optic nerve degeneration during aging and glaucoma, setting the stage for further exploration of Sirt6 activation as a potential therapy for glaucoma.


Asunto(s)
Envejecimiento , Modelos Animales de Enfermedad , Glaucoma , Nervio Óptico , Células Ganglionares de la Retina , Sirtuinas , Animales , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Ratones , Sirtuinas/metabolismo , Sirtuinas/genética , Glaucoma/metabolismo , Glaucoma/genética , Glaucoma/patología , Glaucoma/etiología , Nervio Óptico/metabolismo , Nervio Óptico/patología , Envejecimiento/metabolismo , Envejecimiento/genética , Presión Intraocular , Humanos , Axones/metabolismo , Axones/patología , Ratones Noqueados , Degeneración Nerviosa/metabolismo
9.
Acta Neuropathol ; 147(1): 96, 2024 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852117

RESUMEN

Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.


Asunto(s)
Enfermedad de Alzheimer , Necroptosis , Humanos , Necroptosis/fisiología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Animales , Neuronas/patología , Neuronas/metabolismo , Degeneración Nerviosa/patología , Degeneración Nerviosa/metabolismo
10.
Mol Psychiatry ; 28(6): 2215-2227, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36918705

RESUMEN

Neuronal death is one of the most common pathological hallmarks of diverse neurological diseases, which manifest varying degrees of cognitive or motor dysfunction. Neuronal death can be classified into multiple forms with complicated and unique regulatory signaling pathways. Tau is a key microtubule-associated protein that is predominantly expressed in neurons to stabilize microtubules under physiological conditions. In contrast, pathological tau always detaches from microtubules and is implicated in a series of neurological disorders that are characterized by irreversible neuronal death, such as necrosis, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-dependent neuronal death and phagocytosis by microglia. However, recent studies have also revealed that pathological tau can facilitate neuron escape from acute apoptosis, delay necroptosis through its action on granulovacuolar degeneration bodies (GVBs), and facilitate iron export from neurons to block ferroptosis. In this review, we briefly describe the current understanding of how pathological tau exerts dual effects on neuronal death by acting as a double-edged sword in different neurological diseases. We propose that elucidating the mechanism by which pathological tau affects neuronal death is critical for exploring novel and precise therapeutic strategies for neurological disorders.


Asunto(s)
Apoptosis , Enfermedades del Sistema Nervioso , Humanos , Neuronas/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Microtúbulos/metabolismo , Proteínas tau/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526652

RESUMEN

Identifying molecular mediators of neural circuit development and/or function that contribute to circuit dysfunction when aberrantly reengaged in neurological disorders is of high importance. The role of the TWEAK/Fn14 pathway, which was recently reported to be a microglial/neuronal axis mediating synaptic refinement in experience-dependent visual development, has not been explored in synaptic function within the mature central nervous system. By combining electrophysiological and phosphoproteomic approaches, we show that TWEAK acutely dampens basal synaptic transmission and plasticity through neuronal Fn14 and impacts the phosphorylation state of pre- and postsynaptic proteins in adult mouse hippocampal slices. Importantly, this is relevant in two models featuring synaptic deficits. Blocking TWEAK/Fn14 signaling augments synaptic function in hippocampal slices from amyloid-beta-overexpressing mice. After stroke, genetic or pharmacological inhibition of TWEAK/Fn14 signaling augments basal synaptic transmission and normalizes plasticity. Our data support a glial/neuronal axis that critically modifies synaptic physiology and pathophysiology in different contexts in the mature brain and may be a therapeutic target for improving neurophysiological outcomes.


Asunto(s)
Degeneración Nerviosa/metabolismo , Transducción de Señal , Accidente Cerebrovascular/metabolismo , Sinapsis/metabolismo , Receptor de TWEAK/metabolismo , Animales , Citocina TWEAK/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipocampo/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/fisiopatología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/metabolismo , Accidente Cerebrovascular/fisiopatología , Transmisión Sináptica/fisiología
12.
BMC Biol ; 21(1): 252, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950228

RESUMEN

BACKGROUND: Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS: Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS: Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.


Asunto(s)
Caenorhabditis elegans , Enfermedades Neurodegenerativas , Animales , Humanos , Caenorhabditis elegans/metabolismo , Oxidopamina/efectos adversos , Oxidopamina/metabolismo , Dopamina/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/metabolismo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/prevención & control , Neuronas Dopaminérgicas/fisiología , Adenosina Trifosfato/metabolismo , Azúcares/efectos adversos , Azúcares/metabolismo , Fructosa/efectos adversos , Fructosa/metabolismo , Glucosa/metabolismo , Modelos Animales de Enfermedad
13.
J Biol Chem ; 298(3): 101647, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101451

RESUMEN

The dual leucine zipper kinase (DLK) is a key regulator of axon regeneration and degeneration in response to neuronal injury; however, regulatory mechanisms of the DLK function via its interacting proteins are largely unknown. To better understand the molecular mechanism of DLK function, we performed yeast two-hybrid screening analysis and identified FK506-binding protein-like (FKBPL, also known as WAF-1/CIP1 stabilizing protein 39) as a DLK-binding protein. FKBPL binds to the kinase domain of DLK and inhibits its kinase activity. In addition, FKBPL induces DLK protein degradation through ubiquitin-dependent pathways. We further assessed other members in the FKBP protein family and found that FK506-binding protein 8 (FKBP8) also induced DLK degradation. We identified the lysine 271 residue in the kinase domain as a major site of DLK ubiquitination and SUMO3 conjugation and was thus responsible for regulating FKBP8-mediated proteasomal degradation that was inhibited by the substitution of the lysine 271 to arginine. FKBP8-mediated degradation of DLK is mediated by autophagy pathway because knockdown of Atg5 inhibited DLK destabilization. We show that in vivo overexpression of FKBP8 delayed the progression of axon degeneration and suppressed neuronal death after axotomy in sciatic and optic nerves. Taken together, this study identified FKBPL and FKBP8 as novel DLK-interacting proteins that regulate DLK stability via the ubiquitin-proteasome and lysosomal protein degradation pathways.


Asunto(s)
Axones , Quinasas Quinasa Quinasa PAM , Degeneración Nerviosa , Proteínas de Unión a Tacrolimus , Axones/enzimología , Axones/metabolismo , Axones/patología , Leucina Zippers , Lisina/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Regeneración Nerviosa , Proteínas de Unión a Tacrolimus/metabolismo , Ubiquitina/metabolismo
14.
Development ; 147(6)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188601

RESUMEN

In essentially all eukaryotes, proteins can be modified by the attachment of small ubiquitin-related modifier (SUMO) proteins to lysine side chains to produce branched proteins. This process of 'SUMOylation' plays essential roles in plant and animal development by altering protein function in spatially and temporally controlled ways. In this Primer, we explain the process of SUMOylation and summarize how SUMOylation regulates a number of signal transduction pathways. Next, we discuss multiple roles of SUMOylation in the epigenetic control of transcription. In addition, we evaluate the role of SUMOylation in the etiology of neurodegenerative disorders, focusing on Parkinson's disease and cerebral ischemia. Finally, we discuss the possibility that SUMOylation may stimulate survival and neurogenesis of neuronal stem cells.


Asunto(s)
Crecimiento y Desarrollo , Degeneración Nerviosa/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Sumoilación/fisiología , Animales , Crecimiento y Desarrollo/genética , Humanos , Degeneración Nerviosa/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neurogénesis/genética , Neurogénesis/fisiología , Desarrollo de la Planta/fisiología , Transducción de Señal/genética
15.
PLoS Pathog ; 17(10): e1009991, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34610054

RESUMEN

Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrPC roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrPC expressing 1C11 neuronal stem cell line to those of PrPnull-1C11 cells stably repressed for PrPC expression, we here unravel that PrPC contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrPC tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids ß-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrPC metabolic role by pathogenic prions PrPSc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids ß-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrPSc-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.


Asunto(s)
Glucosa/metabolismo , Degeneración Nerviosa/metabolismo , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/patología , Estrés Oxidativo/fisiología , Proteínas Quinasas/metabolismo
16.
Brain ; 145(3): 879-886, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35258081

RESUMEN

Loss of midbrain dopamine neurons causes the cardinal symptoms of Parkinson's disease. However, not all dopamine neurons are equally vulnerable and a better understanding of the cell-type specific properties relating to selective dopamine neuron degeneration is needed. Most midbrain dopamine neurons express the vesicular glutamate transporter VGLUT2 during development and a subset continue to express low levels of VGLUT2 in adulthood, enabling the co-release of glutamate. Moreover, VGLUT2 expression in dopamine neurons can be neuroprotective since its genetic disruption was shown to sensitize dopamine neurons to neurotoxins. Here, we show that in response to toxic insult, and in two distinct models of alpha-synuclein stress, VGLUT2 dopamine neurons were resilient to degeneration. Dopamine neurons expressing VGLUT2 were enriched whether or not insult induced dopamine neuron loss, suggesting that while VGLUT2 dopamine neurons are more resilient, VGLUT2 expression can also be transcriptionally upregulated by injury. Finally, we observed that VGLUT2 expression was enhanced in surviving dopamine neurons from post-mortem Parkinson's disease individuals. These data indicate that emergence of a glutamatergic identity in dopamine neurons may be part of a neuroprotective response in Parkinson's disease.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Adulto , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Mesencéfalo , Degeneración Nerviosa/metabolismo , Enfermedad de Parkinson/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
17.
Mol Cell Neurosci ; 120: 103725, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395354

RESUMEN

Spinal muscular atrophy (SMA) is a rare neurodegenerative disease caused by the absence of survival motor neuron (SMN) protein. SMN loss results in impairments of the cytoskeleton, including microtubules and regulatory proteins. However, the contribution of microtubule-associated proteins (MAPs) to microtubule dysregulations in SMA is not fully understood. In this study, we investigated neuronal MAPs responsible for the microtubule stability and growth, including MAP1A, MAP2, MAP6, MAP7, EB1, and EB3 using an in vitro model of SMA. Decreased MAP2 and EB3 levels were found in SMN-deficient motor neuron-like cells, and EB3 protein level was also relevant to MAP1B. SMN loss leads to an increase in EB3 comet numbers at proximal neurites, indicating increased microtubule growth. Our findings suggest that SMN deficiency simultaneously causes dysregulations of several MAPs, contributing to the perturbations of microtubule dynamics in SMA.


Asunto(s)
Atrofia Muscular Espinal , Enfermedades Neurodegenerativas , Animales , Modelos Animales de Enfermedad , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Degeneración Nerviosa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
18.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958569

RESUMEN

LRRK2 mutations are the leading cause of familial Parkinson's disease (PD) and are a significant risk factor for idiopathic PD cases. However, the molecular mechanisms underlying the degeneration of dopaminergic (DA) neurons in LRRK2 PD patients remain unclear. To determine the translatomic impact of LRRK2 expression in DA neurons, we employed gene set enrichment analysis (GSEA) to analyze a translating ribosome affinity purification (TRAP) RNA-seq dataset from a DA-neuron-specific-expressing Drosophila model. We found that the tyrosine metabolism pathway, including tyrosine hydroxylase (TH), is downregulated in DA neurons with LRRK2 overexpression; in contrast, the Hippo signaling pathway is downregulated in the G2019S mutant compared to wild-type LRRK2 in the DA neurons. These results imply that the downregulation of tyrosine metabolism occurs before pronounced DA neuron loss and that LRRK2 may downregulate the tyrosine metabolism in a DA-neuron-loss-independent way.


Asunto(s)
Neuronas Dopaminérgicas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Animales , Humanos , Neuronas Dopaminérgicas/metabolismo , Drosophila/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación , Degeneración Nerviosa/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Tirosina/metabolismo
19.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902041

RESUMEN

Amyotrophic lateral sclerosis (ALS) is characterized by the progressive, irreversible loss of upper and lower motor neurons (UMNs, LMNs). MN axonal dysfunctions are emerging as relevant pathogenic events since the early ALS stages. However, the exact molecular mechanisms leading to MN axon degeneration in ALS still need to be clarified. MicroRNA (miRNA) dysregulation plays a critical role in the pathogenesis of neuromuscular diseases. These molecules represent promising biomarkers for these conditions since their expression in body fluids consistently reflects distinct pathophysiological states. Mir-146a has been reported to modulate the expression of the NFL gene, encoding the light chain of the neurofilament (NFL) protein, a recognized biomarker for ALS. Here, we analyzed miR-146a and Nfl expression in the sciatic nerve of G93A-SOD1 ALS mice during disease progression. The miRNA was also analyzed in the serum of affected mice and human patients, the last stratified relying on the predominant UMN or LMN clinical signs. We revealed a significant miR-146a increase and Nfl expression decrease in G93A-SOD1 peripheral nerve. In the serum of both ALS mice and human patients, the miRNA levels were reduced, discriminating UMN-predominant patients from the LMN ones. Our findings suggest a miR-146a contribution to peripheral axon impairment and its potential role as a diagnostic and prognostic biomarker for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , MicroARNs , Degeneración Nerviosa , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , MicroARNs/sangre , MicroARNs/genética , MicroARNs/metabolismo , Degeneración Nerviosa/diagnóstico , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Nervios Periféricos/patología , Superóxido Dismutasa-1/genética , Axones/patología , Proteínas de Neurofilamentos , Diagnóstico Precoz , Progresión de la Enfermedad
20.
J Neurosci ; 41(22): 4937-4947, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33893220

RESUMEN

Parkinson's disease (PD) is characterized by progressive dopamine (DA) neuron loss in the SNc. In contrast, DA neurons in the VTA are relatively protected from neurodegeneration, but the underlying mechanisms for this resilience remain poorly understood. Recent work suggests that expression of the vesicular glutamate transporter 2 (VGLUT2) selectively impacts midbrain DA neuron vulnerability. We investigated whether altered DA neuron VGLUT2 expression determines neuronal resilience in rats exposed to rotenone, a mitochondrial complex I inhibitor and toxicant model of PD. We discovered that VTA/SNc DA neurons that expressed VGLUT2 are more resilient to rotenone-induced DA neurodegeneration. Surprisingly, the density of neurons with detectable VGLUT2 expression in the VTA and SNc increases in response to rotenone. Furthermore, dopaminergic terminals within the NAc, where the majority of VGLUT2-expressing DA neurons project, exhibit greater resilience compared with DA terminals in the caudate/putamen. More broadly, VGLUT2-expressing terminals are protected throughout the striatum from rotenone-induced degeneration. Together, our data demonstrate that a distinct subpopulation of VGLUT2-expressing DA neurons are relatively protected from rotenone neurotoxicity. Rotenone-induced upregulation of the glutamatergic machinery in VTA and SNc neurons and their projections may be part of a broader neuroprotective mechanism. These findings offer a putative new target for neuronal resilience that can be manipulated to prevent toxicant-induced DA neurodegeneration in PD.SIGNIFICANCE STATEMENT Environmental exposures to pesticides contribute significantly to pathologic processes that culminate in Parkinson's disease (PD). The pesticide rotenone has been used to generate a PD model that replicates key features of the illness, including dopamine neurodegeneration. To date, longstanding questions remain: are there dopamine neuron subpopulations resilient to rotenone; and if so, what are the molecular determinants of this resilience? Here we show that the subpopulation of midbrain dopaminergic neurons that express the vesicular glutamate transporter 2 (VGLUT2) are more resilient to rotenone-induced neurodegeneration. Rotenone also upregulates VGLUT2 more broadly in the midbrain, suggesting that VGLUT2 expression generally confers increased resilience to rotenone. VGLUT2 may therefore be a new target for boosting neuronal resilience to prevent toxicant-induced DA neurodegeneration in PD.


Asunto(s)
Neuronas Dopaminérgicas/patología , Degeneración Nerviosa/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Insecticidas/toxicidad , Masculino , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Ratas , Ratas Endogámicas Lew , Rotenona/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA