RESUMEN
MRP RNA is an abundant, essential noncoding RNA whose functions have been proposed in yeast but are incompletely understood in humans. Mutations in the genomic locus for MRP RNA cause pleiotropic human diseases, including cartilage hair hypoplasia (CHH). Here we applied CRISPR-Cas9 genome editing to disrupt the endogenous human MRP RNA locus, thereby attaining what has eluded RNAi and RNase H experiments: elimination of MRP RNA in the majority of cells. The resulting accumulation of ribosomal RNA (rRNA) precursor-analyzed by RNA fluorescent in situ hybridization (FISH), Northern blots, and RNA sequencing-implicates MRP RNA in pre-rRNA processing. Amelioration of pre-rRNA imbalance is achieved through rescue of MRP RNA levels by ectopic expression. Furthermore, affinity-purified MRP ribonucleoprotein (RNP) from HeLa cells cleaves the human pre-rRNA in vitro at at least one site used in cells, while RNP isolated from cells with CRISPR-edited MRP loci loses this activity, and ectopic MRP RNA expression restores cleavage activity. Thus, a role for RNase MRP in human pre-rRNA processing is established. As demonstrated here, targeted CRISPR disruption is a valuable tool for functional studies of essential noncoding RNAs that are resistant to RNAi and RNase H-based degradation.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Precursores del ARN/metabolismo , Proliferación Celular/genética , Endorribonucleasas/aislamiento & purificación , Células HeLa , Humanos , Mutación , Precursores del ARN/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa H/metabolismoRESUMEN
The CRISPR system provides adaptive immunity against mobile genetic elements in prokaryotes, using small CRISPR RNAs that direct effector complexes to degrade invading nucleic acids1-3. Type III effector complexes were recently demonstrated to synthesize a novel second messenger, cyclic oligoadenylate, on binding target RNA4,5. Cyclic oligoadenylate, in turn, binds to and activates ribonucleases and other factors-via a CRISPR-associated Rossman-fold domain-and thereby induces in the cell an antiviral state that is important for immunity. The mechanism of the 'off-switch' that resets the system is not understood. Here we identify the nuclease that degrades these cyclic oligoadenylate ring molecules. This 'ring nuclease' is itself a protein of the CRISPR-associated Rossman-fold family, and has a metal-independent mechanism that cleaves cyclic tetraadenylate rings to generate linear diadenylate species and switches off the antiviral state. The identification of ring nucleases adds an important insight to the CRISPR system.
Asunto(s)
Nucleótidos de Adenina/metabolismo , Proteínas Asociadas a CRISPR/antagonistas & inhibidores , Proteínas Asociadas a CRISPR/clasificación , Sistemas CRISPR-Cas/genética , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Oligorribonucleótidos/metabolismo , Sulfolobus solfataricus/enzimología , Proteínas Asociadas a CRISPR/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/aislamiento & purificación , Cinética , Modelos Moleculares , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Sistemas de Mensajero Secundario , Sulfolobus solfataricus/genéticaRESUMEN
Combinations of ribonucleases (RNases) are commonly used to digest RNA into oligoribonucleotide fragments prior to liquid chromatography-mass spectrometry (LC-MS) analysis. The distribution of the RNase target sequences or nucleobase sites within an RNA molecule is critical for achieving a high mapping coverage. Cusativin and MC1 are nucleotide-specific endoribonucleases encoded in the cucumber and bitter melon genomes, respectively. Their high specificity for cytidine (Cusativin) and uridine (MC1) make them ideal molecular biology tools for RNA modification mapping. However, heterogenous recombinant expression of either enzyme has been challenging because of their high toxicity to expression hosts and the requirement of posttranslational modifications. Here, we present two highly efficient and time-saving protocols that overcome these hurdles and enhance the expression and purification of these RNases. We first purified MC1 and Cusativin from bacteria by expressing and shuttling both enzymes to the periplasm as MBP-fusion proteins in T7 Express lysY/IqE. coli strain at low temperature. The RNases were enriched using amylose affinity chromatography, followed by a subsequent purification via a C-terminal 6xHIS tag. This fast, two-step purification allows for the purification of highly active recombinant RNases significantly surpassing yields reported in previous studies. In addition, we expressed and purified a Cusativin-CBD fusion enzyme in P. pastoris using chitin magnetic beads. Both Cusativin variants exhibited a similar sequence preference, suggesting that neither posttranslational modifications nor the epitope-tags have a substantial effect on the sequence specificity of the enzyme.
Asunto(s)
Endorribonucleasas , Escherichia coli , Expresión Génica , Ribonucleasas , Endorribonucleasas/biosíntesis , Endorribonucleasas/química , Endorribonucleasas/genética , Endorribonucleasas/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Ribonucleasas/biosíntesis , Ribonucleasas/química , Ribonucleasas/genética , Ribonucleasas/aislamiento & purificaciónRESUMEN
RNase MRP is a ribonucleoprotein complex involved in the endoribonucleolytic cleavage of different RNAs. Mutations in the RNA component of the RNP are the cause of cartilage hair hypoplasia. Patients with cartilage hair hypoplasia are characterized by skeletal dysplasia. Biochemical purification of RNase MRP is desired to be able to study its biochemical function, composition and activity in both healthy and disease situations. Due to the high similarity with RNase P, a method to specifically isolate the RNase MRP complex is currently lacking. By fusing a streptavidin-binding RNA aptamer, the S1m-aptamer, to the RNase MRP RNA we have been able to compare the relative expression levels of wildtype and mutant MRP RNAs. Moreover, we were able to isolate active RNase MRP complexes. We observed that mutant MRP RNAs are expressed at lower levels and have lower catalytic activity compared to the wildtype RNA. The observation that a single nucleotide substitution at position 40 in the P3 domain but not in other domains of RNase MRP RNA severely reduced the binding of the Rpp25 protein subunit confirmed that the P3 region harbours the main binding site for this protein. Altogether, this study shows that the RNA aptamer tagging approach can be used to identify RNase MRP substrates, but also to study the effect of mutations on MRP RNA expression levels and RNase MRP composition and endoribonuclease activity.
Asunto(s)
Endorribonucleasas/aislamiento & purificación , Endorribonucleasas/metabolismo , Fraccionamiento Químico/métodos , Endorribonucleasas/genética , Activación Enzimática , Pruebas de Enzimas , Expresión Génica , Humanos , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Mutación , Proteínas Recombinantes de FusiónRESUMEN
SARS-CoV-2 is responsible for COVID-19, a human disease that has caused over 2 million deaths, stretched health systems to near-breaking point and endangered economies of countries and families around the world. Antiviral treatments to combat COVID-19 are currently lacking. Remdesivir, the only antiviral drug approved for the treatment of COVID-19, can affect disease severity, but better treatments are needed. SARS-CoV-2 encodes 16 non-structural proteins (nsp) that possess different enzymatic activities with important roles in viral genome replication, transcription and host immune evasion. One key aspect of host immune evasion is performed by the uridine-directed endoribonuclease activity of nsp15. Here we describe the expression and purification of nsp15 recombinant protein. We have developed biochemical assays to follow its activity, and we have found evidence for allosteric behaviour. We screened a custom chemical library of over 5000 compounds to identify nsp15 endoribonuclease inhibitors, and we identified and validated NSC95397 as an inhibitor of nsp15 endoribonuclease in vitro. Although NSC95397 did not inhibit SARS-CoV-2 growth in VERO E6 cells, further studies will be required to determine the effect of nsp15 inhibition on host immune evasion.
Asunto(s)
Antivirales/química , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Endorribonucleasas/antagonistas & inhibidores , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Regulación Alostérica , Animales , Chlorocebus aethiops , Endorribonucleasas/aislamiento & purificación , Endorribonucleasas/metabolismo , Pruebas de Enzimas , Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Técnicas In Vitro , Cinética , Naftoquinonas/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas/química , Soluciones , Células Vero , Proteínas no Estructurales Virales/aislamiento & purificación , Proteínas no Estructurales Virales/metabolismoRESUMEN
DNA damage induces transcriptional repression of E2F1 target genes and a reduction in histone H3-Thr11 phosphorylation (H3-pThr11 ) at E2F1 target gene promoters. Dephosphorylation of H3-pThr11 is partly mediated by Chk1 kinase and protein phosphatase 1γ (PP1γ) phosphatase. Here, we isolated NIPP1 as a regulator of PP1γ-mediated H3-pThr11 by surveying nearly 200 PP1 interactor proteins. We found that NIPP1 inhibits PP1γ-mediated dephosphorylation of H3-pThr11 both in vivo and in vitro. By generating NIPP1-depleted cells, we showed that NIPP1 is required for cell proliferation and the expression of E2F1 target genes. Upon DNA damage, activated protein kinase A (PKA) phosphorylated the NIPP1-Ser199 residue, adjacent to the PP1 binding motif (RVxF), and triggered the dissociation of NIPP1 from PP1γ, leading to the activation of PP1γ. Furthermore, the inhibition of PKA activity led to the activation of E2F target genes. Statistical analysis confirmed that the expression of NIPP1 was positively correlated with E2F target genes. Taken together, these findings demonstrate that the PP1 regulatory subunit NIPP1 modulates E2F1 target genes by linking PKA and PP1γ during DNA damage.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Daño del ADN , Factor de Transcripción E2F1/genética , Endorribonucleasas/metabolismo , Histonas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión al ARN/metabolismo , Sistemas CRISPR-Cas , Proliferación Celular , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Endorribonucleasas/deficiencia , Endorribonucleasas/aislamiento & purificación , Represión Epigenética , Regulación de la Expresión Génica , Humanos , Fosfoproteínas Fosfatasas/deficiencia , Fosfoproteínas Fosfatasas/aislamiento & purificación , Fosforilación , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/aislamiento & purificación , Receptores de Neuropéptido Y/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética , Rayos UltravioletaRESUMEN
Toxin-antitoxin (TA) systems are ubiquitously found in bacteria and are related to cell maintenance and survival under environmental stresses such as heat shock, nutrient starvation, and antibiotic treatment. Here, we report for the first time the crystal structure of the Staphylococcus aureus TA complex YoeBSa1-YefMSa1 at a resolution of 1.7 Å. This structure reveals a heterotetramer with a 2:2 stoichiometry between YoeBSa1 and YefMSa1. The N-terminal regions of the YefMSa1 antitoxin form a homodimer characteristic of a hydrophobic core, and the C-terminal extended region of each YefMSa1 protomer makes contact with each YoeBSa1 monomer. The binding stoichiometry of YoeBSa1 and YefMSa1 is different from that of YoeB and YefM of E. coli (YoeBEc and YefMEc), which is the only structural homologue among YoeB-YefM families; however, the structures of individual YoeBSa1 and YefMSa1 subunits in the complex are highly similar to the corresponding structures in E. coli. In addition, docking simulation with a minimal RNA substrate provides structural insight into the guanosine specificity of YoeBSa1 for cleavage in the active site, which is distinct from the specificity of YoeBEc for adenosine rather than guanosine. Given the previous finding that YoeBSa1 exhibits fatal toxicity without inducing persister cells, the structure of the YoeBSa1-YefMSa1 complex will contribute to the design of a new category of anti-staphylococcal agents that disrupt the YoeBSa1-YefMSa1 complex and increase YoeBSa1 toxicity.
Asunto(s)
Proteínas Bacterianas/química , Toxinas Bacterianas/química , Endorribonucleasas/química , Staphylococcus aureus/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/genética , Toxinas Bacterianas/aislamiento & purificación , Endorribonucleasas/genética , Endorribonucleasas/aislamiento & purificación , Simulación del Acoplamiento Molecular , Conformación ProteicaRESUMEN
BACKGROUND: Influenza is a severe contagious disease especially in children, elderly and immunocompromised patients. Beside vaccination, the discovery of new anti-viral agents represents an important strategy to encounter seasonal and pandemic influenza A virus (IAV) strains. The bacterial extra-cellular ribonuclease binase is a well-studied RNase from Bacillus pumilus. Treatment with binase was shown to improve survival of laboratory animals infected with different RNA viruses. Although binase reduced IAV titer in vitro and in vivo, the mode of action (MOA) of binase against IAV at the molecular level has yet not been studied in depth and remains elusive. METHODS: To analyze whether binase impairs virus replication by direct interaction with the viral particle we applied a hemagglutination inhibition assay and monitored the integrity of the viral RNA within the virus particle by RT-PCR. Furthermore, we used Western blot and confocal microscopy analysis to study whether binase can internalize into MDCK-II cells. By primer extension we examined the effect of binase on the integrity of viral RNAs within the cells and using a mini-genome system we explored the effect of binase on the viral expression. RESULTS: We show that (i) binase does not to attack IAV particle-protected viral RNA, (ii) internalized binase could be detected within the cytosol of MDCK-II cells and that (iii) binase impairs IAV replication by specifically degrading viral RNA species within the infected MDCK-II cells without obvious effect on cellular mRNAs. CONCLUSION: Our data provide novel evidence suggesting that binase is a potential anti-viral agent with specific intra-cellular MOA.
Asunto(s)
Antivirales/farmacología , Citoplasma/metabolismo , Endorribonucleasas/farmacología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Virus de la Influenza A/efectos de los fármacos , ARN Viral/metabolismo , Replicación Viral/efectos de los fármacos , Animales , Antivirales/aislamiento & purificación , Antivirales/metabolismo , Supervivencia Celular/efectos de los fármacos , Perros , Endorribonucleasas/aislamiento & purificación , Endorribonucleasas/metabolismo , Células HEK293 , Humanos , Concentración 50 Inhibidora , Células de Riñón Canino Madin Darby , Proteínas Virales/genéticaRESUMEN
The RIB (ribonuclease T2) of Citrus grandis var. Shatianyu Hort involved in self-incompatibility (SI) mechanism was identified by prokaryotic expression. RT-qPCR results showed that the expression level of RIB in self pollinated stigma is significantly higher than that in cross pollinated stigma. A vector for prokaryotic expression of RIB was constructed after codon-optimization, and the recombinant protein was induced and purified. In vitro pollen germination test indicated that the RIB protein markedly inhibited pollen germination and pollen tube growth. The result is helpful for better understanding of the molecular mechanism underlying the SI in C. grandis.
Asunto(s)
Citrus/fisiología , Endorribonucleasas/fisiología , Autoincompatibilidad en las Plantas con Flores , Citrus/enzimología , Citrus/genética , Citrus/crecimiento & desarrollo , Endorribonucleasas/genética , Endorribonucleasas/aislamiento & purificación , Endorribonucleasas/metabolismo , Genes de Plantas , Tubo Polínico/crecimiento & desarrollo , Polinización , Alineación de SecuenciaRESUMEN
Post-transcriptional control of mitochondrial gene expression, including the processing and generation of mature transcripts as well as their degradation, is a key regulatory step in gene expression in human mitochondria. Consequently, identification of the proteins responsible for RNA processing and degradation in this organelle is of great importance. The metallo-ß-lactamase (MBL) is a candidate protein family that includes ribo- and deoxyribonucleases. In this study, we discovered a function for LACTB2, an orphan MBL protein found in mammalian mitochondria. Solving its crystal structure revealed almost perfect alignment of the MBL domain with CPSF73, as well as to other ribonucleases of the MBL superfamily. Recombinant human LACTB2 displayed robust endoribonuclease activity on ssRNA with a preference for cleavage after purine-pyrimidine sequences. Mutational analysis identified an extended RNA-binding site. Knockdown of LACTB2 in cultured cells caused a moderate but significant accumulation of many mitochondrial transcripts, and its overexpression led to the opposite effect. Furthermore, manipulation of LACTB2 expression resulted in cellular morphological deformation and cell death. Together, this study discovered that LACTB2 is an endoribonuclease that is involved in the turnover of mitochondrial RNA, and is essential for mitochondrial function in human cells.
Asunto(s)
Endorribonucleasas/química , Metaloproteínas/química , Mitocondrias/enzimología , Proteínas de Unión al ARN/química , beta-Lactamasas/química , Sitios de Unión , Cristalografía por Rayos X , Endorribonucleasas/genética , Endorribonucleasas/aislamiento & purificación , Humanos , Metaloproteínas/genética , Estructura Terciaria de Proteína , ARN/genética , ARN Mitocondrial , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/aislamiento & purificación , beta-Lactamasas/genética , beta-Lactamasas/aislamiento & purificaciónRESUMEN
Protein complexes directing messenger RNA (mRNA) degradation are present in all kingdoms of life. In Escherichia coli, mRNA degradation is performed by an RNA degradosome organized by the major ribonuclease RNase E. In bacteria lacking RNase E, the existence of a functional RNA degradosome is still an open question. Here, we report that in the bacterial pathogen Helicobacter pylori, RNA degradation is directed by a minimal RNA degradosome consisting of Hp-RNase J and the only DExD-box RNA helicase of H. pylori, RhpA. We show that the protein complex promotes faster degradation of double-stranded RNA in vitro in comparison with Hp-RNase J alone. The ATPase activity of RhpA is stimulated in the presence of Hp-RNase J, demonstrating that the catalytic capacity of both partners is enhanced upon interaction. Remarkably, both proteins are associated with translating ribosomes and not with individual 30S and 50S subunits. Moreover, Hp-RNase J is not recruited to ribosomes to perform rRNA maturation. Together, our findings imply that in H. pylori, the mRNA-degrading machinery is associated with the translation apparatus, a situation till now thought to be restricted to eukaryotes and archaea.
Asunto(s)
Endorribonucleasas/metabolismo , Helicobacter pylori/enzimología , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , ARN Mensajero/metabolismo , Ribosomas/enzimología , Adenosina Trifosfatasas/metabolismo , Bacillus subtilis/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/aislamiento & purificación , Helicobacter pylori/genética , Helicobacter pylori/crecimiento & desarrollo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Biosíntesis de Proteínas , ARN Helicasas/aislamiento & purificación , ARN Bicatenario/metabolismo , ARN Ribosómico/metabolismoRESUMEN
RNase L is part of the innate immune response to viral infection. It is activated by a small oligonucleotide (2-5A) whose synthesis is initiated as part of the interferon response. Binding of 2-5A to the N-terminal regulatory region, the ANK domain, of RNase L activates its ribonuclease activity and results in cleavage of RNA in the cell, which ultimately leads to apoptosis of the infected cell. The mechanism by which 2-5A activates the ribonuclease activity of RNase L is currently unclear but 2-5A has been shown to induce dimerization of RNase L. To investigate the importance of dimerization of RNase L, we developed a 15kDa dimerization-inducing protein domain that was fused to the N-terminus of RNase L. From these studies we provide direct evidence that dimerization of RNase L occurs at physiologically relevant protein concentrations and correlates with activation of ribonuclease activity. We also show that the binding of 2-5A to RNase L promotes dimerization of the ANK domain and suggest how this could transmit a signal to the rest of the protein to activate ribonuclease activity. Finally, we show that the dimerization-inducing domain can be used as a general fusion partner to aid in protein expression and purification.
Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/metabolismo , ARN/metabolismo , Adenosina Trifosfato/metabolismo , Repetición de Anquirina , Cromatografía en Gel , Dicroismo Circular , Endorribonucleasas/aislamiento & purificación , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de ProteínaRESUMEN
The clearance of host cell DNA is a critical indicator for Vero-cell culture-derived rabies vaccine. In this study, we evaluated the clearance of DNA in Vero-cell culture-derived rabies vaccine by purification process utilizing ultrafiltration, nuclease digestion, and gel filtration chromatography. The results showed that the bioprocess of using nuclease decreased residual DNA. Dot-blot hybridization analysis showed that the residual host cell DNA was <100 pg/ml in the final product. The residual nuclease in rabies vaccine was less than 0.1 ng/ml protein. The residual nuclease could not paly the biologically active role of digestion of DNA. Experiments of stability showed that the freeze-drying rabies virus vaccine was stable and titers were >5.0 IU/ml. Immunogenicity test and protection experiments indicated mice were greatly induced generation of neutralizing antibodies and invoked protective effects immunized with intraperitoneal injections of the rabies vaccine. These results demonstrated that the residual DNA was removed from virus particles and nuclease was removed by gel filtration chromatography. The date indicated that technology was an efficient method to produce rabies vaccine for human use by using nuclease.
Asunto(s)
ADN/aislamiento & purificación , Endodesoxirribonucleasas , Endorribonucleasas , Vacunas Antirrábicas/aislamiento & purificación , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Chlorocebus aethiops , Cromatografía en Gel , Contaminación de Medicamentos/prevención & control , Estabilidad de Medicamentos , Endodesoxirribonucleasas/aislamiento & purificación , Endorribonucleasas/aislamiento & purificación , Liofilización , Humanos , Ratones , Rabia/inmunología , Rabia/prevención & control , Vacunas Antirrábicas/inmunología , Virus de la Rabia/inmunología , Células VeroRESUMEN
The RNA degradosome is a multi-enzyme assembly that contributes to key processes of RNA metabolism, and it engages numerous partners in serving its varied functional roles. Small domains within the assembly recognize collectively a diverse range of macromolecules, including the core protein components, the cytoplasmic lipid membrane, mRNAs, non-coding regulatory RNAs and precursors of structured RNAs. We present evidence that the degradosome can form a stable complex with the 70S ribosome and polysomes, and we demonstrate the proximity in vivo of ribosomal proteins and the scaffold of the degradosome, RNase E. The principal interactions are mapped to two, independent, RNA-binding domains from RNase E. RhlB, the RNA helicase component of the degradosome, also contributes to ribosome binding, and this is favoured through an activating interaction with RNase E. The catalytic activity of RNase E for processing 9S RNA (the ribosomal 5S RNA precursor) is repressed in the presence of the ribosome, whereas there is little affect on the cleavage of single-stranded substrates mediated by non-coding RNA, suggestings that the enzyme retains capacity to cleave unstructured substrates when associated with the ribosome. We propose that polysomes may act as antennae that enhance the rates of capture of the limited number of degradosomes, so that they become recruited to sites of active translation to act on mRNAs as they become exposed or tagged for degradation.
Asunto(s)
Endorribonucleasas/metabolismo , Escherichia coli/enzimología , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Polirribosomas/metabolismo , ARN Helicasas/metabolismo , Ribosomas/metabolismo , Sitios de Unión , Reactivos de Enlaces Cruzados , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/química , Endorribonucleasas/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Dominios y Motivos de Interacción de Proteínas , ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Pequeño no Traducido/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismoRESUMEN
RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27(Kip1), SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease.
Asunto(s)
Endorribonucleasas/metabolismo , ARN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Quitinasas/genética , Quitinasas/aislamiento & purificación , Quitinasas/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/aislamiento & purificación , Genes Fúngicos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN de Hongos/aislamiento & purificación , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/aislamiento & purificación , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
We developed a new detection system for the activation of an endoplasmic reticulum (ER) stress sensor, inositol requiring kinase 1 α (IRE1α), by evaluating dimerization of it by bimolecular fluorescence complementation (BiFC) assay. By detecting the fluorescence derived from the reconstituted cerulean, this assay system enabled us to distinguish the activation behaviors of IRE1α as to ER stress-inducing compounds.
Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/genética , Endorribonucleasas/química , Endorribonucleasas/aislamiento & purificación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Animales , Dimerización , Endorribonucleasas/metabolismo , Fluorescencia , Células HeLa , Humanos , Inositol/química , Inositol/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiologíaRESUMEN
The ecologically important cyanobacterium Prochlorococcus possesses the smallest genome among oxyphototrophs, with a reduced suite of protein regulators and a disproportionately high number of regulatory RNAs. Many of these are asRNAs, raising the question whether they modulate gene expression through the protection of mRNA from RNase E degradation. To address this question, we produced recombinant RNase E from Prochlorococcus sp. MED4, which functions optimally at 12 mM Mg(2+), pH 9 and 35°C. RNase E cleavage assays were performed with this recombinant protein to assess enzyme activity in the presence of single- or double-stranded RNA substrates. We found that extraordinarily long asRNAs of 3.5 and 7 kb protect a set of mRNAs from RNase E degradation that accumulate during phage infection. These asRNA-mRNA duplex formations mask single-stranded recognition sites of RNase E, leading to increased stability of the mRNAs. Such interactions directly modulate RNA stability and provide an explanation for enhanced transcript abundance of certain mRNAs during phage infection. Protection from RNase E-triggered RNA decay may constitute a hitherto unknown regulatory function of bacterial cis-asRNAs, impacting gene expression.
Asunto(s)
Endorribonucleasas/metabolismo , Prochlorococcus/enzimología , Prochlorococcus/genética , Estabilidad del ARN , ARN sin Sentido/metabolismo , ARN Mensajero/metabolismo , Bacteriófagos/fisiología , Endorribonucleasas/química , Endorribonucleasas/aislamiento & purificación , Genes de ARNr , Islas Genómicas , Prochlorococcus/virología , ARN Bicatenario/metabolismo , Transcripción GenéticaRESUMEN
In many bacterial species, the multi-enzyme RNA degradosome assembly makes key contributions to RNA metabolism. Powering the turnover of RNA and the processing of structural precursors, the RNA degradosome has differential activities on a spectrum of transcripts and contributes to gene regulation at a global level. Here, we report the isolation and characterization of an RNA degradosome assembly from the α-proteobacterium Caulobacter crescentus, which is a model organism for studying morphological development and cell-cycle progression. The principal components of the C. crescentus degradosome are the endoribonuclease RNase E, the exoribonuclease polynucleotide phosphorylase (PNPase), a DEAD-box RNA helicase and the Krebs cycle enzyme aconitase. PNPase and aconitase associate with specific segments in the C-terminal domain of RNase E that are predicted to have structural propensity. These recognition 'microdomains' punctuate structurally an extensive region that is otherwise predicted to be natively disordered. Finally, we observe that the abundance of RNase E varies through the cell cycle, with maxima at morphological differentiation and cell division. This variation may contribute to the program of gene expression during cell division.
Asunto(s)
Caulobacter crescentus/enzimología , Endorribonucleasas/química , Complejos Multienzimáticos/química , Polirribonucleótido Nucleotidiltransferasa/química , ARN Helicasas/química , Aconitato Hidratasa/metabolismo , Alphaproteobacteria/enzimología , Alphaproteobacteria/aislamiento & purificación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Ciclo Celular , Endorribonucleasas/aislamiento & purificación , Endorribonucleasas/metabolismo , Escherichia coli/enzimología , Datos de Secuencia Molecular , Complejos Multienzimáticos/aislamiento & purificación , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/aislamiento & purificación , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/aislamiento & purificación , ARN Helicasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismoRESUMEN
PIWI-interacting RNAs (piRNAs) bind PIWI proteins and silence transposons to maintain the genomic integrity of germ cells. Zucchini (Zuc), a phospholipase D superfamily member, is conserved among animals and is implicated in piRNA biogenesis. However, the underlying mechanism by which Zuc participates in piRNA biogenesis remains elusive. Drosophila melanogaster Zuc (DmZuc) was expressed in Escherichia coli, purified and crystallized. X-ray diffraction data were collected to 1.75â Å resolution. The crystal belonged to space group P2(1), with unit-cell parameters a=55.0, b=71.2, c=56.3â Å, ß=107.9°.
Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/enzimología , Endorribonucleasas/química , Secuencia de Aminoácidos , Animales , Cromatografía de Afinidad , Secuencia Conservada , Cristalización , Cristalografía por Rayos X , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/aislamiento & purificación , Endorribonucleasas/biosíntesis , Endorribonucleasas/aislamiento & purificación , Escherichia coli , Datos de Secuencia Molecular , Señales de Clasificación de Proteína , Estructura Secundaria de Proteína , Alineación de SecuenciaRESUMEN
Stable inheritance of pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK toxin-antitoxin (TA) system. PemK toxin inhibits bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK by direct binding. PemK and PemI were overexpressed in Escherichia coli and activities of each were assessed. Purified PemK toxin specifically degraded single-stranded RNA but not double-stranded RNA, double-stranded DNA, or single-stranded DNA. Addition of PemI antitoxin inhibited nuclease activity of PemK toxin. Purified complexes of PemI bound to PemK exhibited minimal nuclease activity; removal of PemI antitoxin from the complex restored nuclease activity of PemK toxin. Sequencing of 5' rapid amplification of cDNA ends products of RNA targets digested with PemK revealed a preference for cleavage between U and A residues of the sequence UACU and UACG. Nine single amino-acid substitution mutants of PemK toxin were constructed and evaluated for growth inhibition, ribonuclease activity, and PemI binding. Three PemK point-substitution mutants (R3A, G16E, and D79V) that lacked nuclease activity did not inhibit growth. All nine PemK mutants retained the ability to bind PemI. Collectively, the results indicate that the mechanism of stable inheritance conferred by pXF-RIV11 pemI/pemK is similar to that of the R100 pemI/pemK TA system of E. coli.