Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 562
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 66(1): 63-76.e6, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28366641

RESUMEN

Nuclear pore complex components (Nups) have been implicated in transcriptional regulation, yet what regulatory steps are controlled by metazoan Nups remains unclear. We identified the presence of multiple Nups at promoters, enhancers, and insulators in the Drosophila genome. In line with this binding, we uncovered a functional role for Nup98 in mediating enhancer-promoter looping at ecdysone-inducible genes. These genes were found to be stably associated with nuclear pores before and after activation. Although changing levels of Nup98 disrupted enhancer-promoter contacts, it did not affect ongoing transcription but instead compromised subsequent transcriptional activation or transcriptional memory. In support of the enhancer-looping role, we found Nup98 to gain and retain physical interactions with architectural proteins upon stimulation with ecdysone. Together, our data identify Nups as a class of architectural proteins for enhancers and supports a model in which animal genomes use the nuclear pore as an organizing scaffold for inducible poised genes.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Transcripción Genética , Activación Transcripcional , Animales , Animales Modificados Genéticamente , Sitios de Unión , Línea Celular , Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Ecdisona/farmacología , Genotipo , Elementos Aisladores , Mutación , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Fenotipo , Unión Proteica , Interferencia de ARN , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Transfección
2.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593917

RESUMEN

Repeated blood feedings are required for adult female mosquitoes to maintain their gonadotrophic cycles, enabling them to be important pathogen carriers of human diseases. Elucidating the molecular mechanism underlying developmental switches between these mosquito gonadotrophic cycles will provide valuable insight into mosquito reproduction and could aid in the identification of targets to disrupt these cycles, thereby reducing disease transmission. We report here that the transcription factor ecdysone-induced protein 93 (E93), previously implicated in insect metamorphic transitions, plays a key role in determining the gonadotrophic cyclicity in adult females of the major arboviral vector Aedes aegypti Expression of the E93 gene in mosquitoes is down-regulated by juvenile hormone (JH) and up-regulated by 20-hydroxyecdysone (20E). We find that E93 controls Hormone Receptor 3 (HR3), the transcription factor linked to the termination of reproductive cycles. Moreover, knockdown of E93 expression via RNAi impaired fat body autophagy, suggesting that E93 governs autophagy-induced termination of vitellogenesis. E93 RNAi silencing prior to the first gonadotrophic cycle affected normal progression of the second cycle. Finally, transcriptomic analysis showed a considerable E93-dependent decline in the expression of genes involved in translation and metabolism at the end of a reproductive cycle. In conclusion, our data demonstrate that E93 acts as a crucial factor in regulating reproductive cycle switches in adult female mosquitoes.


Asunto(s)
Aedes/metabolismo , Ecdisona/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Gonadotrofos/metabolismo , Proteínas de Insectos/metabolismo , Metamorfosis Biológica , Vitelogénesis , Aedes/genética , Aedes/crecimiento & desarrollo , Animales , Femenino , Proteínas de Insectos/genética
3.
Dev Biol ; 481: 104-115, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648816

RESUMEN

Pulses of the steroid hormone ecdysone act through transcriptional cascades to direct the major developmental transitions during the Drosophila life cycle. These include the prepupal ecdysone pulse, which occurs 10 â€‹hours after pupariation and triggers the onset of adult morphogenesis and larval tissue destruction. E93 encodes a transcription factor that is specifically induced by the prepupal pulse of ecdysone, supporting a model proposed by earlier work that it specifies the onset of adult development. Although a number of studies have addressed these functions for E93, little is known about its roles in the salivary gland where the E93 locus was originally identified. Here we show that E93 is required for development through late pupal stages, with mutants displaying defects in adult differentiation and no detectable effect on the destruction of larval salivary glands. RNA-seq analysis demonstrates that E93 regulates genes involved in development and morphogenesis in the salivary glands, but has little effect on cell death gene expression. We also show that E93 is required to direct the proper timing of ecdysone-regulated gene expression in salivary glands, and that it suppresses earlier transcriptional programs that occur during larval and prepupal stages. These studies support the model that the stage-specific induction of E93 in late prepupae provides a critical signal that defines the end of larval development and the onset of adult differentiation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Ecdisona/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Metamorfosis Biológica/efectos de los fármacos , Factores de Transcripción/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Ecdisona/metabolismo , Larva , Factores de Transcripción/genética
4.
Fish Shellfish Immunol ; 141: 109050, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37666313

RESUMEN

4-Nonylphenol (4-NP) is one of the common endocrine-disrupting chemicals (EDCs) in estuaries and coastal zones, which can exert detrimental effects on the physiological function of aquatic organisms. However, the molecular response triggered by 4-NP remains largely unknown in Pacific white shrimp (Litopenaeus vannamei). In this study, transcriptomic analysis was performed to investigate the underlying mechanisms of 4-NP toxicity in the hepatopancreas of L. vannamei. Nine RNA-Seq libraries were generated from L. vannamei at 0 h, 24 h, and 48 h following exposure to 4-NP. Compared with 0 h vs 24 h, 962 up- and 463 down-regulated differentially expressed genes (DEGs) were identified, indicating that many genes in L. vannamei were induced to resist adverse circumstances by 4-NP exposure. In contrast, 902 up- and 1027 down-regulated DEGs were revealed in the comparison of 0 h vs 48 h, demonstrating that prolonged exposure to the stress from 4-NP resulted in more inhibited genes. To validate the accuracy of the transcriptome data, eight DEGs were selected for quantitative real-time polymerase chain reaction (qRT-PCR), which were consistent with the RNA-Seq results. Through KEGG pathway enrichment analysis, three specific pathways related to hormonal effects and endocrine function of L. vannamei were enriched significantly, including tyrosine metabolism, insect hormone biosynthesis, and melanogenesis. After 4-NP stress, genes involved in tyrosine metabolism (Tyr) and melanogenesis pathway (AC, CBP, Wnt, Frizzled, Tcf, and Ras) were induced to promote melanin pigment to help shrimp resist adverse environments. In the insect hormone biosynthesis, ALDH, CYP15A1, CYP15A1/C1, and JHE genes were activated to synthesize juvenile hormone (JH), while Spook, Phm, Sad, and CYP18A1 were induced to generate molting hormone. There is an enhanced interaction between the molting hormone and JH, with JH playing a dominant role and maintaining its "classic status quo action". Our study demonstrated that 4-NP exposure led to impairments of biological functions in L. vannamei hepatopancreas. The genes and pathways identified provide novel insights into the molecular mechanisms underlying 4-NP toxicity effects in prawns and enrich the information on the toxicity mechanism of crustaceans in response to EDCs exposure.


Asunto(s)
Hepatopáncreas , Penaeidae , Animales , Hepatopáncreas/metabolismo , Ecdisona/análisis , Ecdisona/metabolismo , Ecdisona/farmacología , Perfilación de la Expresión Génica , Transcriptoma , Penaeidae/fisiología , Tirosina/metabolismo
5.
J Sci Food Agric ; 103(15): 7673-7682, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37431698

RESUMEN

BACKGROUND: Cold storage has been widely used to maintain the quality of vegetables, but whether eating cold-stored vegetables affects health remains unknown. RESULTS: This study used silkworms as an animal model to evaluate the effects of nutrient changes in cold-stored mulberry leaves (CSML) on health. Compared with fresh mulberry leaves (FML), CSML contained lower vitamin C, soluble sugars and proteins, and higher H2 O2 , suggesting decreased antioxidant ability and nutrition. The CSML did not obviously affect larval survival rate, body weight or dry matter rate, cocoon shape, weight and size, or final rates of cluster and cocooning relative to the FML, suggesting CSML did not alter overall growth and development. However, the CSML increased the initial rates of cluster and cocooning and upregulated BmRpd3, suggesting CSML shortened larval lifespan and enhanced senescence. CSML upregulated BmNOX4, downregulated BmCAT, BmSOD and BmGSH-Px and increased H2 O2 in silkworms, suggesting CSML caused oxidative stress. CSML upregulated ecdysone biosynthesis and inactivation genes and elevated ecdysone concentration in silkworms, suggesting that CSML affected hormone homeostasis. CSML upregulated apoptosis-related genes, downregulated sericin and silk fibroin genes and decreased sericin content rate in silkworms, suggesting oxidative stress and protein deficiency. CONCLUSION: Cold storage reduced nutrition and antioxidant capability of mulberry leaves. CSML did not influence growth and development of silkworm larva, but affected health by causing oxidative stress and reducing protein synthesis. The findings show that the ingredient changes in CSML had negative effects on health of silkworms. © 2023 Society of Chemical Industry.


Asunto(s)
Bombyx , Morus , Sericinas , Animales , Bombyx/genética , Bombyx/química , Seda/metabolismo , Seda/farmacología , Morus/química , Larva , Antioxidantes/metabolismo , Ecdisona/metabolismo , Ecdisona/farmacología , Fluorometolona/metabolismo , Fluorometolona/farmacología
6.
Mol Cell ; 54(1): 180-192, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24685159

RESUMEN

Steroid hormones act as important developmental switches, and their nuclear receptors regulate many genes. However, few hormone-dependent enhancers have been characterized, and important aspects of their sequence architecture, cell-type-specific activating and repressing functions, or the regulatory roles of their chromatin structure have remained unclear. We used STARR-seq, a recently developed enhancer-screening assay, and ecdysone signaling in two different Drosophila cell types to derive genome-wide hormone-dependent enhancer-activity maps. We demonstrate that enhancer activation depends on cis-regulatory motif combinations that differ between cell types and can predict cell-type-specific ecdysone targeting. Activated enhancers are often not accessible prior to induction. Enhancer repression following hormone treatment seems independent of receptor motifs and receptor binding to the enhancer, as we show using ChIP-seq, but appears to rely on motifs for other factors, including Eip74. Our strategy is applicable to study signal-dependent enhancers for different pathways and across organisms.


Asunto(s)
Ensamble y Desensamble de Cromatina/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Ecdisona/farmacología , Elementos de Facilitación Genéticos/efectos de los fármacos , Represión Epigenética/efectos de los fármacos , Motivos de Nucleótidos/efectos de los fármacos , Ovario/efectos de los fármacos , Animales , Línea Celular , Biología Computacional , Bases de Datos Genéticas , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Ovario/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Máquina de Vectores de Soporte , Activación Transcripcional/efectos de los fármacos , Transfección
7.
Biosci Biotechnol Biochem ; 86(11): 1490-1496, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35977393

RESUMEN

Ecdysone agonists are a class of insecticides that activate the ecdysone receptor (EcR) heterodimerized with the ultraspiracle (USP). Here, we report a new luciferase reporter assay for ecdysone agonists. The assay employs mammalian HEK293T cells transiently transfected with the EcR and USP genes of Chilo suppressalis, along with the taiman (Tai) gene of Drosophila melanogaster that encodes a steroid receptor coactivator. This assay system gave results consistent with those of radioligand binding assays and showed sensitivity superior to that of the existing in vitro methods. In addition, use of the heterologous host cells precludes perturbation from intrinsic players of the ecdysone signaling, which is a potential drawback of insect cell-based methods. This reporter system is suitable for detailed structure-activity analysis of ecdysone agonists and will serve as a valuable tool for the rational design of novel insect growth regulators.


Asunto(s)
Proteínas de Drosophila , Insecticidas , Receptores de Esteroides , Animales , Humanos , Ecdisona/farmacología , Ecdisona/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Luciferasas/genética , Hormonas Juveniles , Mamíferos/metabolismo
8.
Exp Parasitol ; 236-237: 108247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35307367

RESUMEN

Studies on the effects of azadirachtin treatment, ecdysone supplementation and ecdysone therapy on both the ultrastructural organization of the rectum in 5th-instar nymph of Rhodnius prolixus and the ex vivo attachment behavior of Trypanosoma cruzi under these experimental conditions were carried out. Control insects had a typical and significant organization of the rectum cuticle consisted of four main layers (procuticle, inner epicuticle, outer epicuticle, and wax layer) during the entire period of the experiment. Both azadirachtin treatment and ecdysone supplementation avoid the development of both outer epicuticle and wax layer. Oral therapy with ecdysone partially reversed the altered organization and induce the development of the four main rectal cuticle layers. In the same way, the ex vivo attachment of T. cruzi to rectal cuticle was blocked by azadirachtin treatment but ecdysone therapy also partially recovered the parasite adhesion rates to almost those detected in control insects. These results point out that ecdysone may be a factor responsible - directly or indirectly - by the modulation of rectum ultrastructural arrangement providing a superficial wax layer to the attachment followed by metacyclogenesis of T. cruzi in the rectum of its invertebrate hosts.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Trypanosoma cruzi , Animales , Enfermedad de Chagas/tratamiento farmacológico , Ecdisona/farmacología , Ninfa , Recto/parasitología , Recto/ultraestructura , Rhodnius/parasitología
9.
Nucleic Acids Res ; 48(7): 3476-3495, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32052053

RESUMEN

The MLR COMPASS complex monomethylates H3K4 that serves to epigenetically mark transcriptional enhancers to drive proper gene expression during animal development. Chromatin enrichment analyses of the Drosophila MLR complex reveals dynamic association with promoters and enhancers in embryos with late stage enrichments biased toward both active and poised enhancers. RNAi depletion of the Cmi (also known as Lpt) subunit that contains the chromatin binding PHD finger domains attenuates enhancer functions, but unexpectedly results in inappropriate enhancer activation during stages when hormone responsive enhancers are poised, revealing critical epigenetic roles involved in both the activation and repression of enhancers depending on developmental context. Cmi is necessary for robust H3K4 monomethylation and H3K27 acetylation that mark active enhancers, but not for the chromatin binding of Trr, the MLR methyltransferase. Our data reveal two likely major regulatory modes of MLR function, contributions to enhancer commissioning in early embryogenesis and bookmarking enhancers to enable rapid transcriptional re-activation at subsequent developmental stages.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Coactivadores de Receptor Nuclear/metabolismo , Animales , Línea Celular , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Ecdisona/farmacología , N-Metiltransferasa de Histona-Lisina/metabolismo , Coactivadores de Receptor Nuclear/fisiología , Regiones Promotoras Genéticas , Activación Transcripcional
10.
Ecotoxicology ; 31(8): 1231-1240, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36083423

RESUMEN

The use of insecticides to control undesirable pest species in forestry has undergone a shift from broad spectrum to narrow spectrum insecticides to reduce the risk of effects on non-target species. However, there is still risk of direct effects on non-target species as some insecticides function as hormone mimics, or through indirect pathways as the insecticide is broken down in the environment. Tebufenozide, an ecdysone hormone mimic, is the active ingredient in insecticides used in a variety of large scale pest control programs. An oft cited reason for the safety of Tebufenozide is that it is rapidly broken down in the environment by microbes. We investigated the potential non-target effects of two Tebufenozide formulations used in Canada, Mimic 240LV and Limit 240, on aquatic communities using an outdoor mesocosm experiment. We focus on direct effects on amphibian larvae (wood frog, Rana sylvaticus), zooplankton communities, and effects on biofilm and phytoplanktonic microbial communities that could arise from either direct toxicity, or from breaking down the insecticide as a nutrient and/or carbon source. There was limited evidence for direct effects on amphibian larvae or zooplankton communities. There were small but non-significant shifts in biofilm microbial communities responsible for nutrient cycling. Beta diversity in the plankton community was slightly higher among tanks treated with insecticide indicating a community dispersion/disbiosis effect. Overall, we found limited evidence of negative effects, however, subtle changes to microbial communities did occur and could indicate changes to ecosystem function.


Asunto(s)
Insecticidas , Animales , Carbono , Ecdisona/farmacología , Ecosistema , Hidrazinas , Insecticidas/farmacología , Larva , Zooplancton
11.
Arch Insect Biochem Physiol ; 105(3): e21741, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33002240

RESUMEN

Apoptosis is a process of programmed cell death that is regulated by genes independently. The Bm30kc6 gene is a kind of small molecular lipoprotein about 30 kDa, expressed highly in the late stage of the silkworm hemolymph. Our study showed that overexpression of Bm30kc6 could decrease caspase-3 activation. Meanwhile, activation of caspase-3 increased when Bm30kc6 expression was disturbed by small interfering RNA (siRNA). Cell apoptosis was decreased when Bm30kc6 was overexpressed under UV treatment. The apoptosis rate induced by actinomycin D is similar to the trend by UV. It was inferred that Bm30kc6 has an inhibitory effect on the apoptosis of silkworm cells. The apoptosis-related genes, such as BmFadd, BmDredd, and BmDaxx were increased after overexpression of Bm30kc6 or decreased after interference of siRNA. It was speculated that there was an interactive relationship between Bm30kc6, BmDaxx, BmFadd, and BmDredd in the apoptosis signaling pathways. We investigated the transcription expression of the Bm30kc6 gene in different growth stages and tissues of the silkworm. The results showed that Bm30kc6 reached its peak in the hemolymph during the 6th to 7th days of the 5th instar, or in spinning post 24 h of the silk gland. In the silkworm BmN cells treated with caspase-3/7 inhibitor, the caspase-3 enzyme activity, and the expression levels of Bm30kc6, BmFadd, BmDredd, and BmDaxx were significantly reduced. The expression levels of Bm30kc6 increased sharply when silkworms were treated by molting hormone at Day 3 or 5 of the 5th instar. The results indicated that the expression of the Bm30kc6 gene was affected by the molting hormone and was likely to be its downstream target. In conclusion, the results suggest that the Bm30kc6 gene is involved in the regulation of the apoptotic signaling pathway and plays a role in the apoptotic process.


Asunto(s)
Apoptosis/genética , Bombyx/crecimiento & desarrollo , Bombyx/genética , Animales , Bombyx/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Inhibidores de Caspasas/farmacología , Dactinomicina/farmacología , Ecdisona/farmacología , Regulación del Desarrollo de la Expresión Génica , Hemolinfa/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , ARN Interferente Pequeño , Transducción de Señal , Rayos Ultravioleta
12.
Proc Natl Acad Sci U S A ; 114(6): 1419-1423, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115695

RESUMEN

The wing polyphenism of pea aphids is a compelling laboratory model with which to study the molecular mechanisms underlying phenotypic plasticity. In this polyphenism, environmental stressors such as high aphid density cause asexual, viviparous adult female aphids to alter the developmental fate of their embryos from wingless to winged morphs. This polyphenism is transgenerational, in that the pea aphid mother experiences the environmental signals, but it is her offspring that are affected. Previous research suggested that the steroid hormone ecdysone may play a role in this polyphenism. Here, we analyzed ecdysone-related gene expression patterns and found that they were consistent with a down-regulation of the ecdysone pathway being involved in the production of winged offspring. We therefore predicted that reduced ecdysone signaling would result in more winged offspring. Experimental injections of ecdysone or its analog resulted in a decreased production of winged offspring. Conversely, interfering with ecdysone signaling using an ecdysone receptor antagonist or knocking down the ecdysone receptor gene with RNAi resulted in an increased production of winged offspring. Our results are therefore consistent with the idea that ecdysone plays a causative role in the regulation of the proportion of winged offspring produced in response to crowding in this polyphenism. Our results also show that an environmentally regulated maternal hormone can mediate phenotype production in the next generation, as well as provide significant insight into the molecular mechanisms underlying the functioning of transgenerational phenotypic plasticity.


Asunto(s)
Áfidos/efectos de los fármacos , Ecdisona/farmacología , Morfogénesis/efectos de los fármacos , Alas de Animales/efectos de los fármacos , Animales , Áfidos/embriología , Áfidos/genética , Aglomeración , Ecdisona/metabolismo , Ecdisterona/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Morfogénesis/genética , Pisum sativum/parasitología , Fenotipo , Interferencia de ARN , Receptores de Esteroides/antagonistas & inhibidores , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Transducción de Señal , Triterpenos/farmacología , Alas de Animales/embriología , Alas de Animales/metabolismo
13.
Mol Cell ; 44(1): 29-38, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21981916

RESUMEN

Insulators are multiprotein-DNA complexes thought to affect gene expression by mediating inter- and intrachromosomal interactions. Drosophila insulators contain specific DNA-binding proteins plus common components, such as CP190, that facilitate these interactions. Here, we examine changes in the distribution of Drosophila insulator proteins during the heat-shock and ecdysone responses. We find that CP190 recruitment to insulator sites is the main regulatable step in controlling insulator function during heat shock. In contrast, both CP190 and DNA-binding protein recruitment are regulated during the ecdysone response. CP190 is necessary to stabilize specific chromatin loops and for proper activation of transcription of genes regulated by this hormone. These findings suggest that cells may regulate recruitment of insulator proteins to DNA to activate insulator activity at specific sites and create distinct patterns of nuclear organization that are necessary to achieve proper gene expression in response to different stimuli.


Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Animales , Cromosomas/química , ADN/química , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Ecdisona/farmacología , Perfilación de la Expresión Génica , Genoma , Proteínas de Choque Térmico/metabolismo , Microscopía Fluorescente/métodos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Transcripción Genética
14.
Gen Comp Endocrinol ; 278: 68-78, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30243885

RESUMEN

Ecdysone, diapause hormone and a diapause hormone analog are all capable of breaking pupal diapause and prompting initiation of adult development in the cotton earworm, Helicoverpa zea. In this study we asked whether these three chemically-distinct diapause terminators elicit the same effect on expression of a collection of microRNAs and transcripts encoding components of the ecdysone signaling pathway. Injection of all three endocrine agents resulted in downregulation of one miRNA, miR-277-3p, a miRNA previously linked to the insulin/FOXO signaling pathway, and all three agents promoted upregulation of spook, a member of the ecdysone biosynthesis pathway, and iswi, an ecdysone-responsive transcript. Other miRNA and mRNA responses varied depending on the agent used to terminate diapause, thus suggesting that different endocrine pathways and mechanisms can lead to the same final developmental response.


Asunto(s)
Diapausa/genética , Ecdisona/farmacología , MicroARNs/metabolismo , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/genética , Neuropéptidos/farmacología , Zea mays/parasitología , Animales , Diapausa/efectos de los fármacos , Ecdisona/biosíntesis , Ecdisterona/farmacología , MicroARNs/genética , Mariposas Nocturnas/efectos de los fármacos , Pupa/efectos de los fármacos , Pupa/crecimiento & desarrollo , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
J Asian Nat Prod Res ; 21(3): 217-226, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30739491

RESUMEN

Two new azafluoranthene alkaloids (1 and 2), and a new phytoecdysone (3), were isolated from the stems of Cyclea barbata Miers, together with six known compounds (4-9). Their structures were elucidated by spectroscopic data analysis and comparison with published data. This is the first report of azafluoranthene alkaloids (1 and 2) and phytoecdysones (3, 8, and 9) from Cyclea genus. In in vitro bioassay, four isolates (3, 5, 6, and 9) showed moderate hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced toxicity in HepG2 cells.


Asunto(s)
Alcaloides/química , Antineoplásicos Fitogénicos/química , Cyclea/química , Ecdisona/química , Fitosteroles/química , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Supervivencia Celular/efectos de los fármacos , Ecdisona/farmacología , Células Hep G2 , Humanos , Modelos Moleculares , Estructura Molecular , Fitosteroles/farmacología
16.
Genes Dev ; 25(14): 1476-85, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21715559

RESUMEN

Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer partner, Drosophila hormone receptor 3 (DHR3). Manipulation of these interactions leads to gross alterations in feeding behavior, fat deposition, and developmental timing. These neuroendocrine interactions and consequences appear to be conserved in vertebrates.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Óxido Nítrico/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/farmacología , Proteínas de Drosophila/genética , Proteínas de Drosophila/farmacología , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Ecdisona/farmacología , Conducta Alimentaria/fisiología , Depuradores de Radicales Libres/farmacología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Larva , Metabolismo de los Lípidos , Metamorfosis Biológica/genética , Metamorfosis Biológica/fisiología , Óxido Nítrico/farmacología , Interferencia de ARN , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/farmacología
17.
Cell Physiol Biochem ; 49(4): 1633-1645, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30227391

RESUMEN

BACKGROUND/AIMS: Ecdysteroids are steroidal insect molting hormones that also exist in herbs. Ecdysteroid-containing adaptogens have been popularly used to improve well-being and by bodybuilders for muscle growth. However, the use of ecdysone in mammals is also associated with kidney growth and enlargement, indications of disturbed kidney homeostasis. The underlying pathogenic mechanism remains to be clarified. METHODS: Virtual screening tools were employed to identify compounds that are homologous to ecdysone and to predict putative ecdysone-interacting proteins. The kidney effect of ecdysone was examined in vitro and in vivo and compared with that of aldosterone. Cellular apoptosis was estimated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Cell motility was assessed by scratch-wound cell migration assay. Blood urea nitrogen was measured to evaluate renal function. Western immunblot analysis was employed to determine the expression profile of interested proteins. RESULTS: Computational molecular structure analysis revealed that ecdysone is highly homologous to aldosterone. Moreover, virtual screening based on compound-protein interaction profiles identified the Mineralocorticoid Receptor (MR) to potentially interact with ecdysone. Accordingly, to assess potential biological functions of ecdysone in mammals, ecdysone was applied to mineralocorticoid-sensitive inner medullar collecting duct cells. Ecdysone induced mesenchymal accumulation of extracellular matrix and epithelial dedifferentiation characterized by de novo expression of α-smooth muscle actin. In addition, ecdysone elicited cellular apoptosis and retarded cell motility, akin to the effect of aldosterone. In vivo, daily treatment of mice with ecdysone increased cell apoptosis in the kidney, impaired renal function and elicited early signs of renal fibrogenesis, marked by deposition of collagen and fibronectin in tubulointerstitium, reminiscent of the action of aldosterone. The MR signaling pathway is likely responsible for the cellular and pathobiological effects of ecdysone, as evidenced by strong ecdysone-induced MR nuclear translocation in renal tubular cells both in vitro and in vivo, while blockade of MR by concomitant spironolactone treatment largely abolished the detrimental effects of ecdysone. CONCLUSION: Our findings suggest that ecdysone induces mineralocorticoid-dependent activities that impair renal function and elicit renal injury.


Asunto(s)
Apoptosis/efectos de los fármacos , Ecdisona/farmacología , Mineralocorticoides/farmacología , Insuficiencia Renal Crónica/patología , Aldosterona/farmacología , Animales , Nitrógeno de la Urea Sanguínea , Desdiferenciación Celular , Línea Celular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Mineralocorticoides/metabolismo , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Proc Natl Acad Sci U S A ; 111(16): 5854-9, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711401

RESUMEN

Anopheles gambiae mosquitoes are major African vectors of malaria, a disease that kills more than 600,000 people every year. Given the spread of insecticide resistance in natural mosquito populations, alternative vector control strategies aimed at reducing the reproductive success of mosquitoes are being promoted. Unlike many other insects, An. gambiae females mate a single time in their lives and must use sperm stored in the sperm storage organ, the spermatheca, to fertilize a lifetime's supply of eggs. Maintenance of sperm viability during storage is therefore crucial to the reproductive capacity of these mosquitoes. However, to date, no information is available on the factors and mechanisms ensuring sperm functionality in the spermatheca. Here we identify cellular components and molecular mechanisms used by An. gambiae females to maximize their fertility. Pathways of energy metabolism, cellular transport, and oxidative stress are strongly regulated by mating in the spermatheca. We identify the mating-induced heme peroxidase (HPX) 15 as an important factor in long-term fertility, and demonstrate that its function is required during multiple gonotrophic cycles. We find that HPX15 induction is regulated by sexually transferred 20-hydroxy-ecdysone (20E), a steroid hormone that is produced by the male accessory glands and transferred during copulation, and that expression of this peroxidase is mediated via the 20E nuclear receptor. To our knowledge, our findings provide the first evidence of the mechanisms regulating fertility in Anopheles, and identify HPX15 as a target for vector control.


Asunto(s)
Estructuras Animales/enzimología , Anopheles/enzimología , Proteínas de Insectos/metabolismo , Peroxidasa/metabolismo , Conducta Sexual Animal , Espermatozoides/enzimología , Estructuras Animales/citología , Estructuras Animales/efectos de los fármacos , Estructuras Animales/ultraestructura , Animales , Anopheles/efectos de los fármacos , Anopheles/genética , Ecdisona/farmacología , Activación Enzimática/efectos de los fármacos , Femenino , Fertilidad/efectos de los fármacos , Fertilidad/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hemo/metabolismo , Proteínas de Insectos/genética , Masculino , Peroxidasa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Conducta Sexual Animal/efectos de los fármacos , Espermatozoides/citología , Espermatozoides/efectos de los fármacos , Espermatozoides/ultraestructura , Transcripción Genética/efectos de los fármacos
19.
Dev Biol ; 398(2): 163-76, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25476260

RESUMEN

Malpighian tubules are the osmoregulatory and detoxifying organs of Drosophila and its proper development is critical for the survival of the organism. They are made up of two major cell types, the ectodermal principal cells and mesodermal stellate cells. The principal and stellate cells are structurally and physiologically distinct from each other, but coordinate together for production of isotonic fluid. Proper integration of these cells during the course of development is an important pre-requisite for the proper functioning of the tubules. We have conclusively determined an essential role of ecdysone hormone in the development and function of Malpighian tubules. Disruption of ecdysone signaling interferes with the organization of principal and stellate cells resulting in malformed tubules and early larval lethality. Abnormalities include reduction in the number of cells and the clustering of cells rather than their arrangement in characteristic wild type pattern. Organization of F-actin and ß-tubulin also show aberrant distribution pattern. Malformed tubules show reduced uric acid deposition and altered expression of Na(+)/K(+)-ATPase pump. B2 isoform of ecdysone receptor is critical for the development of Malpighian tubules and is expressed from early stages of its development.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Ecdisona/farmacología , Túbulos de Malpighi/embriología , Morfogénesis/efectos de los fármacos , Receptores de Esteroides/metabolismo , Actinas/metabolismo , Animales , Recuento de Células , Citoesqueleto/metabolismo , Drosophila melanogaster/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Larva/efectos de los fármacos , Larva/metabolismo , Túbulos de Malpighi/anomalías , Túbulos de Malpighi/enzimología , Túbulos de Malpighi/patología , Mutación , Fenotipo , Isoformas de Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Tubulina (Proteína)/metabolismo , Ácido Úrico/metabolismo
20.
Biochim Biophys Acta ; 1849(2): 181-6, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24939835

RESUMEN

Although a great deal of information is available concerning the role of ecdysone in insect oogenesis, research has tended to focus on vitellogenesis and choriogenesis. As such, the study of oogenesis in a strict sense has received much less attention. This situation changed recently when a number of observations carried out in the meroistic polytrophic ovarioles of Drosophila melanogaster started to unravel the key roles played by ecdysone in different steps of oogenesis. Thus, in larval stages, a non-autonomous role of ecdysone, first in repression and later in activation, of stem cell niche and primordial germ cell differentiation has been reported. In the adult, ecdysone stimulates the proliferation of germline stem cells, plays a role in stem cell niche maintenance and is needed non-cell-autonomously for correct differentiation of germline stem cells. Moreover, in somatic cells ecdysone is required for 16-cell cyst formation and for ovarian follicle development. In the transition from stages 8 to 9 of oogenesis, ecdysone signalling is fundamental when deciding whether or not to go ahead with vitellogenesis depending on the nutritional status, as well as to start border cell migration. This article is part of a Special Issue entitled: Nuclear receptors in animal development.


Asunto(s)
Cucarachas/crecimiento & desarrollo , Drosophila melanogaster/crecimiento & desarrollo , Ecdisona/fisiología , Folículo Ovárico/crecimiento & desarrollo , Células Madre/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Cucarachas/genética , Cucarachas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ecdisona/farmacología , Femenino , Oogénesis/efectos de los fármacos , Oogénesis/genética , Transducción de Señal , Vitelogénesis/efectos de los fármacos , Vitelogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA