Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.036
Filtrar
Más filtros

Colección BVS Ecuador
Intervalo de año de publicación
1.
Cell ; 181(4): 784-799.e19, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32413299

RESUMEN

Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.


Asunto(s)
Acuaporina 4/metabolismo , Edema/metabolismo , Edema/terapia , Animales , Acuaporina 4/fisiología , Astrocitos/metabolismo , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Calmodulina/metabolismo , Sistema Nervioso Central/metabolismo , Edema/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Trifluoperazina/farmacología
2.
Cell ; 161(3): 610-621, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910210

RESUMEN

Cytotoxic brain edema triggered by neuronal swelling is the chief cause of mortality following brain trauma and cerebral infarct. Using fluorescence lifetime imaging to analyze contributions of intracellular ionic changes in brain slices, we find that intense Na(+) entry triggers a secondary increase in intracellular Cl(-) that is required for neuronal swelling and death. Pharmacological and siRNA-mediated knockdown screening identified the ion exchanger SLC26A11 unexpectedly acting as a voltage-gated Cl(-) channel that is activated upon neuronal depolarization to membrane potentials lower than -20 mV. Blockade of SLC26A11 activity attenuates both neuronal swelling and cell death. Therefore cytotoxic neuronal edema occurs when sufficient Na(+) influx and depolarization is followed by Cl(-) entry via SLC26A11. The resultant NaCl accumulation causes subsequent neuronal swelling leading to neuronal death. These findings shed light on unique elements of volume control in excitable cells and lay the ground for the development of specific treatments for brain edema.


Asunto(s)
Edema Encefálico/patología , Antiportadores de Cloruro-Bicarbonato/metabolismo , Neuronas/metabolismo , Animales , Edema Encefálico/metabolismo , Muerte Celular , Células Cultivadas , Antiportadores de Cloruro-Bicarbonato/química , Humanos , Técnicas In Vitro , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Ratones , Neuronas/patología , Ratas , Sodio/metabolismo , Transportadores de Sulfato
3.
Nature ; 623(7989): 992-1000, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968397

RESUMEN

Cerebral oedema is associated with morbidity and mortality after traumatic brain injury (TBI)1. Noradrenaline levels are increased after TBI2-4, and the amplitude of the increase in noradrenaline predicts both the extent of injury5 and the likelihood of mortality6. Glymphatic impairment is both a feature of and a contributor to brain injury7,8, but its relationship with the injury-associated surge in noradrenaline is unclear. Here we report that acute post-traumatic oedema results from a suppression of glymphatic and lymphatic fluid flow that occurs in response to excessive systemic release of noradrenaline. This post-TBI adrenergic storm was associated with reduced contractility of cervical lymphatic vessels, consistent with diminished return of glymphatic and lymphatic fluid to the systemic circulation. Accordingly, pan-adrenergic receptor inhibition normalized central venous pressure and partly restored glymphatic and cervical lymphatic flow in a mouse model of TBI, and these actions led to substantially reduced brain oedema and improved functional outcomes. Furthermore, post-traumatic inhibition of adrenergic signalling boosted lymphatic export of cellular debris from the traumatic lesion, substantially reducing secondary inflammation and accumulation of phosphorylated tau. These observations suggest that targeting the noradrenergic control of central glymphatic flow may offer a therapeutic approach for treating acute TBI.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Sistema Glinfático , Norepinefrina , Animales , Ratones , Antagonistas Adrenérgicos/farmacología , Antagonistas Adrenérgicos/uso terapéutico , Edema Encefálico/complicaciones , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/prevención & control , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Sistema Glinfático/efectos de los fármacos , Sistema Glinfático/metabolismo , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/prevención & control , Vasos Linfáticos/metabolismo , Norepinefrina/metabolismo , Fosforilación , Receptores Adrenérgicos/metabolismo
4.
Am J Pathol ; 194(2): 225-237, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065361

RESUMEN

Cerebral edema frequently develops in the setting of brain infection and can contribute to elevated intracranial pressure, a medical emergency. How excess fluid is cleared from the brain is not well understood. Previous studies have shown that interstitial fluid is transported out of the brain along perivascular channels that collect into the cerebrospinal fluid (CSF)-filled subarachnoid space. CSF is then removed from the central nervous system through venous and lymphatic routes. The current study tested the hypothesis that increasing lymphatic drainage of CSF would promote clearance of cerebral edema fluid during infection with the neurotropic parasite Toxoplasma gondii. Fluorescent microscopy and magnetic resonance imaging was used to show that C57BL/6 mice develop vasogenic edema 4 to 5 weeks after infection with T. gondii. Tracer experiments were used to evaluate how brain infection affects meningeal lymphatic function, which demonstrated a decreased rate in CSF outflow in T. gondii-infected mice. Next, mice were treated with a vascular endothelial growth factor (VEGF)-C-expressing viral vector, which induced meningeal lymphangiogenesis and improved CSF outflow in chronically infected mice. No difference in cerebral edema was observed between mice that received VEGF-C and those that rececived sham treatment. Therefore, although VEGF-C treatment can improve lymphatic outflow in mice infected with T. gondii, this effect does not lead to increased clearance of edema fluid from the brains of these mice.


Asunto(s)
Edema Encefálico , Toxoplasma , Toxoplasmosis , Factor C de Crecimiento Endotelial Vascular , Animales , Ratones , Encéfalo/patología , Edema Encefálico/parasitología , Edema Encefálico/terapia , Ratones Endogámicos C57BL , Toxoplasmosis/complicaciones , Toxoplasmosis/terapia , Factor C de Crecimiento Endotelial Vascular/uso terapéutico
5.
PLoS Biol ; 20(1): e3001526, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085235

RESUMEN

The NKCC1 ion transporter contributes to the pathophysiology of common neurological disorders, but its function in microglia, the main inflammatory cells of the brain, has remained unclear to date. Therefore, we generated a novel transgenic mouse line in which microglial NKCC1 was deleted. We show that microglial NKCC1 shapes both baseline and reactive microglia morphology, process recruitment to the site of injury, and adaptation to changes in cellular volume in a cell-autonomous manner via regulating membrane conductance. In addition, microglial NKCC1 deficiency results in NLRP3 inflammasome priming and increased production of interleukin-1ß (IL-1ß), rendering microglia prone to exaggerated inflammatory responses. In line with this, central (intracortical) administration of the NKCC1 blocker, bumetanide, potentiated intracortical lipopolysaccharide (LPS)-induced cytokine levels. In contrast, systemic bumetanide application decreased inflammation in the brain. Microglial NKCC1 KO animals exposed to experimental stroke showed significantly increased brain injury, inflammation, cerebral edema and worse neurological outcome. Thus, NKCC1 emerges as an important player in controlling microglial ion homeostasis and inflammatory responses through which microglia modulate brain injury. The contribution of microglia to central NKCC1 actions is likely to be relevant for common neurological disorders.


Asunto(s)
Edema Encefálico/genética , Lesiones Encefálicas/genética , Microglía/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Accidente Cerebrovascular/genética , Animales , Edema Encefálico/inducido químicamente , Edema Encefálico/metabolismo , Edema Encefálico/patología , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Bumetanida/farmacología , Embrión de Mamíferos , Regulación de la Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Inflamación , Inyecciones Intraventriculares , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/patología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Fenotipo , Miembro 2 de la Familia de Transportadores de Soluto 12/deficiencia , Accidente Cerebrovascular/inducido químicamente , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
6.
PLoS Comput Biol ; 20(5): e1012145, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805558

RESUMEN

In ischaemic stroke, a large reduction in blood supply can lead to the breakdown of the blood-brain barrier and to cerebral oedema after reperfusion therapy. The resulting fluid accumulation in the brain may contribute to a significant rise in intracranial pressure (ICP) and tissue deformation. Changes in the level of ICP are essential for clinical decision-making and therapeutic strategies. However, the measurement of ICP is constrained by clinical techniques and obtaining the exact values of the ICP has proven challenging. In this study, we propose the first computational model for the simulation of cerebral oedema following acute ischaemic stroke for the investigation of ICP and midline shift (MLS) relationship. The model consists of three components for the simulation of healthy blood flow, occluded blood flow and oedema, respectively. The healthy and occluded blood flow components are utilized to obtain oedema core geometry and then imported into the oedema model for the simulation of oedema growth. The simulation results of the model are compared with clinical data from 97 traumatic brain injury patients for the validation of major model parameters. Midline shift has been widely used for the diagnosis, clinical decision-making, and prognosis of oedema patients. Therefore, we focus on quantifying the relationship between ICP and midline shift (MLS) and identify the factors that can affect the ICP-MLS relationship. Three major factors are investigated, including the brain geometry, blood-brain barrier damage severity and the types of oedema (including rare types of oedema). Meanwhile, the two major types (stress and tension/compression) of mechanical brain damage are also presented and the differences in the stress, tension, and compression between the intraparenchymal and periventricular regions are discussed. This work helps to predict ICP precisely and therefore provides improved clinical guidance for the treatment of brain oedema.


Asunto(s)
Edema Encefálico , Simulación por Computador , Presión Intracraneal , Accidente Cerebrovascular Isquémico , Edema Encefálico/fisiopatología , Humanos , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/complicaciones , Presión Intracraneal/fisiología , Biología Computacional , Ventrículos Cerebrales/fisiopatología , Ventrículos Cerebrales/diagnóstico por imagen , Barrera Hematoencefálica/fisiopatología , Masculino
7.
J Physiol ; 602(13): 3151-3168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38924526

RESUMEN

Aquaporin-4 (AQP4) is the main water channel in brain and is enriched in perivascular astrocyte processes abutting brain microvessels. There is a rich literature on the role of AQP4 in experimental stroke. While its role in oedema formation following middle cerebral artery occlusion (MCAO) has been studied extensively, its specific impact on infarct volume remains unclear. This study investigated the effects of total and partial AQP4 deletion on infarct volume in mice subjected to distal medial cerebral artery (dMCAO) occlusion. Compared to MCAO, this model induces smaller infarcts confined to neocortex, and less oedema. We show that AQP4 deletion significantly reduced infarct volume as assessed 1 week after dMCAO, suggesting that the role of AQP4 in stroke goes beyond its effect on oedema formation and dissolution. The reduction in infarct volume was associated with increased astrocyte reactivity in the peri-infarct areas. No significant differences were observed in the number of microglia among the genotypes. These findings provide new insights in the role of AQP4 in ischaemic injury indicating that AQP4 affects both infarct volume and astrocyte reactivity in the peri-infarct zone. KEY POINTS: Aquaporin-4 (AQP4) is the main water channel in brain and is enriched in perivascular astrocyte processes abutting microvessels. A rich literature exists on the role of AQP4 in oedema formation following middle cerebral artery occlusion (MCAO). We investigated the effects of total and partial AQP4 deletion on infarct volume in mice subjected to distal medial cerebral artery occlusion (dMCAO), a model inducing smaller infarcts confined to neocortex and less oedema compared to MCAO. AQP4 deletion significantly reduced infarct volume 1 week after dMCAO, suggesting a broader role for AQP4 in stroke beyond oedema formation. The reduction in infarct volume was associated with increased astrocyte reactivity in the peri-infarct areas, while no significant differences were observed in the number of microglia among the genotypes. These findings provide new insights into the role of AQP4 in stroke, indicating that AQP4 affects both infarct volume and astrocyte reactivity in the peri-infarct zone.


Asunto(s)
Acuaporina 4 , Astrocitos , Animales , Acuaporina 4/genética , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Ratones , Masculino , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/genética , Ratones Noqueados , Edema Encefálico/patología , Edema Encefálico/metabolismo , Edema Encefálico/genética
8.
Glia ; 72(2): 322-337, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37828900

RESUMEN

Cerebral edema is one of the deadliest complications of ischemic stroke for which there is currently no pharmaceutical treatment. Aquaporin-4 (AQP4), a water-channel polarized at the astrocyte endfoot, is known to be highly implicated in cerebral edema. We previously showed in randomized studies that (S)-roscovitine, a cyclin-dependent kinase inhibitor, reduced cerebral edema 48 h after induction of focal transient ischemia, but its mechanisms of action were unclear. In our recent blind randomized study, we confirmed that (S)-roscovitine was able to reduce cerebral edema by 65% at 24 h post-stroke (t test, p = .006). Immunofluorescence analysis of AQP4 distribution in astrocytes revealed that (S)-roscovitine decreased the non-perivascular pool of AQP4 by 53% and drastically increased AQP4 clusters in astrocyte perivascular end-feet (671%, t test p = .005) compared to vehicle. Non-perivascular and clustered AQP4 compartments were negatively correlated (R = -0.78; p < .0001), suggesting a communicating vessels effect between the two compartments. α1-syntrophin, AQP4 anchoring protein, was colocalized with AQP4 in astrocyte endfeet, and this colocalization was maintained in ischemic area as observed on confocal microscopy. Moreover, (S)-roscovitine increased AQP4/α1-syntrophin interaction (40%, MW p = .0083) as quantified by proximity ligation assay. The quantified interaction was negatively correlated with brain edema in both treated and placebo groups (R = -.57; p = .0074). We showed for the first time, that a kinase inhibitor modulated AQP4/α1-syntrophin interaction, and was implicated in the reduction of cerebral edema. These findings suggest that (S)-roscovitine may hold promise as a potential treatment for cerebral edema in ischemic stroke and as modulator of AQP4 function in other neurological diseases.


Asunto(s)
Edema Encefálico , Accidente Cerebrovascular Isquémico , Humanos , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Edema Encefálico/metabolismo , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/metabolismo , Roscovitina/uso terapéutico , Roscovitina/metabolismo , Acuaporina 4/metabolismo , Astrocitos/metabolismo
9.
Clin Infect Dis ; 78(2): 457-460, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-37897407

RESUMEN

Cerebral malaria is an important cause of mortality and neurodisability in endemic regions. We show magnetic resonance imaging (MRI) features suggestive of cytotoxic and vasogenic cerebral edema followed by microhemorrhages in 2 adult UK cases, comparing them with an Indian cohort. Long-term follow-up images correlate ongoing changes with residual functional impairment.


Asunto(s)
Edema Encefálico , Malaria Cerebral , Adulto , Humanos , Malaria Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/efectos adversos , Imagen por Resonancia Magnética/métodos , Edema Encefálico/etiología , Edema Encefálico/patología
10.
Pflugers Arch ; 476(2): 197-210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994929

RESUMEN

Intermittent hypoxia training (IHT) is a promising approach that has been used to induce acclimatization to hypoxia and subsequently lower the risk of developing acute mountain sickness (AMS). However, the effects of IHT on cognitive and cerebrovascular function after acute hypoxia exposure have not been characterized. In the present study, we first confirmed that the simplified IHT paradigm was effective at relieving AMS at 4300 m. Second, we found that IHT improved participants' cognitive and neural alterations when they were exposed to hypoxia. Specifically, impaired working memory performance, decreased conflict control function, impaired cognitive control, and aggravated mental fatigue induced by acute hypoxia exposure were significantly alleviated in the IHT group. Furthermore, a reversal of brain swelling induced by acute hypoxia exposure was visualized in the IHT group using magnetic resonance imaging. An increase in cerebral blood flow (CBF) was observed in multiple brain regions of the IHT group after hypoxia exposure as compared with the control group. Based on these findings, the simplified IHT paradigm might facilitate hypoxia acclimatization, alleviate AMS symptoms, and increase CBF in multiple brain regions, thus ameliorating brain swelling and cognitive dysfunction.


Asunto(s)
Mal de Altura , Edema Encefálico , Disfunción Cognitiva , Humanos , Hipoxia/complicaciones , Mal de Altura/prevención & control , Aclimatación/fisiología , Enfermedad Aguda , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control
11.
N Engl J Med ; 384(18): 1691-1704, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33720637

RESUMEN

BACKGROUND: A hallmark of Alzheimer's disease is the accumulation of amyloid-ß (Aß) peptide. Donanemab, an antibody that targets a modified form of deposited Aß, is being investigated for the treatment of early Alzheimer's disease. METHODS: We conducted a phase 2 trial of donanemab in patients with early symptomatic Alzheimer's disease who had tau and amyloid deposition on positron-emission tomography (PET). Patients were randomly assigned in a 1:1 ratio to receive donanemab (700 mg for the first three doses and 1400 mg thereafter) or placebo intravenously every 4 weeks for up to 72 weeks. The primary outcome was the change from baseline in the score on the Integrated Alzheimer's Disease Rating Scale (iADRS; range, 0 to 144, with lower scores indicating greater cognitive and functional impairment) at 76 weeks. Secondary outcomes included the change in scores on the Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB), the 13-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog13), the Alzheimer's Disease Cooperative Study-Instrumental Activities of Daily Living Inventory (ADCS-iADL), and the Mini-Mental State Examination (MMSE), as well as the change in the amyloid and tau burden on PET. RESULTS: A total of 257 patients were enrolled; 131 were assigned to receive donanemab and 126 to receive placebo. The baseline iADRS score was 106 in both groups. The change from baseline in the iADRS score at 76 weeks was -6.86 with donanemab and -10.06 with placebo (difference, 3.20; 95% confidence interval, 0.12 to 6.27; P = 0.04). The results for most secondary outcomes showed no substantial difference. At 76 weeks, the reductions in the amyloid plaque level and the global tau load were 85.06 centiloids and 0.01 greater, respectively, with donanemab than with placebo. Amyloid-related cerebral edema or effusions (mostly asymptomatic) occurred with donanemab. CONCLUSIONS: In patients with early Alzheimer's disease, donanemab resulted in a better composite score for cognition and for the ability to perform activities of daily living than placebo at 76 weeks, although results for secondary outcomes were mixed. Longer and larger trials are necessary to study the efficacy and safety of donanemab in Alzheimer's disease. (Funded by Eli Lilly; TRAILBLAZER-ALZ ClinicalTrials.gov number, NCT03367403.).


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Placa Amiloide/tratamiento farmacológico , Actividades Cotidianas , Administración Intravenosa , Anciano , Edema Encefálico/inducido químicamente , Cognición/efectos de los fármacos , Progresión de la Enfermedad , Método Doble Ciego , Epítopos , Femenino , Humanos , Masculino , Pruebas de Estado Mental y Demencia , Ácido Pirrolidona Carboxílico/antagonistas & inhibidores , Índice de Severidad de la Enfermedad
12.
J Neuroinflammation ; 21(1): 140, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807233

RESUMEN

BACKGROUND: Perihematomal edema (PHE) after post-intracerebral hemorrhage (ICH) has complex pathophysiological mechanisms that are poorly understood. The complicated immune response in the post-ICH brain constitutes a crucial component of PHE pathophysiology. In this study, we aimed to characterize the transcriptional profiles of immune cell populations in human PHE tissue and explore the microscopic differences between different types of immune cells. METHODS: 9 patients with basal ganglia intracerebral hemorrhage (hematoma volume 50-100 ml) were enrolled in this study. A multi-stage profile was developed, comprising Group1 (n = 3, 0-6 h post-ICH, G1), Group2 (n = 3, 6-24 h post-ICH, G2), and Group3 (n = 3, 24-48 h post-ICH, G3). A minimal quantity of edematous tissue surrounding the hematoma was preserved during hematoma evacuation. Single cell RNA sequencing (scRNA-seq) was used to map immune cell populations within comprehensively resected PHE samples collected from patients at different stages after ICH. RESULTS: We established, for the first time, a comprehensive landscape of diverse immune cell populations in human PHE tissue at a single-cell level. Our study identified 12 microglia subsets and 5 neutrophil subsets in human PHE tissue. What's more, we discovered that the secreted phosphoprotein-1 (SPP1) pathway served as the basis for self-communication between microglia subclusters during the progression of PHE. Additionally, we traced the trajectory branches of different neutrophil subtypes. Finally, we also demonstrated that microglia-produced osteopontin (OPN) could regulate the immune environment in PHE tissue by interacting with CD44-positive cells. CONCLUSIONS: As a result of our research, we have gained valuable insight into the immune-microenvironment within PHE tissue, which could potentially be used to develop novel treatment modalities for ICH.


Asunto(s)
Edema Encefálico , Hemorragia Cerebral , Progresión de la Enfermedad , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Humanos , Edema Encefálico/inmunología , Edema Encefálico/patología , Edema Encefálico/genética , Edema Encefálico/metabolismo , Edema Encefálico/etiología , Hemorragia Cerebral/inmunología , Hemorragia Cerebral/patología , Hemorragia Cerebral/genética , Masculino , Femenino , Persona de Mediana Edad , Análisis de Secuencia de ARN/métodos , Anciano , Hematoma/patología , Hematoma/inmunología , Hematoma/genética
13.
J Neuroinflammation ; 21(1): 106, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658922

RESUMEN

BACKGROUND: Intracerebral hemorrhage (ICH) is a devastating neurological disease causing severe sensorimotor dysfunction and cognitive decline, yet there is no effective treatment strategy to alleviate outcomes of these patients. The Mas axis-mediated neuroprotection is involved in the pathology of various neurological diseases, however, the role of the Mas receptor in the setting of ICH remains to be elucidated. METHODS: C57BL/6 mice were used to establish the ICH model by injection of collagenase into mice striatum. The Mas receptor agonist AVE0991 was administered intranasally (0.9 mg/kg) after ICH. Using a combination of behavioral tests, Western blots, immunofluorescence staining, hematoma volume, brain edema, quantitative-PCR, TUNEL staining, Fluoro-Jade C staining, Nissl staining, and pharmacological methods, we examined the impact of intranasal application of AVE0991 on hematoma absorption and neurological outcomes following ICH and investigated the underlying mechanism. RESULTS: Mas receptor was found to be significantly expressed in activated microglia/macrophages, and the peak expression of Mas receptor in microglia/macrophages was observed at approximately 3-5 days, followed by a subsequent decline. Activation of Mas by AVE0991 post-treatment promoted hematoma absorption, reduced brain edema, and improved both short- and long-term neurological functions in ICH mice. Moreover, AVE0991 treatment effectively attenuated neuronal apoptosis, inhibited neutrophil infiltration, and reduced the release of inflammatory cytokines in perihematomal areas after ICH. Mechanistically, AVE0991 post-treatment significantly promoted the transformation of microglia/macrophages towards an anti-inflammatory, phagocytic, and reparative phenotype, and this functional phenotypic transition of microglia/macrophages by Mas activation was abolished by both Mas inhibitor A779 and Nrf2 inhibitor ML385. Furthermore, hematoma clearance and neuroprotective effects of AVE0991 treatment were reversed after microglia depletion in ICH. CONCLUSIONS: Mas activation can promote hematoma absorption, ameliorate neurological deficits, alleviate neuron apoptosis, reduced neuroinflammation, and regulate the function and phenotype of microglia/macrophages via Akt/Nrf2 signaling pathway after ICH. Thus, intranasal application of Mas agonist ACE0991 may provide promising strategy for clinical treatment of ICH patients.


Asunto(s)
Hematoma , Accidente Cerebrovascular Hemorrágico , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G , Recuperación de la Función , Animales , Ratones , Hematoma/tratamiento farmacológico , Hematoma/patología , Hematoma/metabolismo , Masculino , Accidente Cerebrovascular Hemorrágico/patología , Accidente Cerebrovascular Hemorrágico/tratamiento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Edema Encefálico/etiología , Edema Encefálico/metabolismo , Edema Encefálico/tratamiento farmacológico , Microglía/efectos de los fármacos , Microglía/metabolismo
14.
Ann Neurol ; 93(4): 793-804, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36571388

RESUMEN

OBJECTIVE: Reperfusion therapy is highly beneficial for ischemic stroke. Reduction in both infarct growth and edema are plausible mediators of clinical benefit with reperfusion. We aimed to quantify these mediators and their interrelationship. METHODS: In a pooled, patient-level analysis of the EXTEND-IA trials and SELECT study, we used a mediation analysis framework to quantify infarct growth and cerebral edema (midline shift) mediation effect on successful reperfusion (modified Treatment in Cerebral Ischemia ≥ 2b) association with functional outcome (modified Rankin Scale distribution). Furthermore, we evaluated an additional pathway to the original hypothesis, where infarct growth mediated successful reperfusion effect on midline shift. RESULTS: A total 542 of 665 (81.5%) eligible patients achieved successful reperfusion. Baseline clinical and imaging characteristics were largely similar between those achieving successful versus unsuccessful reperfusion. Median infarct growth was 12.3ml (interquartile range [IQR] = 1.8-48.4), and median midline shift was 0mm (IQR = 0-2.2). Of 249 (37%) demonstrating a midline shift of ≥1mm, median shift was 2.75mm (IQR = 1.89-4.21). Successful reperfusion was associated with reductions in both predefined mediators, infarct growth (ß = -1.19, 95% confidence interval [CI] = -1.51 to -0.88, p < 0.001) and midline shift (adjusted odds ratio = 0.36, 95% CI = 0.23-0.57, p < 0.001). Successful reperfusion association with improved functional outcome (adjusted common odds ratio [acOR] = 2.68, 95% CI = 1.86-3.88, p < 0.001) became insignificant (acOR = 1.39, 95% CI = 0.95-2.04, p = 0.094) when infarct growth and midline shift were added to the regression model. Infarct growth and midline shift explained 45% and 34% of successful reperfusion effect, respectively. Analysis considering an alternative hypothesis demonstrated consistent results. INTERPRETATION: In this mediation analysis from a pooled, patient-level cohort, a significant proportion (~80%) of successful reperfusion effect on functional outcome was mediated through reduction in infarct growth and cerebral edema. Further studies are required to confirm our findings, detect additional mediators to explain successful reperfusion residual effect, and identify novel therapeutic targets to further enhance reperfusion benefits. ANN NEUROL 2023;93:793-804.


Asunto(s)
Edema Encefálico , Isquemia Encefálica , Procedimientos Endovasculares , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/complicaciones , Edema Encefálico/etiología , Edema Encefálico/complicaciones , Resultado del Tratamiento , Estudios Prospectivos , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/terapia , Isquemia Encefálica/complicaciones , Infarto Cerebral/diagnóstico por imagen , Infarto Cerebral/terapia , Infarto Cerebral/complicaciones , Reperfusión/métodos , Procedimientos Endovasculares/métodos
15.
Brain Behav Immun ; 116: 160-174, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38070624

RESUMEN

Acute cerebral ischemia triggers a profound inflammatory response. While macrophages polarized to an M2-like phenotype clear debris and facilitate tissue repair, aberrant or prolonged macrophage activation is counterproductive to recovery. The inhibitory immune checkpoint Programmed Cell Death Protein 1 (PD-1) is upregulated on macrophage precursors (monocytes) in the blood after acute cerebrovascular injury. To investigate the therapeutic potential of PD-1 activation, we immunophenotyped circulating monocytes from patients and found that PD-1 expression was upregulated in the acute period after stroke. Murine studies using a temporary middle cerebral artery (MCA) occlusion (MCAO) model showed that intraperitoneal administration of soluble Programmed Death Ligand-1 (sPD-L1) significantly decreased brain edema and improved overall survival. Mice receiving sPD-L1 also had higher performance scores short-term, and more closely resembled sham animals on assessments of long-term functional recovery. These clinical and radiographic benefits were abrogated in global and myeloid-specific PD-1 knockout animals, confirming PD-1+ monocytes as the therapeutic target of sPD-L1. Single-cell RNA sequencing revealed that treatment skewed monocyte maturation to a non-classical Ly6Clo, CD43hi, PD-L1+ phenotype. These data support peripheral activation of PD-1 on inflammatory monocytes as a therapeutic strategy to treat neuroinflammation after acute ischemic stroke.


Asunto(s)
Edema Encefálico , Accidente Cerebrovascular Isquémico , Humanos , Ratones , Animales , Monocitos/metabolismo , Edema Encefálico/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo
16.
Am J Med Genet A ; 194(2): 226-232, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798908

RESUMEN

Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) and PEHO-like syndromes are very rare infantile disorders characterized by profound intellectual disability, hypotonia, convulsions, optic, and progressive brain atrophy. Many causative genes for PEHO and PEHO-like syndromes have been identified including CCDC88A. So far, only five patients from two unrelated families with biallelic CCDC88A variants have been reported in the literature. Herein, we describe a new family from Egypt with a lethal epileptic encephalopathy. Our patient was the youngest child born to a highly consanguineous couple and had a family history of five deceased sibs with the same condition. She presented with postnatal microcephaly, poor visual responsiveness, and epilepsy. Her brain MRI showed abnormal cortical gyration with failure of opercularization of the insula, hypogenesis of corpus callosum, colpocephaly, reduced white matter, hypoplastic vermis, and brain stem. Whole exome sequencing identified a new homozygous frameshift variant in CCDC88A gene (c.1795_1798delACAA, p.Thr599ValfsTer4). Our study presents the third reported family with this extremely rare disorder. We also reviewed all described cases to better refine the phenotypic spectrum associated with biallelic loss of function variants in the CCDC88A gene.


Asunto(s)
Edema Encefálico , Enfermedades Neurodegenerativas , Atrofia Óptica , Espasmos Infantiles , Humanos , Niño , Femenino , Espasmos Infantiles/genética , Edema Encefálico/genética , Atrofia Óptica/genética , Síndrome , Proteínas de Microfilamentos/genética , Proteínas de Transporte Vesicular/genética
17.
Biotechnol Bioeng ; 121(1): 39-52, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37668193

RESUMEN

Pediatric patients suffering traumatic brain injuries may require a decompressive craniectomy to accommodate brain swelling by removing a portion of the skull. Once the brain swelling subsides, the preserved calvarial bone flap is ideally replaced as an autograft during a cranioplasty to restore protection of the brain, as it can reintegrate and grow with the patient during immature skeletal development. However, pediatric patients exhibit a high prevalence of calvarial bone flap resorption post-cranioplasty, causing functional and cosmetic morbidity. This review examines possible solutions for mitigating pediatric calvarial bone flap resorption by delineating methods of stimulating mechanosensitive cell populations with mechanical forces. Mechanotransduction plays a critical role in three main cell types involved with calvarial bone repair, including mesenchymal stem cells, osteoblasts, and dural cells, through mechanisms that could be exploited to promote osteogenesis. In particular, physiologically relevant mechanical forces, including substrate deformation, external forces, and ultrasound, can be used as tools to stimulate bone repair in both in vitro and in vivo systems. Ultimately, combating pediatric calvarial flap resorption may require a combinatorial approach using both cell therapy and bioengineering strategies.


Asunto(s)
Resorción Ósea , Edema Encefálico , Craniectomía Descompresiva , Procedimientos de Cirugía Plástica , Humanos , Niño , Edema Encefálico/complicaciones , Mecanotransducción Celular , Craniectomía Descompresiva/efectos adversos , Colgajos Quirúrgicos , Resorción Ósea/epidemiología , Resorción Ósea/etiología
18.
Neurochem Res ; 49(3): 718-731, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38063947

RESUMEN

Cerebral ischemic stroke is a cerebrovascular disease, which is related to DNA damage. Many researches have shown that Ku70 is a key regulator for DNA damage. Here, we aimed to explore Ku70 roles in cerebral ischemic stroke and its potential molecular mechanism. In our study, neural stem cells (NSCs) were induced by oxygen-glucose deprivation/reoxygenation (OGD/R) for constructing cerebral ischemic stroke cell model. CCK8 assay, Brdu/GFP staining, flow cytometry and TUNEL staining were performed to examine cell proliferation, cell cycle and apoptosis, respectively. Relative mRNA and protein levels were detected by quantitative real-time PCR and western blot analysis, respectively. Ku70 positive cells were examined by immunofluorescence staining. Comet assay was employed to determine DNA damage. Animal experiments were performed to assess the effect of transplanting NSCs and Ku70-overexpressed NSCs on neurological deficits, infarct volume, brain edema and blood‒brain barrier (BBB) integrity in middle cerebral artery occlusion (MCAO) model. Our data found that Ku70 expression was decreased in NSCs after OGD/R. Overexpression of Ku70 reduced DNA damage and apoptosis of OGD/R-induced NSCs. Knockdown of Ku70 promoted the activity of ATM/p53. Moreover, KU60019 (ATM-specific inhibitor) reversed the promoting effects of Ku70 silencing on DNA damage and apoptosis in OGD/R-induced NSCs. In animal experiments, transplantation of NSCs-overexpressed Ku70 enhanced cell survival, improved motor function, reduced infarct volume, relieved brain edema and alleviated BBB dysfunction in MCAO mice models. In conclusion, Ku70 overexpression repressed the DNA damage and apoptosis in OGD/R-induced NSCs by regulating ATM/p53 pathway, and transplantation of NSCs-overexpressed Ku70 played neuroprotective effects in MCAO mice models.


Asunto(s)
Edema Encefálico , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Células-Madre Neurales , Daño por Reperfusión , Accidente Cerebrovascular , Ratones , Animales , Edema Encefálico/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular/metabolismo , Células-Madre Neurales/metabolismo , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/metabolismo , Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Apoptosis
19.
Pediatr Res ; 95(4): 1088-1094, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37990079

RESUMEN

BACKGROUND: To analyze the clinical characteristics and outcomes of children with severe neurological symptoms associated with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection during the Omicron pandemic in China. METHODS: This study used a questionnaire to obtain data from pediatric intensive care unit (PICU) centers in seven tertiary hospitals in Northeast China from December 1, 2022, to January 31, 2023. RESULTS: A total of 255 patients were confirmed to have SARS-CoV-2 infection, and 45 patients (17.65 %) were included in this study. Of these, seven (15.6%) patients died, and the median time from admission to death was 35 h (IQR, 14-120 h). Twenty (52.6%) survivors experienced neurological sequelae. Patients with platelet counts lower than 100 × 109/L had a higher incidence of complications such as multiple organ dysfunction, mechanical ventilation rate, and mortality. Cranial magnetic resonance imaging (MRI) always reveals cerebral tissue edema, with some severe lesions forming a softening site. CONCLUSION: Children infected with SARS-CoV-2 often exhibit severe neurological symptoms, and in some cases, they may rapidly develop malignant cerebral edema or herniation, leading to a fatal outcome. An early decrease in platelet count may associated with an unfavorable prognosis. IMPACT: Since early December 2022, China has gradually adjusted its prevention and control policy of SARS-CoV-2; Omicron outbreaks have occurred in some areas for a relatively short period. Due to the differences in ethnicity, endemic strains and vaccination status, there was a little difference from what has been reported about children with SARS-CoV-2 infection with severe neurological symptoms in abroad. This is the first multicenter clinical study in children with nervous system involvement after acute SARS-CoV-2 infection in China, and helpful for pediatricians to have a more comprehensive understanding of the clinical symptoms and prognosis of such disease.


Asunto(s)
Edema Encefálico , COVID-19 , Niño , Humanos , SARS-CoV-2 , Pandemias , China/epidemiología , Estudios Retrospectivos
20.
Brain ; 146(8): 3444-3454, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37143309

RESUMEN

Brain oedema is a life-threatening complication of various neurological conditions. Understanding molecular mechanisms of brain volume regulation is critical for therapy development. Unique insight comes from monogenic diseases characterized by chronic brain oedema, of which megalencephalic leukoencephalopathy with subcortical cysts (MLC) is the prototype. Variants in MLC1 or GLIALCAM, encoding proteins involved in astrocyte volume regulation, are the main causes of MLC. In some patients, the genetic cause remains unknown. We performed genetic studies to identify novel gene variants in MLC patients, diagnosed by clinical and MRI features, without MLC1 or GLIALCAM variants. We determined subcellular localization of the related novel proteins in cells and in human brain tissue. We investigated functional consequences of the newly identified variants on volume regulation pathways using cell volume measurements, biochemical analysis and electrophysiology. We identified a novel homozygous variant in AQP4, encoding the water channel aquaporin-4, in two siblings, and two de novo heterozygous variants in GPRC5B, encoding the orphan G protein-coupled receptor GPRC5B, in three unrelated patients. The AQP4 variant disrupts membrane localization and thereby channel function. GPRC5B, like MLC1, GlialCAM and aquaporin-4, is expressed in astrocyte endfeet in human brain. Cell volume regulation is disrupted in GPRC5B patient-derived lymphoblasts. GPRC5B functionally interacts with ion channels involved in astrocyte volume regulation. In conclusion, we identify aquaporin-4 and GPRC5B as old and new players in genetic brain oedema. Our findings shed light on the protein complex involved in astrocyte volume regulation and identify GPRC5B as novel potentially druggable target for treating brain oedema.


Asunto(s)
Edema Encefálico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Humanos , Proteínas de la Membrana/genética , Edema Encefálico/genética , Edema Encefálico/metabolismo , Mutación/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Encéfalo/metabolismo , Astrocitos/metabolismo , Acuaporina 4/genética , Acuaporina 4/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA