Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(3): 165-189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38462500

RESUMEN

The chemical characterization of the heaviest elements at the farthest reach of the periodic table (PT) and the classification of these elements in the PT are undoubtedly crucial and challenging subjects in chemical and physical sciences. The elucidation of the influence of relativistic effects on their outermost electronic configuration is also a critical and fascinating aspect. However, the heaviest elements with atomic numbers Z ≳ 100 must be produced at accelerators using nuclear reactions of heavy ions and target materials. Therefore, production rates for these elements are low, and their half-lives are as short as a few seconds to a few minutes; they are usually available in a quantity of only a few atoms at a time. Here, we review some highlighted studies on heavy actinide and light transactinide chemical characterization performed at the Japan Atomic Energy Agency tandem accelerator facility. We discuss briefly the prospects for future studies of the heaviest elements.


Asunto(s)
Elementos de Series Actinoides , Elementos de la Serie Transactínida , Humanos , Elementos de Series Actinoides/química , Japón
2.
Chemphyschem ; 24(2): e202200516, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36149643

RESUMEN

The use of actinides for medical, scientific and technological purposes has gained momentum in the recent years. This creates a need to understand their interactions with biomolecules, both at the interface and as they become complexed. Calculation of the Gibbs binding energies of the ions to biomolecules, i. e., the Gibbs energy change associated with a transfer of an ion from the water phase to its binding site, could help to understand the actinides' toxicities and to design agents that bind them with high affinities. To this end, there is a need to obtain accurate reference values for actinide hydration, that for most actinides are not available from experiment. In this study, a set of ionic radii is developed that enables future calculations of binding energies for Pu3+ and five actinides with renewed scientific and technological interest: Ac3+ , Am3+ , Cm3+ , Bk3+ and Cf3+ . Reference hydration energies were calculated using quantum chemistry and ion solvation theory and agree well for all ions except Ac3+ , where ion solvation theory seems to underestimate the magnitude of the Gibbs hydration energy. The set of radii and reference energies that are presented here provide means to calculate binding energies for actinides and biomolecules.


Asunto(s)
Elementos de Series Actinoides , Plutonio , Actinio , Termodinámica , Elementos de Series Actinoides/química , Agua/química
3.
Environ Sci Technol ; 57(49): 20830-20843, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37897703

RESUMEN

Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.


Asunto(s)
Elementos de Series Actinoides , Metaloproteínas , Quelantes , Elementos de Series Actinoides/química , Minerales , Carbonato de Calcio , Carbonatos
4.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952278

RESUMEN

Even 155 years after their first synthesis, Schiff bases continue to surprise inorganic chemists. Schiff-base ligands have played a major role in the development of modern coordination chemistry because of their relevance to a number of interdisciplinary research fields. The chemistry, properties and applications of transition metal and lanthanoid complexes with Schiff-base ligands are now quite mature. On the contrary, the coordination chemistry of Schiff bases with actinoid (5f-metal) ions is an emerging area, and impressive research discoveries have appeared in the last 10 years or so. The chemistry of actinoid ions continues to attract the intense interest of many inorganic groups around the world. Important scientific challenges are the understanding the basic chemistry associated with handling and recycling of nuclear materials; investigating the redox properties of these elements and the formation of complexes with unusual metal oxidation states; discovering materials for the recovery of trans-{UVIO2}2+ from the oceans; elucidating and manipulating actinoid-element multiple bonds; discovering methods to carry out multi-electron reactions; and improving the 5f-metal ions' potential for activation of small molecules. The study of 5f-metal complexes with Schiff-base ligands is a currently "hot" topic for a variety of reasons, including issues of synthetic inorganic chemistry, metalosupramolecular chemistry, homogeneous catalysis, separation strategies for nuclear fuel processing and nuclear waste management, bioinorganic and environmental chemistry, materials chemistry and theoretical chemistry. This almost-comprehensive review, covers aspects of synthetic chemistry, reactivity and the properties of dinuclear and oligonuclear actinoid complexes based on Schiff-base ligands. Our work focuses on the significant advances that have occurred since 2000, with special attention on recent developments. The review is divided into eight sections (chapters). After an introductory section describing the organization of the scientific information, Sections 2 and 3 deal with general information about Schiff bases and their coordination chemistry, and the chemistry of actinoids, respectively. Section 4 highlights the relevance of Schiff bases to actinoid chemistry. Sections 5-7 are the "main menu" of the scientific meal of this review. The discussion is arranged according the actinoid (only for Np, Th and U are Schiff-base complexes known). Sections 5 and 7 are further arranged into parts according to the oxidation states of Np and U, respectively, because the coordination chemistry of these metals is very much dependent on their oxidation state. In Section 8, some concluding comments are presented and a brief prognosis for the future is attempted.


Asunto(s)
Elementos de Series Actinoides/química , Complejos de Coordinación/química , Modelos Químicos , Bases de Schiff/química , Catálisis , Técnicas de Química Sintética/métodos , Técnicas de Química Sintética/tendencias , Complejos de Coordinación/síntesis química , Ligandos , Estructura Molecular , Oxidación-Reducción , Bases de Schiff/síntesis química
5.
Phys Chem Chem Phys ; 21(29): 16017-16031, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31304940

RESUMEN

Enterobactin (Ent) is a typical siderophore with strong iron affinity. Its dynamics in its intact form and holo state remains to be studied to understand its role in the in vivo behavior of metal ions and to facilitate its potential application in drug design and environmental remediation. Here, we report molecular dynamics simulations of both Ent enantiomers and their complexes with key actinides (Am3+, Cm3+, Th4+, U4+, Np4+ and Pu4+) to study the folding equilibria of Ent enantiomers and their binding affinity with actinides. For comparison, the ferric cation was also considered. In their neutral state, both enantiomers may exist in their folded and extended states in the aqueous phase with the former more stable owing to the favorable cation-π, π-π, and H-bond interactions. A helicity preference was observed in the folded states of Ent enantiomers, which was solidified when binding with Fe3+ while disrupted when binding with actinides. Upon binding with metal ions, the dynamics of Ent enantiomers exhibited dependence on the metal ions, and appeared to be more flexible in An3+/4+-Ent complexes than in Fe3+-Ent complexes. The conformational analysis and the energy decomposition of M3+/4+-Ent complexes indicated that their distinct conformational variations and dynamic fluxionality are enthalpy driven behaviors and dependent on the nature of the loaded metal ions. The Fe3+-Ent complexes had a more compact conformation, while the relatively loosely bound An3+/4+-Ent complexes allowed solvent water molecules to access the first coordination shell of An3+/4+ and weaken the interaction between An3+/4+ and Ent. This work is expected to enrich our knowledge of the folding equilibria of Ent enantiomers and their An3+/4+-Ent complexes, and contribute to communities that concern the in vivo and in vitro behaviors of Ent enantiomers and actinides.


Asunto(s)
Elementos de Series Actinoides/química , Enterobactina/química , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Estereoisomerismo , Termodinámica
6.
Proc Natl Acad Sci U S A ; 112(33): 10342-7, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240330

RESUMEN

Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.


Asunto(s)
Elementos de Series Actinoides/química , Proteínas Portadoras/química , Proteínas Portadoras/fisiología , Proteínas/química , Elementos de Series Actinoides/farmacocinética , Quelantes/química , Cristalografía por Rayos X , Humanos , Concentración de Iones de Hidrógeno , Iones , Cinética , Elementos de la Serie de los Lantanoides , Ligandos , Lipocalina 2 , Luminiscencia , Metales/química , Conformación Molecular , Plantas de Energía Nuclear , Fotoquímica , Unión Proteica , Liberación de Radiactividad Peligrosa , Espectrofotometría , Electricidad Estática , Difracción de Rayos X
7.
Chirality ; 29(7): 332-339, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28466966

RESUMEN

Luminescent spectroscopy combined with the technique of luminescent probing with rare earth ions (europium, gadolinium, terbium) and an actinide ion (uranyl) was used to differentiate enantiopure and racemic alanine, the simplest chiral proteinogenic amino acid. Using the achiral luminescent probes, small differences between pure L and DL alanine in the solid state were strongly amplified. Based on the observed electronic transitions of the probes, the position of the triplet level of the coordinated alanine was estimated. Formation of homo- and heterochiral complexes between enantiomers of alanine and the metal ions is discussed as a possible mechanism of chiral self-discrimination.


Asunto(s)
Alanina/química , Sustancias Luminiscentes/química , Elementos de Series Actinoides/química , Elementos de la Serie de los Lantanoides/química , Mediciones Luminiscentes , Estereoisomerismo
8.
J Am Chem Soc ; 138(23): 7232-5, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27203357

RESUMEN

There is still an evident need for selective and stable ligands able to separate actinide(III) from lanthanide(III) metal ions in view of the treatment of the accumulated radioactive waste and of the recycling of minor actinides. We have herein demonstrated that hydrophilic 2,6-bis-triazolyl-pyridines are able to strip all actinides in all the different oxidation states from a diglycolamide-containing kerosene solution into an acidic aqueous phase. The ascertained high actinide selectivity, efficiency, extraction kinetics, and chemical/radiolytic stability spotlight this hydrophilic class of ligands as exceptional candidates for advanced separation processes fundamental for closing the nuclear fuel cycle and solving the environmental issues related to the management of existing nuclear waste.


Asunto(s)
Elementos de Series Actinoides/química , Elementos de la Serie de los Lantanoides/química , Energía Nuclear , Piridinas/química , Residuos Radiactivos/prevención & control , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ligandos , Modelos Químicos , Oxidación-Reducción , Radioquímica
9.
Inorg Chem ; 55(2): 877-86, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26727631

RESUMEN

The complexation of uranium and europium, in oxidation states +VI and +III, respectively, was investigated with pertinent bio-inorganic systems. Three aspartate-rich pentapeptides with different structural properties were selected for study to rationalize the structure-affinity relationships. Thermodynamic results, crosschecked by both isothermal titration calorimetry and time-resolved laser fluorescence spectroscopy, showed different affinity depending on the peptide for both Eu(III) and U(VI). The thermodynamic aspects were correlated to structural predictions, which were acquired by density functional theory quantum chemical calculations and from IR and extended X-ray absorption fine structure experiments. The combination of these microscopic properties revealed that carbonyl-metal interactions affected the entropy in the case of europium, while the larger uranyl cation was mostly affected by preorganization and steric effects, so that the affinity was enhanced through enthalpy. The approach described here revealed various microscopic aspects governing peptide actinide affinity. Highlighting these mechanisms should certainly contribute to the rational synthesis of higher affinity biomimetic aspartic ligands.


Asunto(s)
Elementos de Series Actinoides/química , Péptidos/química , Estructura Molecular , Termodinámica , Espectroscopía de Absorción de Rayos X
10.
Inorg Chem ; 55(6): 2728-36, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26954703

RESUMEN

Because of their presence in the nuclear fuel cycle, neptunium and uranium are two actinides of main interest in case of internal contamination. Complexation of U(VI) and Np(V) by the target protein calmodulin (CaM(WT)) was therefore studied herein. Both actinides have two axial oxygen atoms, which, charge aside, makes them very similar structurally wise. This work combines spectroscopy and theoretical density functional theory (DFT) calculations. Structural characterization was performed by extended X-ray absorption fine structure (EXAFS) at the L(III)-edge for each studied actinide. Models for the binding site of the protein were developed and then refined by using DFT to fit the obtained experimental EXAFS data. The effect of hydrolysis was also considered for both actinides (the uranyl experiment was performed at pH 3 and 6, while the neptunyl experiment was conducted at pH 7 and 9). The effect of the pH variation was apparent on the coordination sphere of the uranyl complexes, while the neptunyl complex characteristics remained stable under both studied conditions. The DFT calculations showed that at near physiological pH the complex formed by CaM(WT) with the neptunium ion is more stable than the one formed with uranyl.


Asunto(s)
Elementos de Series Actinoides/química , Calmodulina/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Espectroscopía de Absorción de Rayos X
11.
Environ Sci Technol ; 50(7): 3852-9, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26965642

RESUMEN

The permeable reactive barrier (PRB) technique has attracted an increasing level of attention for the in situ remediation of contaminated groundwater. In this study, the macroscopic uptake behaviors and microscopic speciation of Eu(III) on hydroxyapatite (HAP) were investigated by a combination of theoretical modeling, batch experiments, powder X-ray diffraction (PXRD) fitting, and X-ray absorption spectroscopy (XAS). The underlying removal mechanisms were identified to further assess the application potential of HAP as an effective PRB backfill material. The macroscopic analysis revealed that nearly all dissolved Eu(III) in solution was removed at pH 6.5 within an extremely short reaction time of 5 min. In addition, the thermodynamic calculations, desorption experiments, and PXRD and XAS analyses definitely confirmed the formation of the EuPO4·H2O(s) phase during the process of uptake of dissolved Eu(III) by HAP via the dissolution-precipitation mechanism. A detailed comparison of the present experimental findings and related HAP-metal systems suggests that the relative contribution of precipitation to the total Eu(III) removal increases as the P:Eu ratio decreases. The dosage of HAP-based PRB for the remediation of groundwater polluted by Eu(III) and analogous trivalent actinides [e.g., Am(III) and Cm(III)] should be strictly controlled depending on the dissolved Eu(III) concentration to obtain an optimal P:M (M represents Eu, Am, or Cm) ratio and treatment efficiency.


Asunto(s)
Durapatita/química , Europio/química , Purificación del Agua/métodos , Elementos de Series Actinoides/química , Agua Subterránea/química , Concentración de Iones de Hidrógeno , Modelos Teóricos , Termodinámica , Contaminantes Químicos del Agua/química , Contaminantes Radiactivos del Agua/química , Espectroscopía de Absorción de Rayos X , Difracción de Rayos X
12.
Phys Chem Chem Phys ; 17(11): 7537-47, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25706188

RESUMEN

Four types of reaction mechanisms for the oxo ligand exchange of monomeric and dimeric neptunyl(VI) hydroxide in aqueous solution were explored computationally using density functional theory (DFT) and ab initio classical molecular dynamics. The obtained results were compared with previous studies on the oxo exchange of uranyl hydroxide, as well as with experiments. It is found that the stable T-shaped [NpO3(OH)3](3-) intermediate is a key species for oxo exchange in the proton transfer in mononuclear Path I and binuclear Path IV, similar to the case of uranyl(VI) hydroxide. Path I is thought to be the preferred oxo exchange mechanism for neptunyl(VI) hydroxide in our calculations, due to the lower activation energy (22.7 and 13.1 kcal mol(-1) for ΔG(‡) and ΔH(‡), respectively) of the overall reaction. Path II via a cis-neptunyl structure assisted by a water molecule might be a competitive channel against Path I with a mononuclear mechanism, owing to a rapid dynamical process occurring in Path II. In Path IV with the binuclear mechanism, oxo exchange is accomplished via the interaction between [NpO2(OH)4](2-) and T-shaped [NpO3(OH)3](3-) with a low activation energy for the rate-determining step, however, the overall energy required to fulfill the reaction is slightly higher than that in mononuclear Path I, suggesting a possible binuclear process in the higher energy region. The chemical bonding evolution along the reaction pathways was discussed by using topological methodologies of the electron localization function (ELF).


Asunto(s)
Elementos de Series Actinoides/química , Simulación de Dinámica Molecular , Neptunio/química , Oxígeno/química , Agua/química , Conformación Molecular , Protones , Soluciones , Termodinámica
13.
Angew Chem Int Ed Engl ; 54(1): 82-100, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25384554

RESUMEN

Most homogeneous catalysis relies on the design of metal complexes to trap and convert substrates or small molecules to value-added products. Organometallic lanthanide compounds first gave a tantalizing glimpse of their potential for catalytic C-H bond transformations with the selective cleavage of one C-H bond in methane by bis(permethylcyclopentadienyl)lanthanide methyl [(η(5) -C5 Me5 )2 Ln(CH3 )] complexes some 25 years ago. Since then, numerous metal complexes from across the periodic table have been shown to selectively activate hydrocarbon C-H bonds, but the challenges of closing catalytic cycles still remain; many f-block complexes show great potential in this important area of chemistry.


Asunto(s)
Elementos de Series Actinoides/química , Complejos de Coordinación/química , Hidrocarburos/química , Metales de Tierras Raras/química , Catálisis , Oxidación-Reducción
14.
Inorg Chem ; 53(18): 9607-14, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25184822

RESUMEN

A series of actinide (An) species of L-An-N compounds [An = Pa-Pu, L = [N(CH2CH2NSiPr(i)3)3](3-), Pr(i) = CH(CH3)2] have been investigated using scalar relativistic density functional theory (DFT) without considering spin-orbit coupling effects. The ground state geometric and electronic structures and natural bond orbital (NBO) analysis of actinide compounds were studied systematically in neutral and anionic forms. It was found that with increasing actinide atomic number, the bond length of terminal multiple An-N1 bond decreases, in accordance with the actinide contraction. The Mayer bond order of An-N1 decreases gradually from An = Pa to Pu, which indicates a decrease in bond strength. The terminal multiple bond for L-An-N compounds contains one σ and two π molecular orbitals, and the contributions of the 6d orbital to covalency are larger in magnitude than the 5f orbital based on NBO analysis and topological analysis of electron density. This work may help in understanding of the bonding nature of An-N multiple bonds and elucidating the trends and electronic structure changes across the actinide series. It can also shed light on the construction of novel An-N multiple bonds.


Asunto(s)
Elementos de Series Actinoides/química , Complejos de Coordinación/química , Nitrógeno/química , Modelos Moleculares , Teoría Cuántica
15.
Molecules ; 19(8): 10755-802, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25061724

RESUMEN

Recent advances (during the 2007-2014 period) in the coordination and organometallic chemistry of compounds containing natural and artificially prepared radionuclides (actinides and technetium), are reviewed. Radioactive isotopes of naturally stable elements are not included for discussion in this work. Actinide and technetium complexes with O-, N-, N,O, N,S-, P-containing ligands, as well π-organometallics are discussed from the view point of their synthesis, properties, and main applications. On the basis of their properties, several mono-, bi-, tri-, tetra- or polydentate ligands have been designed for specific recognition of some particular radionuclides, and can be used in the processes of nuclear waste remediation, i.e., recycling of nuclear fuel and the separation of actinides and fission products from waste solutions or for analytical determination of actinides in solutions; actinide metal complexes are also usefulas catalysts forcoupling gaseous carbon monoxide,as well as antimicrobial and anti-fungi agents due to their biological activity. Radioactive labeling based on the short-lived metastable nuclide technetium-99m ((99m)Tc) for biomedical use as heart, lung, kidney, bone, brain, liver or cancer imaging agents is also discussed. Finally, the promising applications of technetium labeling of nanomaterials, with potential applications as drug transport and delivery vehicles, radiotherapeutic agents or radiotracers for monitoring metabolic pathways, are also described.


Asunto(s)
Complejos de Coordinación/química , Elementos Radiactivos/química , Elementos de Series Actinoides/química , Ligandos , Compuestos Organometálicos/química , Tecnecio/química
16.
J Chromatogr A ; 1719: 464751, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38387151

RESUMEN

Two new extraction chromatographic resins (ECRs) were prepared by impregnating two exotic diglycolamide (DGA) ligands (having three or four DGA moieties tethered to aza-crown ether scaffolds) dissolved in an ionic liquid onto an inert solid support. A room temperature ionic liquid (RTIL) was used for enhancing the performance of the ECRs. The ECR containing triaza-9-crown-3 functionalized with three DGA moieties (TAM-3-DGA), and tetraaza-12-crown-4 tethered with four DGA arms (TAM-4-DGA) were evaluated for the separation of Am3+ and Pu4+from nitric acid solutions. The resin capacity for Eu3+ was 9.52 mg/g and 7.24 mg/g for TAM-3-DGA and TAM-4-DGA resins, respectively. Similarly, the resin capacity for Pu4+was 7.44 mg/g and 5.72 mg/g for TAM-3-DGA and TAM-4-DGA resins, respectively. These maximum loading values corresponded to the formation of a 1:1 metal/ligand complex for the Eu3+ ion and a 1:2 metal/ligand complex for the Pu4+ ion. The sorption of Eu3+and Pu4+on the resins followed a chemisorption phenomenon on both resins. The sorbed Eu3+and Pu4+ions from the resin phase could be efficiently desorbed with complexing ligands such as guanidine carbonate/HEDTA and oxalic acid, respectively.


Asunto(s)
Elementos de Series Actinoides , Complejos de Coordinación , Éteres Corona , Líquidos Iónicos , Líquidos Iónicos/química , Ligandos , Elementos de Series Actinoides/química , Cromatografía , Iones
17.
J Chromatogr A ; 1727: 464992, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38761701

RESUMEN

Post-detonation nuclear forensics capabilities depend on the ability to rapidly isolate radionuclides to improve measurement quality. In this work an extraction chromatography resin was developed utilizing thenoyltrifluoroacetone and 1-octanol supported on Eichrom prefilter resin. The resin was tested in nitric and hydrochloric acid matrices. In nitric acid the resin was able to extract zirconium, while in hydrochloric acid matrices it was possible to extract iron and gallium. In all acid conditions tested, gold was retained but can be eluted from the column with 10 % thiourea.


Asunto(s)
Oro , Oro/química , Elementos de Series Actinoides/aislamiento & purificación , Elementos de Series Actinoides/química , Ácido Clorhídrico/química , Resinas Sintéticas/química , Circonio/química , Ácido Nítrico/química
18.
J Am Chem Soc ; 135(7): 2676-83, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23363005

RESUMEN

Worldwide stocks of actinides and lanthanide fission products produced through conventional nuclear spent fuel are increasing continuously, resulting in a growing risk of environmental and human exposure to these toxic radioactive metal ions. Understanding the biomolecular pathways involved in mammalian uptake, transport and storage of these f-elements is crucial to the development of new decontamination strategies and could also be beneficial to the design of new containment and separation processes. To start unraveling these pathways, our approach takes advantage of the unique spectroscopic properties of trivalent curium. We clearly show that the human iron transporter transferrin acts as an antenna that sensitizes curium luminescence through intramolecular energy transfer. This behavior has been used to describe the coordination of curium within the two binding sites of the protein and to investigate the recognition of curium-transferrin complexes by the cognate transferrin receptor. In addition to providing the first protein-curium spectroscopic characterization, these studies prove that transferrin receptor-mediated endocytosis is a viable mechanism of intracellular entry for trivalent actinides such as curium and provide a new tool utilizing the specific luminescence of curium for the determination of other biological actinide transport mechanisms.


Asunto(s)
Elementos de Series Actinoides/química , Curio/química , Transferrina/química , Elementos de Series Actinoides/metabolismo , Cromatografía Líquida de Alta Presión , Complejos de Coordinación/química , Curio/metabolismo , Humanos , Luminiscencia , Termodinámica , Transferrina/metabolismo
19.
Inorg Chem ; 52(5): 2533-41, 2013 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-23394577

RESUMEN

Diglycolamide-functionalized calix[4]arenes (C4DGAs) with varying structural modifications were evaluated for actinide complexation from their extraction behavior toward actinide ions such as UO2(2+), Pu(4+), PuO2(2+), and Am(3+) in the room temperature ionic liquid (RTIL) 1-n-octyl-3-methylimidazolium bis(trifluoromethane)sulfonamide (C8mimNTf2). The formation constants were calculated for Am(3+) which showed a significant role of ligand structure, nature of substituents, and spacer length. Although the alkyl substituents on the amidic nitrogen increase the extraction efficiency of americium at lower acidity because of the inductive effect of the alkyl groups, at higher acidity the steric crowding around the ligating site determines the extraction efficiency. All C4DGAs formed 1:1 complexes with Am(3+) while for the analogous Eu(3+) complexes no inner sphere water molecules were detected and the asymmetry of the metal ligand complex differed from one another as proved by time-resolved laser induced fluorescence spectroscopy (TRLIFS). Thermodynamic studies indicated that the extraction process, predominant by the Am(3+)-C4DGA complexation reaction, is exothermic. The unique role of the medium on Am(3+) complexation with the C4DGA molecules with varying spacer length, L-IV and L-V, was noticed for the first time with a reversal in the trend observed in the RTIL compared to that seen in a nonpolar molecular diluent like n-dodecane. Various factors leading to a more preorganized structure were responsible for favorable metal ion complexation. The solvent systems show promise to be employed for nuclear waste remediation, and sustainability options were evaluated from radiolytic stability as well as stripping studies.


Asunto(s)
Elementos de Series Actinoides/química , Calixarenos/química , Glicolatos/química , Líquidos Iónicos/química , Fenoles/química , Monitoreo de Radiación , Termodinámica , Líquidos Iónicos/síntesis química , Iones/química , Rayos Láser , Ligandos , Estructura Molecular , Espectrometría de Fluorescencia
20.
Environ Sci Technol ; 47(21): 11942-59, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24070142

RESUMEN

A novel nanotechnology for the separation of radioactive waste that uses magnetic nanoparticles (MNPs) conjugated with actinide specific chelators (MNP-Che) is reviewed with a focus on design and process development. The MNP-Che separation process is an effective way of separating heat generating minor actinides (Np, Am, Cm) from spent nuclear fuel solution to reduce the radiological hazard. It utilizes coated MNPs to selectively adsorb the contaminants onto their surfaces, after which the loaded particles are collected using a magnetic field. The MNP-Che conjugates can be recycled by stripping contaminates into a separate, smaller volume of solution, and then become the final waste form for disposal after reusing number of times. Due to the highly selective chelators, this remediation method could be both simple and versatile while allowing the valuable actinides to be recovered and recycled. Key issues standing in the way of large-scale application are stability of the conjugates and their dispersion in solution to maintain their unique properties, especially large surface area, of MNPs. With substantial research progress made on MNPs and their surface functionalization, as well as development of environmentally benign chelators, this method could become very flexible and cost-effective for recycling used fuel. Finally, the development of this nanotechnology is summarized and its future direction is discussed.


Asunto(s)
Elementos de Series Actinoides/química , Quelantes/química , Nanopartículas de Magnetita/química , Nanotecnología/métodos , Residuos Radiactivos/análisis , Adsorción , Residuos Radiactivos/prevención & control , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA