Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.002
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(1): 42-61, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34774127

RESUMEN

The construction of the human nervous system is a distinctly complex although highly regulated process. Human tissue inaccessibility has impeded a molecular understanding of the developmental specializations from which our unique cognitive capacities arise. A confluence of recent technological advances in genomics and stem cell-based tissue modeling is laying the foundation for a new understanding of human neural development and dysfunction in neuropsychiatric disease. Here, we review recent progress on uncovering the cellular and molecular principles of human brain organogenesis in vivo as well as using organoids and assembloids in vitro to model features of human evolution and disease.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Epilepsia/metabolismo , Neurogénesis/fisiología , Esquizofrenia/metabolismo , Animales , Trastorno del Espectro Autista/genética , Encéfalo/metabolismo , Epilepsia/genética , Humanos , Mutación , Neuronas/citología , Neuronas/metabolismo , Organoides/embriología , Organoides/crecimiento & desarrollo , Esquizofrenia/genética
2.
Nature ; 629(8011): 402-409, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632412

RESUMEN

Throughout life, neuronal networks in the mammalian neocortex maintain a balance of excitation and inhibition, which is essential for neuronal computation1,2. Deviations from a balanced state have been linked to neurodevelopmental disorders, and severe disruptions result in epilepsy3-5. To maintain balance, neuronal microcircuits composed of excitatory and inhibitory neurons sense alterations in neural activity and adjust neuronal connectivity and function. Here we identify a signalling pathway in the adult mouse neocortex that is activated in response to increased neuronal network activity. Overactivation of excitatory neurons is signalled to the network through an increase in the levels of BMP2, a growth factor that is well known for its role as a morphogen in embryonic development. BMP2 acts on parvalbumin-expressing (PV) interneurons through the transcription factor SMAD1, which controls an array of glutamatergic synapse proteins and components of perineuronal nets. PV-interneuron-specific disruption of BMP2-SMAD1 signalling is accompanied by a loss of glutamatergic innervation in PV cells, underdeveloped perineuronal nets and decreased excitability. Ultimately, this impairment of the functional recruitment of PV interneurons disrupts the cortical excitation-inhibition balance, with mice exhibiting spontaneous epileptic seizures. Our findings suggest that developmental morphogen signalling is repurposed to stabilize cortical networks in the adult mammalian brain.


Asunto(s)
Proteína Morfogenética Ósea 2 , Interneuronas , Neocórtex , Red Nerviosa , Inhibición Neural , Neuronas , Transducción de Señal , Proteína Smad1 , Animales , Femenino , Humanos , Masculino , Ratones , Proteína Morfogenética Ósea 2/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatología , Interneuronas/metabolismo , Neocórtex/metabolismo , Neocórtex/citología , Red Nerviosa/metabolismo , Neuronas/metabolismo , Parvalbúminas/metabolismo , Proteína Smad1/metabolismo , Sinapsis/metabolismo , Ácido Glutámico/metabolismo
3.
Nature ; 632(8024): 451-459, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39085604

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels1 are essential for pacemaking activity and neural signalling2,3. Drugs inhibiting HCN1 are promising candidates for management of neuropathic pain4 and epileptic seizures5. The general anaesthetic propofol (2,6-di-iso-propylphenol) is a known HCN1 allosteric inhibitor6 with unknown structural basis. Here, using single-particle cryo-electron microscopy and electrophysiology, we show that propofol inhibits HCN1 by binding to a mechanistic hotspot in a groove between the S5 and S6 transmembrane helices. We found that propofol restored voltage-dependent closing in two HCN1 epilepsy-associated polymorphisms that act by destabilizing the channel closed state: M305L, located in the propofol-binding site in S5, and D401H in S6 (refs. 7,8). To understand the mechanism of propofol inhibition and restoration of voltage-gating, we tracked voltage-sensor movement in spHCN channels and found that propofol inhibition is independent of voltage-sensor conformational changes. Mutations at the homologous methionine in spHCN and an adjacent conserved phenylalanine in S6 similarly destabilize closing without disrupting voltage-sensor movements, indicating that voltage-dependent closure requires this interface intact. We propose a model for voltage-dependent gating in which propofol stabilizes coupling between the voltage sensor and pore at this conserved methionine-phenylalanine interface in HCN channels. These findings unlock potential exploitation of this site to design specific drugs targeting HCN channelopathies.


Asunto(s)
Epilepsia , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico , Mutación , Canales de Potasio , Propofol , Humanos , Sitios de Unión , Microscopía por Crioelectrón , Electrofisiología , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/metabolismo , Células HEK293 , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/ultraestructura , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Metionina/genética , Metionina/metabolismo , Modelos Moleculares , Movimiento/efectos de los fármacos , Fenilalanina/genética , Fenilalanina/metabolismo , Polimorfismo Genético , Canales de Potasio/química , Canales de Potasio/genética , Canales de Potasio/metabolismo , Canales de Potasio/ultraestructura , Propofol/farmacología , Propofol/química
4.
Am J Hum Genet ; 111(3): 529-543, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38387458

RESUMEN

The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Encéfalo/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Lípidos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Proteínas de Unión al GTP rab/metabolismo
5.
Nature ; 591(7848): 157-161, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597751

RESUMEN

Citrate is best known as an intermediate in the tricarboxylic acid cycle of the cell. In addition to this essential role in energy metabolism, the tricarboxylate anion also acts as both a precursor and a regulator of fatty acid synthesis1-3. Thus, the rate of fatty acid synthesis correlates directly with the cytosolic concentration of citrate4,5. Liver cells import citrate through the sodium-dependent citrate transporter NaCT (encoded by SLC13A5) and, as a consequence, this protein is a potential target for anti-obesity drugs. Here, to understand the structural basis of its inhibition mechanism, we determined cryo-electron microscopy structures of human NaCT in complexes with citrate or a small-molecule inhibitor. These structures reveal how the inhibitor-which binds to the same site as citrate-arrests the transport cycle of NaCT. The NaCT-inhibitor structure also explains why the compound selectively inhibits NaCT over two homologous human dicarboxylate transporters, and suggests ways to further improve the affinity and selectivity. Finally, the NaCT structures provide a framework for understanding how various mutations abolish the transport activity of NaCT in the brain and thereby cause epilepsy associated with mutations in SLC13A5 in newborns (which is known as SLC13A5-epilepsy)6-8.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Ácido Cítrico/metabolismo , Microscopía por Crioelectrón , Malatos/farmacología , Fenilbutiratos/farmacología , Simportadores/antagonistas & inhibidores , Simportadores/química , Sitios de Unión , Encéfalo/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/ultraestructura , Ácido Cítrico/química , Transportadores de Ácidos Dicarboxílicos/química , Transportadores de Ácidos Dicarboxílicos/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Malatos/química , Modelos Moleculares , Mutación , Fenilbutiratos/química , Multimerización de Proteína , Sodio/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/genética , Simportadores/genética , Simportadores/ultraestructura
6.
Proc Natl Acad Sci U S A ; 121(21): e2321388121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748583

RESUMEN

Protocadherin19 (PCDH19)-related epilepsy syndrome is a rare disorder characterized by early-onset epilepsy, intellectual disability, and autistic behaviors. PCDH19 is located on the X chromosome and encodes a calcium-dependent single-pass transmembrane protein, which regulates cell-to-cell adhesion through homophilic binding. In human, 90% of heterozygous females, containing PCDH19 wild-type and mutant cells due to random X inactivation, are affected, whereas mutant males, containing only mutant cells, are typically not. The current view, the cellular interference, is that the altered interactions between wild-type and mutant cells during development, rather than loss of function itself, are responsible. However, studies using Pcdh19 knockout mice showed that the complete loss of function also causes autism-like behaviors both in males and females, suggesting that other functions of PCDH19 may also contribute to pathogenesis. To address whether mosaicism is required for PCDH19-related epilepsy, we generated Xenopus tropicalis tadpoles with complete or mosaic loss of function by injecting antisense morpholino oligonucleotides into the blastomeres of neural lineage at different stages of development. We found that either mosaic or complete knockdown results in seizure-like behaviors, which could be rescued by antiseizure medication, and repetitive behaviors. Our results suggest that the loss of PCDH19 function itself, in addition to cellular interference, may also contribute to PCDH19-related epilepsy.


Asunto(s)
Cadherinas , Epilepsia , Protocadherinas , Animales , Femenino , Masculino , Conducta Animal , Cadherinas/genética , Cadherinas/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Mosaicismo , Xenopus
7.
Proc Natl Acad Sci U S A ; 121(18): e2314541121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657049

RESUMEN

Recent evidence has demonstrated that the transsynaptic nanoscale organization of synaptic proteins plays a crucial role in regulating synaptic strength in excitatory synapses. However, the molecular mechanism underlying this transsynaptic nanostructure in inhibitory synapses still remains unclear and its impact on synapse function in physiological or pathological contexts has not been demonstrated. In this study, we utilized an engineered proteolysis technique to investigate the effects of acute cleavage of neuroligin-2 (NL2) on synaptic transmission. Our results show that the rapid cleavage of NL2 led to impaired synaptic transmission by reducing both neurotransmitter release probability and quantum size. These changes were attributed to the dispersion of RIM1/2 and GABAA receptors and a weakened spatial alignment between them at the subsynaptic scale, as observed through superresolution imaging and model simulations. Importantly, we found that endogenous NL2 undergoes rapid MMP9-dependent cleavage during epileptic activities, which further exacerbates the decrease in inhibitory transmission. Overall, our study demonstrates the significant impact of nanoscale structural reorganization on inhibitory transmission and unveils ongoing modulation of mature GABAergic synapses through active cleavage of NL2 in response to hyperactivity.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Proteínas del Tejido Nervioso , Sinapsis , Transmisión Sináptica , Animales , Ratones , Moléculas de Adhesión Celular Neuronal/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatología , Epilepsia/patología , Hipocampo/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteolisis , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
8.
EMBO Rep ; 25(3): 1256-1281, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429579

RESUMEN

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


Asunto(s)
Epilepsia , Cara/anomalías , Dedos/anomalías , Trastornos del Crecimiento , Hipogonadismo , Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Obesidad , Humanos , Ratones , Animales , Discapacidad Intelectual/genética , Proteínas Represoras , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Factores de Transcripción
9.
EMBO Rep ; 25(10): 4387-4409, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39251828

RESUMEN

Gene therapy is emerging as an alternative option for individuals with drug-resistant focal epilepsy. Here, we explore the potential of a novel gene therapy based on Neuropeptide Y (NPY), a well-known endogenous anticonvulsant. We develop a lentiviral vector co-expressing NPY with its inhibitory receptor Y2 in which, for the first time, both transgenes are placed under the control of the minimal CamKIIa(0.4) promoter, biasing expression toward excitatory neurons and allowing autoregulation of neuronal excitability by Y2 receptor-mediated inhibition. Vector-induced NPY and Y2 expression and safety are first assessed in cultures of hippocampal neurons. In vivo experiments demonstrate efficient and nearly selective overexpression of both genes in granule cell mossy fiber terminals following vector administration in the dentate gyrus. Telemetry video-EEG monitoring reveals a reduction in the frequency and duration of seizures in the synapsin triple KO model. This study shows that targeting a small subset of neurons (hippocampal granule cells) with a combined overexpression of NPY and Y2 receptor is sufficient to reduce the occurrence of spontaneous seizures.


Asunto(s)
Giro Dentado , Epilepsia , Terapia Genética , Neuropéptido Y , Receptores de Neuropéptido Y , Animales , Receptores de Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/genética , Giro Dentado/metabolismo , Neuropéptido Y/metabolismo , Neuropéptido Y/genética , Epilepsia/terapia , Epilepsia/genética , Epilepsia/metabolismo , Ratones , Terapia Genética/métodos , Neuronas/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Lentivirus/genética , Células Cultivadas , Humanos , Ratones Noqueados , Sinapsinas/genética , Sinapsinas/metabolismo , Ratas
10.
Proc Natl Acad Sci U S A ; 120(50): e2307509120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38064513

RESUMEN

Hilar mossy cells (MCs) are principal excitatory neurons of the dentate gyrus (DG) that play critical roles in hippocampal function and have been implicated in brain disorders such as anxiety and epilepsy. However, the mechanisms by which MCs contribute to DG function and disease are poorly understood. A defining feature of MCs is the promoter activity of the dopamine D2 receptor (D2R) gene (Drd2), and previous work indicates a key role for dopaminergic signaling in the DG. Additionally, the involvement of D2R signaling in cognition and neuropsychiatric conditions is well known. Surprisingly, though, the function of MC D2Rs remains largely unexplored. In this study, we show that selective and conditional removal of Drd2 from MCs of adult mice impaired spatial memory, promoted anxiety-like behavior, and was proconvulsant. To determine the subcellular expression of D2Rs in MCs, we used a D2R knockin mouse which revealed that D2Rs are enriched in the inner molecular layer of the DG, where MCs establish synaptic contacts with granule cells (GCs). D2R activation by exogenous and endogenous dopamine reduced MC to dentate GC synaptic transmission, most likely by a presynaptic mechanism. In contrast, exogenous dopamine had no significant impact on MC excitatory inputs and passive and active properties. Our findings support that MC D2Rs are essential for proper DG function by reducing MC excitatory drive onto GCs. Lastly, impairment of MC D2R signaling could promote anxiety and epilepsy, therefore highlighting a potential therapeutic target.


Asunto(s)
Epilepsia , Fibras Musgosas del Hipocampo , Receptores de Dopamina D2 , Animales , Ratones , Giro Dentado/metabolismo , Dopamina/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Hipocampo/metabolismo , Fibras Musgosas del Hipocampo/fisiología , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Ansiedad/genética , Ansiedad/metabolismo
11.
J Neurosci ; 44(4)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38050135

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are crucial for neuronal development and synaptic plasticity. Dysfunction of NMDARs is associated with multiple neurodevelopmental disorders, including epilepsy, autism spectrum disorder, and intellectual disability. Understanding the impact of genetic variants of NMDAR subunits can shed light on the mechanisms of disease. Here, we characterized the functional implications of a de novo mutation of the GluN2A subunit (P1199Rfs*32) resulting in the truncation of the C-terminal domain. The variant was identified in a male patient with epileptic encephalopathy, multiple seizure types, severe aphasia, and neurobehavioral changes. Given the known role of the CTD in NMDAR trafficking, we examined changes in receptor localization and abundance at the postsynaptic membrane using a combination of molecular assays in heterologous cells and rat primary neuronal cultures. We observed that the GluN2A P1199Rfs*32-containing receptors traffic efficiently to the postsynaptic membrane but have increased extra-synaptic expression relative to WT GluN2A-containing NMDARs. Using in silico predictions, we hypothesized that the mutant would lose all PDZ interactions, except for the recycling protein Scribble1. Indeed, we observed impaired binding to the scaffolding protein postsynaptic protein-95 (PSD-95); however, we found the mutant interacts with Scribble1, which facilitates the recycling of both the mutant and the WT GluN2A. Finally, we found that neurons expressing GluN2A P1199Rfs*32 have fewer synapses and decreased spine density, indicating compromised synaptic transmission in these neurons. Overall, our data show that GluN2A P1199Rfs*32 is a loss-of-function variant with altered membrane localization in neurons and provide mechanistic insight into disease etiology.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Animales , Humanos , Masculino , Ratas , Trastorno del Espectro Autista/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Sinapsis/fisiología
12.
J Biol Chem ; 300(9): 107725, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39214300

RESUMEN

Mutations of human TBC1D24 are associated with deafness, epilepsy, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, cognitive disability, and seizures). The causal relationships between TBC1D24 variants and the different clinical phenotypes are not understood. Our hypothesis is that phenotypic heterogeneity of missense mutations of TBC1D24 results, in part, from perturbed binding of different protein partners. To discover novel protein partners of TBC1D24, we conducted yeast two-hybrid (Y2H) screen using mouse full-length TBC1D24 as bait. Kidney and brain protein (KIBRA), a scaffold protein encoded by Wwc1, was identified as a partner of TBC1D24. KIBRA functions in the Hippo signaling pathway and is important for human cognition and memory. The TBC1D24 TLDc domain binds to KIBRA full-length and to its C2 domain, confirmed by Y2H assays. No interaction was detected with Y2H assays between the KIBRA C2 domain and TLDc domains of NCOA7, MEAK7, and OXR1. Moreover, the C2 domains of other WWC family proteins do not interact with the TLDc domain of TBC1D24, demonstrating specificity. The mRNAs encoding TBC1D24 and KIBRA proteins in mouse are coexpressed at least in a subset of hippocampal cells indicating availability to interact in vivo. As two epilepsy-associated recessive variants (Gly511Arg and Ala515Val) in the TLDc domain of human TBC1D24 disrupt the interaction with the human KIBRA C2 domain, this study reveals a pathogenic mechanism of TBC1D24-associated epilepsy, linking the TBC1D24 and KIBRA pathways. The interaction of TBC1D24-KIBRA is physiologically meaningful and necessary to reduce the risk of epilepsy.


Asunto(s)
Epilepsia , Proteínas Activadoras de GTPasa , Péptidos y Proteínas de Señalización Intracelular , Mutación Missense , Animales , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Ratones , Humanos , Epilepsia/genética , Epilepsia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Dominios Proteicos , Células HEK293 , Unión Proteica , Deformidades Congénitas de la Mano/genética , Deformidades Congénitas de la Mano/metabolismo , Técnicas del Sistema de Dos Híbridos , Pérdida Auditiva Sensorineural , Discapacidad Intelectual , Uñas Malformadas , Anomalías Craneofaciales
13.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37195288

RESUMEN

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Asunto(s)
Segmento Inicial del Axón , Epilepsia , Células Madre Pluripotentes Inducidas , Humanos , Segmento Inicial del Axón/metabolismo , Ancirinas/genética , Ancirinas/metabolismo , Neuronas/metabolismo , Epilepsia/genética , Epilepsia/metabolismo
14.
Hum Mol Genet ; 32(3): 506-519, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067019

RESUMEN

Epilepsy is a chronic neurological disorder featuring recurrent, unprovoked seizures, which affect more than 65 million people worldwide. Here, we discover that the PKHD1L1, which is encoded by polycystic kidney and hepatic disease1-like 1 (Pkhd1l1), wildly distributes in neurons in the central nervous system (CNS) of mice. Disruption of PKHD1L1 in the dentate gyrus region of the hippocampus leads to increased susceptibility to pentylenetetrazol-induced seizures in mice. The disturbance of PKHD1L1 leads to the overactivation of the mitogen-activated protein kinase (MAPK)/extracellular regulated kinase (ERK)-Calpain pathway, which is accompanied by remarkable degradation of cytoplasmic potassium chloride co-transporter 2 (KCC2) level together with the impaired expression and function of membrane KCC2. However, the reduction of membrane KCC2 is associated with the damaged inhibitory ability of the vital GABA receptors, which ultimately leads to the significantly increased susceptibility to epileptic seizures. Our data, thus, indicate for the first time that Pkhd1l1, a newly discovered polycystic kidney disease (PKD) association gene, is required in neurons to maintain neuronal excitability by regulation of KCC2 expression in CNS. A new mechanism of the clinical association between genetic PKD and seizures has been built, which could be a potential therapeutic target for treating PKD-related seizures.


Asunto(s)
Epilepsia , Simportadores , Ratones , Animales , Convulsiones/genética , Convulsiones/metabolismo , Epilepsia/metabolismo , Hipocampo/metabolismo , Simportadores/genética , Giro Dentado/metabolismo
15.
Mol Psychiatry ; 29(7): 2199-2210, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38454084

RESUMEN

Clustering Epilepsy (CE) is a neurological disorder caused by pathogenic variants of the Protocadherin 19 (PCDH19) gene. PCDH19 encodes a protein involved in cell adhesion and Estrogen Receptor α mediated-gene regulation. To gain further insights into the molecular role of PCDH19 in the brain, we investigated the PCDH19 interactome in the developing mouse hippocampus and cortex. Combined with a meta-analysis of all reported PCDH19 interacting proteins, our results show that PCDH19 interacts with proteins involved in actin, microtubule, and gene regulation. We report CAPZA1, αN-catenin and, importantly, ß-catenin as novel PCDH19 interacting proteins. Furthermore, we show that PCDH19 is a regulator of ß-catenin transcriptional activity, and that this pathway is disrupted in CE individuals. Overall, our results support the involvement of PCDH19 in the cytoskeletal network and point to signalling pathways where PCDH19 plays critical roles.


Asunto(s)
Encéfalo , Cadherinas , Hipocampo , Proteómica , Protocadherinas , Vía de Señalización Wnt , beta Catenina , Animales , Cadherinas/metabolismo , Cadherinas/genética , Ratones , Vía de Señalización Wnt/fisiología , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , beta Catenina/genética , Proteómica/métodos , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Humanos , Hipocampo/metabolismo , Epilepsia/metabolismo , Epilepsia/genética , Corteza Cerebral/metabolismo , Ratones Endogámicos C57BL
16.
Mol Cell Neurosci ; 128: 103915, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38143048

RESUMEN

BACKGROUND: The EphB receptor tyrosine kinase family participates in intricate signaling pathways that orchestrate neural networks, guide neuronal axon development, and modulate synaptic plasticity through interactions with surface-bound ephrinB ligands. Additionally, Kalirin, a Rho guanine nucleotide exchange factor, is notably expressed in the postsynaptic membrane of excitatory neurons and plays a role in synaptic morphogenesis. This study postulates that Kalirin may act as a downstream effector of EphB3 in epilepsy. This investigation focuses on understanding the link between EphB3 and epilepsy. MATERIALS AND METHODS: Chronic seizure models using LiCl-pilocarpine (LiCl/Pilo) and pentylenetetrazol were developed in rats. Neuronal excitability was gauged through whole-cell patch clamp recordings on rat hippocampal slices. Real-time PCR determined Kalirin's mRNA expression, and Western blotting was employed to quantify EphB3 and Kalirin protein levels. Moreover, dendritic spine density in epileptic rats was evaluated using Golgi staining. RESULTS: Modulation of EphB3 functionality influenced acute seizure severity, latency duration, and frequency of spontaneous recurrent seizures. Golgi staining disclosed an EphB3-driven alteration in dendritic spine density within the hippocampus of epileptic rats, underscoring its pivotal role in the reconfiguration of hippocampal neural circuits. Furthermore, our data propose Kalirin as a prospective downstream mediator of the EphB3 receptor. CONCLUSIONS: Our findings elucidate that EphB3 impacts the action potential dynamics in isolated rat hippocampal slices and alters dendritic spine density in the inner molecular layer of epileptic rat hippocampi, likely through Kalirin-mediated pathways. This hints at EphB3's significant role in shaping excitatory circuit loops and recurrent seizure activity via Kalirin.


Asunto(s)
Epilepsia , Neuronas , Ratas , Animales , Ratas Sprague-Dawley , Estudios Prospectivos , Neuronas/metabolismo , Epilepsia/metabolismo , Convulsiones/metabolismo
17.
Mol Cell Neurosci ; 130: 103958, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39151841

RESUMEN

Increasing evidence suggests that cannabinoid receptor 2 (CB2R) serves as a promising anti-inflammatory target. While inflammation is known to play crucial roles in the pathogenesis of epilepsy, the involvement of CB2R in epilepsy remains unclear. This study aimed to investigate the effects of a CB2R agonist, AM1241, on epileptic seizures and depressive-like behaviors in a mouse model of chronic epilepsy induced by pilocarpine. A chronic epilepsy mouse model was established by intraperitoneal administration of pilocarpine. The endogenous cannabinoid system (eCBs) in the hippocampus was examined after status epilepticus (SE). Animals were then treated with AM1241 and compared with a vehicle-treated control group. Additionally, the role of the AMPK/NLRP3 signaling pathway was explored using the selective AMPK inhibitor dorsomorphin. Following SE, CB2R expression increased significantly in hippocampal microglia. Administration of AM1241 significantly reduced seizure frequency, immobility time in the tail suspension test, and neuronal loss in the hippocampus. In addition, AM1241 treatment attenuated microglial activation, inhibited pro-inflammatory polarization of microglia, and suppressed NLRP3 inflammasome activation in the hippocampus after SE. Further, the therapeutic effects of AM1241 were abolished by the AMPK inhibitor dorsomorphin. Our findings suggest that CB2R agonist AM1241 may alleviate epileptic seizures and its associated depression by inhibiting neuroinflammation through the AMPK/NLRP3 signaling pathway. These results provide insight into a novel therapeutic approach for epilepsy.


Asunto(s)
Depresión , Modelos Animales de Enfermedad , Hipocampo , Pilocarpina , Receptor Cannabinoide CB2 , Convulsiones , Animales , Masculino , Ratones , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Depresión/etiología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Epilepsia/metabolismo , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/metabolismo , Convulsiones/metabolismo , Convulsiones/tratamiento farmacológico
18.
Proc Natl Acad Sci U S A ; 119(17): e2113675119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35439054

RESUMEN

We report on a heterozygous KCNA2 variant in a child with epilepsy. KCNA2 encodes KV1.2 subunits, which form homotetrameric potassium channels and participate in heterotetrameric channel complexes with other KV1-family subunits, regulating neuronal excitability. The mutation causes substitution F233S at the KV1.2 charge transfer center of the voltage-sensing domain. Immunocytochemical trafficking assays showed that KV1.2(F233S) subunits are trafficking deficient and reduce the surface expression of wild-type KV1.2 and KV1.4: a dominant-negative phenotype extending beyond KCNA2, likely profoundly perturbing electrical signaling. Yet some KV1.2(F233S) trafficking was rescued by wild-type KV1.2 and KV1.4 subunits, likely in permissible heterotetrameric stoichiometries: electrophysiological studies utilizing applied transcriptomics and concatemer constructs support that up to one or two KV1.2(F233S) subunits can participate in trafficking-capable heterotetramers with wild-type KV1.2 or KV1.4, respectively, and that both early and late events along the biosynthesis and secretion pathway impair trafficking. These studies suggested that F233S causes a depolarizing shift of ∼48 mV on KV1.2 voltage dependence. Optical tracking of the KV1.2(F233S) voltage-sensing domain (rescued by wild-type KV1.2 or KV1.4) revealed that it operates with modestly perturbed voltage dependence and retains pore coupling, evidenced by off-charge immobilization. The equivalent mutation in the Shaker K+ channel (F290S) was reported to modestly affect trafficking and strongly affect function: an ∼80-mV depolarizing shift, disrupted voltage sensor activation and pore coupling. Our work exposes the multigenic, molecular etiology of a variant associated with epilepsy and reveals that charge-transfer-center disruption has different effects in KV1.2 and Shaker, the archetypes for potassium channel structure and function.


Asunto(s)
Epilepsia , Membrana Celular/metabolismo , Niño , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/metabolismo , Mutación , Potasio/metabolismo , Canales de Potasio/metabolismo
19.
J Neurosci ; 43(12): 2199-2209, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813574

RESUMEN

Pathogenic variants in HCN1 are associated with a range of epilepsy syndromes including a developmental and epileptic encephalopathy. The recurrent de novo HCN1 pathogenic variant (M305L) results in a cation leak, allowing the flux of excitatory ions at potentials where the wild-type channels are closed. The Hcn1M294L mouse recapitulates patient seizure and behavioral phenotypes. As HCN1 channels are highly expressed in rod and cone photoreceptor inner segments, where they shape the light response, mutated channels are likely to impact visual function. Electroretinogram (ERG) recordings from male and female mice Hcn1M294L mice revealed a significant decrease in the photoreceptor sensitivity to light, as well as attenuated bipolar cell (P2) and retinal ganglion cell responses. Hcn1M294L mice also showed attenuated ERG responses to flickering lights. ERG abnormalities are consistent with the response recorded from a single female human subject. There was no impact of the variant on the structure or expression of the Hcn1 protein in the retina. In silico modeling of photoreceptors revealed that the mutated HCN1 channel dramatically reduced light-induced hyperpolarization, resulting in more Ca2+ flux during the response when compared with the wild-type situation. We propose that the light-induced change in glutamate release from photoreceptors during a stimulus will be diminished, significantly blunting the dynamic range of this response. Our data highlight the importance of HCN1 channels to retinal function and suggest that patients with HCN1 pathogenic variants are likely to have a dramatically reduced sensitivity to light and a limited ability to process temporal information.SIGNIFICANCE STATEMENT Pathogenic variants in HCN1 are emerging as an important cause of catastrophic epilepsy. HCN1 channels are ubiquitously expressed throughout the body, including the retina. Electroretinogram recordings from a mouse model of HCN1 genetic epilepsy showed a marked decrease in the photoreceptor sensitivity to light and a reduced ability to respond to high rates of light flicker. No morphologic deficits were noted. Simulation data suggest that the mutated HCN1 channel blunts light-induced hyperpolarization and consequently limits the dynamic range of this response. Our results provide insights into the role HCN1 channels play in retinal function as well as highlighting the need to consider retinal dysfunction in disease caused by HCN1 variants. The characteristic changes in the electroretinogram open the possibility of using this tool as a biomarker for this HCN1 epilepsy variant and to facilitate development of treatments.


Asunto(s)
Epilepsia , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Humanos , Masculino , Femenino , Ratones , Animales , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Retina/metabolismo , Electrorretinografía , Epilepsia/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Canales de Potasio/fisiología
20.
J Neurosci ; 43(8): 1422-1440, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36717229

RESUMEN

Infantile and epileptic spasms syndrome (IESS) is a childhood epilepsy syndrome characterized by infantile or late-onset spasms, abnormal neonatal EEG, and epilepsy. Few treatments exist for IESS, clinical outcomes are poor, and the molecular and circuit-level etiologies of IESS are not well understood. Multiple human IESS risk genes are linked to Wnt/ß-catenin signaling, a pathway that controls developmental transcriptional programs and promotes glutamatergic excitation via ß-catenin's role as a synaptic scaffold. We previously showed that deleting adenomatous polyposis coli (APC), a component of the ß-catenin destruction complex, in excitatory neurons (APC cKO mice, APCfl/fl x CaMKIIαCre) increased ß-catenin levels in developing glutamatergic neurons and led to infantile behavioral spasms, abnormal neonatal EEG, and adult epilepsy. Here, we tested the hypothesis that the development of GABAergic interneurons (INs) is disrupted in APC cKO male and female mice. IN dysfunction is implicated in human IESS, is a feature of other rodent models of IESS, and may contribute to the manifestation of spasms and seizures. We found that parvalbumin-positive INs (PV+ INs), an important source of cortical inhibition, were decreased in number, underwent disproportionate developmental apoptosis, and had altered dendrite morphology at P9, the peak of behavioral spasms. PV+ INs received excessive excitatory input, and their intrinsic ability to fire action potentials was reduced at all time points examined (P9, P14, P60). Subsequently, GABAergic transmission onto pyramidal neurons was uniquely altered in the somatosensory cortex of APC cKO mice at all ages, with both decreased IPSC input at P14 and enhanced IPSC input at P9 and P60. These results indicate that inhibitory circuit dysfunction occurs in APC cKOs and, along with known changes in excitation, may contribute to IESS-related phenotypes.SIGNIFICANCE STATEMENT Infantile and epileptic spasms syndrome (IESS) is a devastating epilepsy with limited treatment options and poor clinical outcomes. The molecular, cellular, and circuit disruptions that cause infantile spasms and seizures are largely unknown, but inhibitory GABAergic interneuron dysfunction has been implicated in rodent models of IESS and may contribute to human IESS. Here, we use a rodent model of IESS, the APC cKO mouse, in which ß-catenin signaling is increased in excitatory neurons. This results in altered parvalbumin-positive GABAergic interneuron development and GABAergic synaptic dysfunction throughout life, showing that pathology arising in excitatory neurons can initiate long-term interneuron dysfunction. Our findings further implicate GABAergic dysfunction in IESS, even when pathology is initiated in other neuronal types.


Asunto(s)
Poliposis Adenomatosa del Colon , Epilepsia , Espasmos Infantiles , Masculino , Animales , Femenino , Ratones , Humanos , Niño , Espasmos Infantiles/metabolismo , Parvalbúminas/metabolismo , Ratones Noqueados , beta Catenina/metabolismo , Interneuronas/fisiología , Convulsiones , Epilepsia/metabolismo , Espasmo/metabolismo , Espasmo/patología , Poliposis Adenomatosa del Colon/metabolismo , Poliposis Adenomatosa del Colon/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA