Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.805
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Blood ; 141(12): 1469-1473, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36603190

RESUMEN

A redox autoinhibitory mechanism has previously been proposed, in which the reduced state of the vicinal disulfide bond in the von Willebrand factor (VWF) A2 domain allows A2 to bind to A1 and inhibit platelet adhesion to the A1 domain. The VWF A1A2A3 tridomain was expressed with and without the vicinal disulfide in A2 (C1669S/C1670S) via the atomic replacement of sulfur for oxygen to test the relevance of the vicinal disulfide to the physiological platelet function of VWF under shear flow. A comparative study of the shear-dependent platelet translocation dynamics on these tridomain variants reveals that the reduction of the vicinal disulfide moderately increases the platelet-capturing function of A1, an observation counter to the proposed hypothesis. Surface plasmon resonance spectroscopy confirms that C1669S/C1670S slightly increases the affinity of A1A2A3 binding to glycoprotein Ibα (GPIbα). Differential scanning calorimetry and hydrogen-deuterium exchange mass spectrometry demonstrate that reduction of the vicinal disulfide destabilizes the A2 domain, which consequently disrupts interactions between the A1, A2, and A3 domains and enhances the conformational dynamics of A1-domain secondary structures known to regulate the strength of platelet adhesion to VWF. This study clarifies that the reduced state of the A2 vicinal disulfide is not inhibitory but rather slightly activating.


Asunto(s)
Disulfuros , Factor de von Willebrand , Factor de von Willebrand/metabolismo , Disulfuros/análisis , Unión Proteica , Plaquetas/metabolismo , Estructura Secundaria de Proteína , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo
2.
Blood ; 138(15): 1359-1372, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34375384

RESUMEN

The αIIbß3 integrin receptor coordinates platelet adhesion, activation, and mechanosensing in thrombosis and hemostasis. Using differential cysteine alkylation and mass spectrometry, we have identified a disulfide bond in the αIIb subunit linking cysteines 490 and 545 that is missing in ∼1 in 3 integrin molecules on the resting and activated human platelet surface. This alternate covalent form of αIIbß3 is predetermined as it is also produced by human megakaryoblasts and baby hamster kidney fibroblasts transfected with recombinant integrin. From coimmunoprecipitation experiments, the alternate form selectively partitions into focal adhesions on the activated platelet surface. Its function was evaluated in baby hamster kidney fibroblast cells expressing a mutant integrin with an ablated C490-C545 disulfide bond. The disulfide mutant integrin has functional outside-in signaling but extended residency time in focal adhesions due to a reduced rate of clathrin-mediated integrin internalization and recycling, which is associated with enhanced affinity of the αIIb subunit for clathrin adaptor protein 2. Molecular dynamics simulations indicate that the alternate covalent form of αIIb requires higher forces to transition from bent to open conformational states that is in accordance with reduced affinity for fibrinogen and activation by manganese ions. These findings indicate that the αIIbß3 integrin receptor is produced in various covalent forms that have different cell surface distribution and function. The C490, C545 cysteine pair is conserved across all 18 integrin α subunits, and the disulfide bond in the αV and α2 subunits in cultured cells is similarly missing, suggesting that the alternate integrin form and function are also conserved.


Asunto(s)
Adhesiones Focales/metabolismo , Integrina beta3/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Glicoproteína IIb de Membrana Plaquetaria/metabolismo , Animales , Línea Celular , Cricetinae , Disulfuros/análisis , Adhesiones Focales/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Integrina beta3/química , Integrina beta3/genética , Simulación de Dinámica Molecular , Mutación , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Glicoproteína IIb de Membrana Plaquetaria/química , Glicoproteína IIb de Membrana Plaquetaria/genética
3.
Molecules ; 28(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36903641

RESUMEN

Ultra-high-pressure jet processing (UHPJ) is a new non-thermal processing technique that can be employed for the homogenization and the sterilization of dairy products. However, the effects on dairy products are unknown when using UHPJ for homogenization and sterilization. Thus, this study aimed to investigate the effects of UHPJ on the sensory and curdling properties of skimmed milk and the casein structure in skimmed milk. Skimmed bovine milk was treated with UHPJ using different pressures (100, 150, 200, 250, 300 MPa) and casein was extracted by isoelectric precipitation. Subsequently, the average particle size, Zeta potential, contents of free sulfhydryl and disulfide bonds, secondary structure, and surface micromorphology were all used as evaluation indicators to explore the effects of UHPJ on the structure of casein. The results showed that with an increase of pressure, the free sulfhydryl group content changed irregularly, while the disulfide bond content increased from 1.085 to 3.0944 µmol/g. The content of α-helix and random coil in the casein decreased, while the ß-sheet content increased at 100, 150, 200 MPa pressure. However, treatment with higher pressures of 250 and 300 MPa had the opposite effect. The average particle size of the casein micelles first decreased to 167.47 nm and then increased up to 174.63 nm; the absolute value of Zeta potential decreased from 28.33 to 23.77 mV. Scanning electron microscopy analysis revealed that the casein micelles had fractured into flat, loose, porous structures under pressure instead of into large clusters. After being ultra-high-pressure jet-processed, the sensory properties of skimmed milk and its fermented curd were analyzed concurrently. The results demonstrated that UHPJ could alter the viscosity and color of skimmed milk, shortening curdling time from 4.5 h to 2.67 h, and that the texture of the curd fermented with this skimmed milk could be improved to varying degrees by changing the structure of casein. Thus, UHPJ has a promising application in the manufacture of fermented milk due to its ability to enhance the curdling efficiency of skimmed milk and improve the texture of fermented milk.


Asunto(s)
Caseínas , Leche , Animales , Leche/química , Caseínas/química , Micelas , Esterilización , Disulfuros/análisis
4.
Circulation ; 143(9): 935-948, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33307764

RESUMEN

BACKGROUND: In vascular endothelial cells, cysteine metabolism by the cystathionine γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the "S-sulfhydrome" (ie, the spectrum of proteins targeted by H2Sn) in human endothelial cells. METHODS: Liquid chromatography with tandem mass spectrometry was used to identify S-sulfhydrated cysteines in endothelial cell proteins and ß3 integrin intraprotein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements, and flow-induced vasodilatation in endothelial cell-specific CSE knockout mice and in a small collective of patients with endothelial dysfunction. RESULTS: Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low); (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression; and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell "S-sulfhydrome" consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on ß3 integrin in detail we found that S-sulfhydration affected intraprotein disulfide bond formation and was required for the maintenance of an extended-open conformation of the ß leg. ß3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between ß3 integrin and Gα13 (guanine nucleotide-binding protein subunit α 13), resulting in the constitutive activation of RhoA (ras homolog family member A) and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation, and failure to detect ß3 integrin S-sulfhydration, all of which were rescued after the administration of an H2Sn supplement. CONCLUSIONS: Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short-term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease.


Asunto(s)
Cadenas beta de Integrinas/química , Compuestos de Sulfhidrilo/química , Animales , Cromatografía Líquida de Alta Presión , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Cisteína/química , Disulfuros/análisis , Disulfuros/química , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Sulfuro de Hidrógeno/farmacología , Cadenas beta de Integrinas/metabolismo , Mecanotransducción Celular , Ratones , Resistencia al Corte , Espectrometría de Masas en Tándem , Vasodilatación/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
5.
J Biol Chem ; 295(46): 15466-15481, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32873707

RESUMEN

Persulfides (RSSH/RSS-) participate in sulfur trafficking and metabolic processes, and are proposed to mediate the signaling effects of hydrogen sulfide (H2S). Despite their growing relevance, their chemical properties are poorly understood. Herein, we studied experimentally and computationally the formation, acidity, and nucleophilicity of glutathione persulfide (GSSH/GSS-), the derivative of the abundant cellular thiol glutathione (GSH). We characterized the kinetics and equilibrium of GSSH formation from glutathione disulfide and H2S. A pKa of 5.45 for GSSH was determined, which is 3.49 units below that of GSH. The reactions of GSSH with the physiologically relevant electrophiles peroxynitrite and hydrogen peroxide, and with the probe monobromobimane, were studied and compared with those of thiols. These reactions occurred through SN2 mechanisms. At neutral pH, GSSH reacted faster than GSH because of increased availability of the anion and, depending on the electrophile, increased reactivity. In addition, GSS- presented higher nucleophilicity with respect to a thiolate with similar basicity. This can be interpreted in terms of the so-called α effect, i.e. the increased reactivity of a nucleophile when the atom adjacent to the nucleophilic atom has high electron density. The magnitude of the α effect correlated with the Brønsted nucleophilic factor, ßnuc, for the reactions with thiolates and with the ability of the leaving group. Our study constitutes the first determination of the pKa of a biological persulfide and the first examination of the α effect in sulfur nucleophiles, and sheds light on the chemical basis of the biological properties of persulfides.


Asunto(s)
Disulfuros/química , Glutatión/análogos & derivados , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Disulfuros/análisis , Disulfuros/metabolismo , Glutatión/análisis , Glutatión/química , Glutatión/metabolismo , Peróxido de Hidrógeno/química , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Ácido Peroxinitroso/química , Teoría Cuántica , Espectrometría de Masas en Tándem , Termodinámica
6.
Anal Chem ; 92(16): 10920-10924, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32806900

RESUMEN

Disulfide bonds within cysteine-rich peptides are important for their stability and biological function. In this respect, the correct disulfide connectivity plays a decisive role. The differentiation of individual disulfide-bonded isomers by traditional high-performance liquid chromatography (HPLC) and mass spectrometry (MS) is limited due to the similarity in physicochemical properties of the isomers sharing the same amino acid sequence. By using trapped ion mobility spectrometry-mass spectrometry (TIMS-MS), several 2- and 3-disulfide-bonded isomers of the µ-conotoxin PIIIA were investigated for their distinguishability by collision cross section (CCS) values and their characteristic mobilogram traces. The isomers could be differentiated by TIMS-MS and also identified in mixing experiments. Thus, TIMS-MS provides a highly valuable and enriching addition to standard HPLC and MS analysis of conformational isomers of disulfide-rich peptides and proteins.


Asunto(s)
Conotoxinas/análisis , Disulfuros/análisis , Secuencia de Aminoácidos , Cromatografía Liquida , Conotoxinas/química , Disulfuros/química , Espectrometría de Movilidad Iónica , Isomerismo , Espectrometría de Masas/métodos
7.
Anal Chem ; 92(18): 12168-12175, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32786429

RESUMEN

Immunoaffinity (IA) LC-MS/MS pharmacokinetic (PK) assays are widely used in the field for antibody drug conjugates (ADCs) containing peptide linkers that are enzymatically cleavable, such as MC-ValCit-PAB. Conjugate PK assay strategies for these ADCs involve cleavage with cathepsin B or papain to release and measure the antibody-conjugated drug (acDrug) concentration. However, robust acDrug PK methods for disulfide-linked self-immolating ADCs are lacking as they are a different conjugation modality. We developed acDrug PK assays for next-generation disulfide-linked ADCs involving immunoaffinity capture, chemical cleavage, and LC-MS/MS. Disulfide-linked ADCs captured from plasma were chemically reduced at basic pH to release the linker-drug, followed by self-immolation to liberate the active drug, and quantified by MRM LC-MS/MS. Herein, we detail the development and optimization of this chemical cleavage acDrug PK assay, resulting in robust accuracy and precision (±20%). The conjugation site of the linker-drug on the antibody was found to affect the kinetics of drug release. Multiple biophysical and chemical characteristics, such as tertiary structure, fractional solvent accessibility, pKa of the conjugation site, surrounding residue's pI, and electrostatic charge, may directly impact the drug release kinetics. Similar site-specific stability has been previously reported for ADCs in vivo. The assay development and qualification data for this original assay format are presented along with its application to multiple in vitro and in vivo studies across species.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Disulfuros/farmacocinética , Inmunoconjugados/farmacocinética , Anticuerpos Monoclonales/análisis , Cromatografía Liquida , Disulfuros/análisis , Humanos , Inmunoensayo , Inmunoconjugados/análisis , Estructura Molecular , Espectrometría de Masas en Tándem
8.
Bioconjug Chem ; 31(2): 352-359, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31693856

RESUMEN

Development of novel activable dual-mode T1/T2-weighted magnetic resonance (MR) contrast agents with the same composition for dynamic precision imaging of tumors has been a challenging task. Here, we demonstrated a strategy to prepare clustered Fe3O4 nanoparticles (NPs) with redox-responsiveness to tumor microenvironment to achieve switchable T2/T1-weighted dual-mode MR imaging applications. In this study, we first synthesized ultrasmall Fe3O4 NPs with an average size of 3.3 nm and an r1 relaxivity of 4.3 mM-1 s-1, and then cross-linked the single Fe3O4 NPs using cystamine dihydrochloride (Cys) to form clustered Fe3O4/Cys NPs. The Fe3O4 nanoclusters (NCs) possess desirable colloidal stability, cytocompatibility, high r2 relaxivity (26.4 mM-1 s-1), and improved cellular uptake efficiency. Importantly, with the redox-responsiveness of the disulfide bond of Cys, the Fe3O4 NCs can be dissociated to form single particles under a reducing condition, hence displaying a switchable T2/T1-weighted MR imaging property that can be utilized for dynamic precision imaging of cancer cells in vitro and a subcutaneous tumor model in vivo due to the reductive intracellular environment of cancer cells and the tumor microenvironment. With the tumor reductive microenvironment-mediated switching of T2 to T1 MR effect and the ultrasmall size of the single particles that can pass through the kidney filter, the developed Fe3O4 NCs may be used as a promising switchable T2/T1 dual-mode MR contrast agent for precision imaging of different biosystems.


Asunto(s)
Nanopartículas Magnéticas de Óxido de Hierro/análisis , Imagen por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Animales , Línea Celular , Disulfuros/análisis , Nanopartículas Magnéticas de Óxido de Hierro/ultraestructura , Ratones , Nanotecnología , Oxidación-Reducción
9.
J Pept Sci ; 26(3): e3236, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31856422

RESUMEN

There are many examples of bioactive, disulfide-rich peptides and proteins whose biological activity relies on proper disulfide connectivity. Regioselective disulfide bond formation is a strategy for the synthesis of these bioactive peptides, but many of these methods suffer from a lack of orthogonality between pairs of protected cysteine (Cys) residues, efficiency, and high yields. Here, we show the utilization of 2,2'-dipyridyl diselenide (PySeSePy) as a chemical tool for the removal of Cys-protecting groups and regioselective formation of disulfide bonds in peptides. We found that peptides containing either Cys(Mob) or Cys(Acm) groups treated with PySeSePy in trifluoroacetic acid (TFA) (with or without triisopropylsilane (TIS) were converted to Cys-S-SePy adducts at 37 °C and various incubation times. This novel Cys-S-SePy adduct is able to be chemoselectively reduced by five-fold excess ascorbate at pH 4.5, a condition that should spare already installed peptide disulfide bonds from reduction. This chemoselective reduction by ascorbate will undoubtedly find utility in numerous biotechnological applications. We applied our new chemistry to the iodine-free synthesis of the human intestinal hormone guanylin, which contains two disulfide bonds. While we originally envisioned using ascorbate to chemoselectively reduce one of the formed Cys-S-SePy adducts to catalyze disulfide bond formation, we found that when pairs of Cys(Acm) residues were treated with PySeSePy in TFA, the second disulfide bond formed spontaneously. Spontaneous formation of the second disulfide is most likely driven by the formation of the thermodynamically favored diselenide (PySeSePy) from the two Cys-S-SePy adducts. Thus, we have developed a one-pot method for concomitant deprotection and disulfide bond formation of Cys(Acm) pairs in the presence of an existing disulfide bond.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Cisteína/química , Disulfuros/análisis , Compuestos de Organoselenio/química , 2,2'-Dipiridil/química , Ácido Ascórbico/química , Hormonas Gastrointestinales/química , Humanos , Estructura Molecular , Péptidos Natriuréticos/química , Péptidos/química , Ácido Trifluoroacético/química
10.
Andrologia ; 52(3): e13515, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31957921

RESUMEN

One of the most important causes of varicocele-related infertility is oxidative stress (OS). One of the markers considered as an indicator of OS is thiol-disulphide homeostasis (TDH). Based on the hypothesis that OS should decrease after varicocelectomy in the light of this information, in our current study, we investigated the relationship between TDH levels and sperm parameters. The data of 56 infertile varicocele men were prospectively analysed. The post-operative total and native thiol levels were significantly higher than those pre-operative total and native thiol levels (477.7 & 436.7 nmol/L, 417.6 & 372.1 nmol/L). Positive correlation was found between total thiol change and change in semen volume (ρ: .277, p: .039), ratio of spermatozoa with normal morphology (ρ: .342, p: .01), progressive (ρ: .334, p: .012) and nonprogressive motility (ρ: .385, p: .003). Positive correlation was also found between native thiol change and semen volume (ρ: .349, p: .008), ratio of spermatozoa with normal morphology (ρ: .362, p: .006), progressive (ρ: .297, p: .026) and nonprogressive motility (ρ: .368, p: .005). Change in the level of TDH was found as positively correlated with progressive and nonprogressive motility change. According to these results, OS decreases with varicocelectomy in infertile patients and TDH can be used as a useful method for measuring OS.


Asunto(s)
Disulfuros/análisis , Infertilidad Masculina/cirugía , Compuestos de Sulfhidrilo/análisis , Varicocele/cirugía , Procedimientos Quirúrgicos Vasculares , Adolescente , Adulto , Biomarcadores/análisis , Biomarcadores/metabolismo , Disulfuros/metabolismo , Humanos , Infertilidad Masculina/etiología , Infertilidad Masculina/patología , Masculino , Estrés Oxidativo , Periodo Posoperatorio , Periodo Preoperatorio , Análisis de Semen , Cordón Espermático/irrigación sanguínea , Cordón Espermático/cirugía , Espermatozoides/metabolismo , Espermatozoides/patología , Compuestos de Sulfhidrilo/metabolismo , Resultado del Tratamiento , Varicocele/complicaciones , Varicocele/patología , Adulto Joven
11.
J Environ Sci Health B ; 55(6): 566-573, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174229

RESUMEN

Tomatoes have been widely planted in greenhouses and fields in China. Soil-borne diseases are more harmful to tomatoes than other types of diseases. Dimethyl disulfide (DMDS) was used as a novel fumigant instead of methyl bromide to control soil-borne diseases. To assess the safety of DMDS for use on tomatoes, its dissipation and terminal residues were investigated at three different locations under greenhouse and open field conditions. The QuEChERS method was simplified using gas chromatography with mass spectrometry detection and combined with liquid-liquid extraction purification to allow determination of DMDS levels in both the tomatoes and the soil. The average recovery of the method was between 85.3 and 98.6%, with the relative standard deviation (RSD) ranging from to 1.9-10.3%. The dissipation and terminal residues of DMDS in the tomatoes and the soil were analyzed using the method, the results of which showed that the half-life of DMDS ranged from 0.3-6.5 d in the soil at three different locations. The terminal residues of DMDS in the tomatoes and the soil were not detected. This study provided data that the Chinese government can use to support appropriate and safe guidance for the use of DMDS on agriculture.


Asunto(s)
Disulfuros/química , Residuos de Plaguicidas/análisis , Contaminantes del Suelo/análisis , Solanum lycopersicum/química , Agricultura/métodos , China , Disulfuros/análisis , Cromatografía de Gases y Espectrometría de Masas , Semivida , Extracción Líquido-Líquido , Suelo/química , Contaminantes del Suelo/química
12.
Anal Chem ; 91(1): 965-976, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30501176

RESUMEN

Bispecific antibodies are regarded as the next generation of therapeutic modalities as they can simultaneously bind multiple targets, increasing the efficacy of treatments for several diseases and opening up previously unattainable treatment designs. Linking two half antibodies to form the knob-into-hole bispecific antibody requires an additional in vitro assembly step, starting with reduction of the antibodies and then reoxidization. Analysis of the disulfide bonds (DSBs) is vital to ensuring the correct assembly, stability, and higher-order structures of these important biomolecules because incorrect disulfide bond formation and/or presence of cysteine-related post-translational modifications can cause a loss of biological activity or even elicit an immune response from the host. Despite advancements in analytical methods, characterization of cysteine forms remains technically challenging and time-consuming. Herein, we report the development of an improved nonreduced peptide map method coupled with machine learning to enable rapid identification of disulfide bonds and cysteine-related variants in an IgG1 knob-into-hole bispecific antibody. The enhanced method offers a fast, consistent, and accurate workflow in mapping-out expected disulfide bonds in both half antibodies and bispecific antibodies and identifying cysteine-related modifications. Comparisons between two versions of the bispecific antibody molecule and analysis of stressed samples were also accomplished, indicating this method can be utilized to identify alterations originating from bioprocess changes and to determine the impact of assembly and postassembly stress conditions to product quality.


Asunto(s)
Anticuerpos Biespecíficos/química , Cisteína/análisis , Disulfuros/análisis , Inmunoglobulina G/química , Aprendizaje Automático
13.
Biochem Biophys Res Commun ; 516(4): 1090-1096, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31279525

RESUMEN

"Bottom-up" method is a popular approach for the preparation of molybdenum disulfide quantum dots (MoS2 QDs) benefitting from less time consumption and no high-powered sonication required. But the relatively low fluorescent quantum yield of the obtained MoS2 QDs and the rare study about their in vivo behavior stimulate us to do more research in this area. In this paper, we proposed a "bottom-up" hydrothermal method to prepare MoS2 QDs with a quantum yield (QY) of 34.55% by optimizing a series of reaction conditions. The successful fluorescence imaging of tumor cells in vitro and in vivo as well as the systematic in vivo behavior study such as biocompatibility, biodistribution and metabolism route provided the good basis for their wider biomedical applications.


Asunto(s)
Neoplasias del Colon/diagnóstico por imagen , Disulfuros/análisis , Molibdeno/análisis , Imagen Óptica/métodos , Puntos Cuánticos/análisis , Animales , Línea Celular Tumoral , Disulfuros/farmacocinética , Humanos , Ratones Endogámicos BALB C , Molibdeno/farmacocinética , Nanotecnología/métodos , Puntos Cuánticos/ultraestructura , Distribución Tisular
14.
Mass Spectrom Rev ; 37(1): 3-21, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27018865

RESUMEN

It is now 25 years since we commenced the study of the negative-ion fragmentations of peptides and we have recently concluded this research with investigations of the negative-ion chemistry of most post-translational functional groups. Our first negative-ion peptide review (Bowie, Brinkworth, & Dua, 2002) dealt with the characteristic backbone fragmentations and side-chain cleavages from (M-H)- ions of underivatized peptides, while the second (Bilusich & Bowie, 2009) included negative-ion backbone cleavages for Ser and Cys and some initial data on some post-translational groups including disulfides. This third and final review provides a brief summary of the major backbone and side chain cleavages outlined before (Bowie, Brinkworth, & Dua, 2002) and describes the quantum mechanical hydrogen tunneling associated with some proton transfers in enolate anion/enolate systems. The review then describes, in more depth, the negative-ion cleavages of the post-translational groups Kyn, isoAsp, pyroglu, disulfides, phosphates, and sulfates. Particular emphasis is devoted to disulfides (both intra- and intermolecular) and phosphates because of the extensive and spectacular anion chemistry shown by these groups. © 2016 Wiley Periodicals, Inc. Mass Spec Rev.


Asunto(s)
Aniones/análisis , Péptidos/química , Procesamiento Proteico-Postraduccional , Espectrometría de Masa por Ionización de Electrospray/métodos , Secuencia de Aminoácidos , Animales , Disulfuros/análisis , Humanos , Ácido Isoaspártico/análisis , Quinurenina/análisis , Fosfatos/análisis , Ácido Pirrolidona Carboxílico/análisis , Sulfatos/análisis
15.
Chem Res Toxicol ; 32(6): 1096-1102, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-30945548

RESUMEN

Glutathione (GSH) is one of the most well-studied biomarkers of oxidative stress. Under oxidizing conditions, GSH is transformed into its disulfide forms, glutathione disulfide (GSSG) and S-glutathionylated proteins (PSSG), which are considered to be reliable biomarkers of oxidative stress. In red blood cells (RBCs), the main targets of S-glutathionylation are hemoglobin and membrane-associated skeletal proteins, but S-glutathionylated hemoglobin (HbSSG) has been more thoroughly studied as a biomarker of oxidative stress than S-glutahionylated RBC membrane skeletal proteins. Here, we have investigated whether and how all these biomarkers are altered in human RBCs treated with a slow and cyclically intermittent flux of the oxidant tert-butyl hydroperoxide. To this aim, a new device for sample treatment and collection was developed. During and at the end of the treatment, GSH, GSSG, and PSSG (discriminating between HbSSG and membrane PSSG) were measured by the use of spectrophotometer (for GSSG) and HPLC (for GSH, HbSSG, and membrane PSSG). The main results of our study are as follows: (i) GSH decreased and GSSG increased, but only in the presence of the oxidant, and recovered their initial values at the end of the infusion; (ii) the increase in total PSSG concentration was lower than that of GSSG, but it kept on throughout the experiments; (iii) membrane skeletal proteins did not recover their initial values, whereas HbSSG levels recovered their initial values similarly to GSH and GSSG; (d) membrane skeletal PSSG were more stable and also more abundant than HbSSG. Western blot analysis indicated spectrin, ankyrin, and bands 3, 4.1, and 4.2 as the proteins most susceptible to S-glutathionylation in RBC membrane. These results suggest that S-glutathionylated membrane skeletal proteins can be considered as a suitable biomarker of oxidative stress. Mostly when the oxidant insult is slight and intermittent, PSSG in RBC membranes are worth measuring in addition to GSSG by virtue of their greater stability.


Asunto(s)
Eritrocitos/metabolismo , Glutatión/metabolismo , Proteínas de la Membrana/metabolismo , Estrés Oxidativo , Disulfuros/análisis , Eritrocitos/química , Glutatión/análisis , Humanos , Proteínas de la Membrana/análisis
16.
Fish Shellfish Immunol ; 95: 287-296, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31669895

RESUMEN

Disulfide bonds are fundamental in establishing Ig structure and maintaining Ig biological function. Here, we analysed disulfide bonds and free cysteine in three grass carp IgM isoforms (monomeric, dimeric/trimeric, and tetrameric IgM) by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The results revealed that Cys574 residue status at the C-terminal tail differed substantially in monomeric IgM in comparison with polymeric IgM, Cys574 was found as free thiol in monomeric IgM, while it formed disulfide linkages in dimeric/trimeric and tetrameric IgM. Five intra-chain disulfide bonds in the CH1~CH4 and CL1 domains, as well as one H-H and one H-L inter-chain disulfide linkages, were also observed and shown identical connectivity in monomeric, dimeric/trimeric, and tetrameric IgM. These findings represent the first experimental assignments of disulfide linkages of grass carp IgM and reveal that grass carp IgM isoform formation is due to alternative disulfide bonds connecting the Cys574 residue at the C-terminal tail.


Asunto(s)
Carpas/fisiología , Cisteína/análisis , Disulfuros/análisis , Proteínas de Peces/análisis , Inmunoglobulina M/análisis , Animales , Cromatografía Liquida/veterinaria , Dominios Proteicos , Isoformas de Proteínas/análisis , Espectrometría de Masa por Ionización de Electrospray/veterinaria , Espectrometría de Masas en Tándem/veterinaria
17.
Biosci Biotechnol Biochem ; 83(10): 1791-1799, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31112075

RESUMEN

To produce the antiserum against a small peptide, the target peptide-keyhole limpet hemocyanine (KLH) conjugate is generally used as an antigen, although the disulfide-rich peptide-KLH conjugate is still difficult to prepare. In our previous study, we have developed a preparation method of the disulfide-rich peptide-KLH conjugate, and this method was applied to produce the antiserum against a relaxin-like peptide. However, this method is limited to the synthetic peptide antigen, and is not applicable to a native or a recombinant peptide. In this study, to expand the applicability of this method to wide variety of peptides, we newly designed a novel thiol probe enabling the conjugation between various peptides and KLH, and applied it to produce the antiserum against relaxin-like peptide of a starfish Asterias amurensis. The antiserum obtained here showed high antibody-titer and good specificity, strongly suggesting that the method developed in this study is applicable to various peptides.


Asunto(s)
Formación de Anticuerpos/efectos de los fármacos , Disulfuros/análisis , Hemocianinas/química , Péptidos/química , Secuencia de Aminoácidos , Animales , Hemocianinas/farmacología , Sueros Inmunes , Péptidos/farmacología , Relaxina/química , Estrellas de Mar
18.
Molecules ; 24(24)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817376

RESUMEN

Fried garlic oil has been widely used in traditional Chinese cuisine and, recently, has become increasingly popular in food manufacturing. In this study, the effects of different initial and final frying temperature on the flavor characteristics and sensory profile of fried garlic oil were investigated using solvent-assisted flavor evaporation (SAFE) combined with gas chromatography-mass spectrometry (GC-MS). Results showed that the content of flavor compounds changed significantly as the frying temperature was increased. The sample that was treated at an initial temperature of 115 °C and a final temperature of 155 °C contained the highest amount of thioethers and heterocycles, mainly comprising dimethyl trisulfide, diallyl disulfide, and 2-vinyl-4H-1,2-dithiin. Partial least-squares regression elucidated the sensory attributes of fried and roasted garlic, showing a high correlation with thioethers and pyrazines. Furthermore, changes in the 2,6-dimethylpyrazine, dimethyl trisulfide, and diallyl disulfide concentrations were detected every 5 °C during the frying process (initial temperature, 115 °C; final temperature, 155 °C). Dimethyl trisulfide and diallyl disulfide concentrations showed irregular, downward trends, while 2,6-dimethylpyrazine concentration exhibited an increasing trend.


Asunto(s)
Culinaria , Ajo/química , Calor , Odorantes/análisis , Aceites de Plantas/química , Compuestos Alílicos/análisis , Disulfuros/análisis , Femenino , Humanos , Masculino , Sulfuros/análisis
19.
Molecules ; 24(18)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547318

RESUMEN

The analysis of volatile sulfur compounds using headspace solid-phase microextraction (HS-SPME) is heavily influenced by matrix effects. The effects of a wine matrix, both non-volatile and volatile components (other than ethanol) were studied on the analysis of several common sulfur volatiles found in wine, including hydrogen sulfide (H2S), methanethiol (MeSH), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), diethyl disulfide (DEDS), methyl thioacetate (MeSOAc), and ethyl thioacetate (EtSOAc). Varying levels of devolatilized wine and common wine volatiles (acids, esters, alcohols) were added to synthetic wine samples to act as matrices. Sulfur standards were added and analyzed using gas chromatography with pulsed-flame photometric detection (GC-PFPD). Five internal standards were used to find best representatives of each compound despite matrix effects. Sensitivity remained stable with the addition of devolatilized wine, while addition of volatile components decreased sensitivity. DMS was found to be best measured against EMS; DMDS and the thioacetates were best measured against DES; H2S, MeSH, DEDS, and DMTS were best measured against DIDS. The method was used to quantitate the volatile sulfur compounds in 21 wines with various ethanol contents and volatile profiles.


Asunto(s)
Microextracción en Fase Sólida/métodos , Compuestos de Azufre/análisis , Compuestos Orgánicos Volátiles/análisis , Vino/análisis , Cromatografía de Gases/métodos , Disulfuros/análisis , Análisis de los Alimentos/métodos , Sulfuro de Hidrógeno/análisis , Fotometría/métodos , Sensibilidad y Especificidad , Compuestos de Sulfhidrilo/análisis , Sulfuros/análisis , Compuestos de Azufre/química , Compuestos Orgánicos Volátiles/química
20.
Medicina (Kaunas) ; 55(6)2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31207925

RESUMEN

Background and objectives: The aim of this study was to research oxidative stress and thiol/disulphide homeostasis in Graves' patients. Materials and Methods: The study included 33 Graves' patients (research group) and 35 healthy subjects (control group). Serum oxidative stress and thiol/disulphide homeostasis (a new and automated spectrophotometric method developed by Erel and Neselioglu) parameters were studied and compared between the groups. Results: The native and total thiol levels and the native thiol/total thiol ratio were lower in patients with Graves' disease compared to the control group (p < 0.001, p < 0.001, and p = 0.006, respectively). TOS (total antioxidant status), PC (protein carbonyl), OSI (Oxidative stress index), and disulphide/native thiol and disulphide/total thiol ratios were determined to be higher in the Graves' disease group than in the control group (p < 0.001, p = 0.001, p = 0.001, p = 0.004, and p = 0.006, respectively). In the Graves' disease group, the free triiodothyronine (FT3) and free thyroxine (FT4) levels were significantly positively correlated with impaired thiol/disulphide homeostasis and oxidative stress parameters (p < 0.05). Conclusion: The results of the current study demonstrated that oxidative stress and thiol/disulphide homeostasis increased towards disulphide formation due to thiol oxidation in Graves' disease. In addition, a positive correlation of FT3 and FT4 was observed with oxidative stress parameters and impaired thiol/disulphide homeostasis.


Asunto(s)
Disulfuros/análisis , Enfermedad de Graves/sangre , Estrés Oxidativo/fisiología , Compuestos de Sulfhidrilo/análisis , Adolescente , Adulto , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Disulfuros/sangre , Femenino , Enfermedad de Graves/fisiopatología , Homeostasis/fisiología , Humanos , Masculino , Persona de Mediana Edad , Compuestos de Sulfhidrilo/sangre , Tirotropina/análisis , Tirotropina/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA