Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.314
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 175(1): 27-29, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30217362

RESUMEN

Together with David Allis, Michael Grunstein just received the Lasker Basic Medical research award. The article that follows is a transcript of a conversation with Jacques Deguine, scientific editor at Cell, that was edited for length. Annotated excerpts from this conversation are presented below, and the full conversation is available with the article online.


Asunto(s)
Histonas/metabolismo , Histonas/fisiología , Animales , Distinciones y Premios , Biología , Histonas/historia , Historia del Siglo XXI , Investigación , Erizos de Mar
2.
Nature ; 623(7985): 202-209, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880361

RESUMEN

The newly characterized sperm-specific Na+/H+ exchanger stands out by its unique tripartite domain composition1,2. It unites a classical solute carrier unit with regulatory domains usually found in ion channels, namely, a voltage-sensing domain and a cyclic-nucleotide binding domain1,3, which makes it a mechanistic chimera and a secondary-active transporter activated strictly by membrane voltage. Our structures of the sea urchin SpSLC9C1 in the absence and presence of ligands reveal the overall domain arrangement and new structural coupling elements. They allow us to propose a gating model, where movements in the voltage sensor indirectly cause the release of the exchanging unit from a locked state through long-distance allosteric effects transmitted by the newly characterized coupling helices. We further propose that modulation by its ligand cyclic AMP occurs by means of disruption of the cytosolic dimer interface, which lowers the energy barrier for S4 movements in the voltage-sensing domain. As SLC9C1 members have been shown to be essential for male fertility, including in mammals2,4,5, our structure represents a potential new platform for the development of new on-demand contraceptives.


Asunto(s)
AMP Cíclico , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico , Erizos de Mar , Espermatozoides , Animales , Masculino , Regulación Alostérica , AMP Cíclico/metabolismo , Fertilidad , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ligandos , Dominios Proteicos , Multimerización de Proteína , Erizos de Mar/química , Erizos de Mar/metabolismo , Espermatozoides/química , Espermatozoides/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo
3.
Nature ; 623(7985): 193-201, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880360

RESUMEN

Voltage-sensing domains control the activation of voltage-gated ion channels, with a few exceptions1. One such exception is the sperm-specific Na+/H+ exchanger SLC9C1, which is the only known transporter to be regulated by voltage-sensing domains2-5. After hyperpolarization of sperm flagella, SLC9C1 becomes active, causing pH alkalinization and CatSper Ca2+ channel activation, which drives chemotaxis2,6. SLC9C1 activation is further regulated by cAMP2,7, which is produced by soluble adenyl cyclase (sAC). SLC9C1 is therefore an essential component of the pH-sAC-cAMP signalling pathway in metazoa8,9, required for sperm motility and fertilization4. Despite its importance, the molecular basis of SLC9C1 voltage activation is unclear. Here we report cryo-electron microscopy (cryo-EM) structures of sea urchin SLC9C1 in detergent and nanodiscs. We show that the voltage-sensing domains are positioned in an unusual configuration, sandwiching each side of the SLC9C1 homodimer. The S4 segment is very long, 90 Å in length, and connects the voltage-sensing domains to the cytoplasmic cyclic-nucleotide-binding domains. The S4 segment is in the up configuration-the inactive state of SLC9C1. Consistently, although a negatively charged cavity is accessible for Na+ to bind to the ion-transporting domains of SLC9C1, an intracellular helix connected to S4 restricts their movement. On the basis of the differences in the cryo-EM structure of SLC9C1 in the presence of cAMP, we propose that, upon hyperpolarization, the S4 segment moves down, removing this constriction and enabling Na+/H+ exchange.


Asunto(s)
Microscopía por Crioelectrón , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico , Erizos de Mar , Intercambiadores de Sodio-Hidrógeno , Animales , Masculino , Adenilil Ciclasas/metabolismo , AMP Cíclico/metabolismo , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestructura , Concentración de Iones de Hidrógeno , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/ultraestructura , Potenciales de la Membrana , Multimerización de Proteína , Erizos de Mar/química , Erizos de Mar/metabolismo , Erizos de Mar/ultraestructura , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/ultraestructura , Motilidad Espermática , Espermatozoides/química , Espermatozoides/metabolismo , Espermatozoides/ultraestructura
4.
Annu Rev Cell Dev Biol ; 31: 1-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26393774

RESUMEN

I am a developmental biologist, but I started off as a civil engineer. I did some research on soil mechanics but decided to change to biology. A friend changed my life when he told me about the mechanics of cell division, on which I did my PhD at Kings College. I then worked on the morphogenesis of the sea urchin embryo and became interested in how embryos are patterned, and I proposed positional information as a basic mechanism. I was a professor at the Middlesex Hospital Medical School, where we concentrated on how the chick limb developed.


Asunto(s)
Morfogénesis/fisiología , Animales , Pollos/crecimiento & desarrollo , Biología Evolutiva/métodos , Erizos de Mar/embriología
5.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39023164

RESUMEN

Stable transgenesis is a transformative tool in model organism biology. Although the sea urchin is one of the oldest animal models in cell and developmental biology, studies in this animal have largely relied on transient manipulation of wild animals, without a strategy for stable transgenesis. Here, we build on recent progress to develop a more genetically tractable sea urchin species, Lytechinus pictus, and establish a robust transgene integration method. Three commonly used transposons (Minos, Tol2 and piggyBac) were tested for non-autonomous transposition, using plasmids containing a polyubiquitin promoter upstream of a H2B-mCerulean nuclear marker. Minos was the only transposable element that resulted in significant expression beyond metamorphosis. F0 animals were raised to sexual maturity, and spawned to determine germline integration and transgene inheritance frequency, and to characterize expression patterns of the transgene in F1 progeny. The results demonstrate transgene transmission through the germline, the first example of a germline transgenic sea urchin and, indeed, of any echinoderm. This milestone paves the way for the generation of diverse transgenic resources that will dramatically enhance the utility, reproducibility and efficiency of sea urchin research.


Asunto(s)
Animales Modificados Genéticamente , Elementos Transponibles de ADN , Técnicas de Transferencia de Gen , Células Germinativas , Lytechinus , Transgenes , Animales , Elementos Transponibles de ADN/genética , Células Germinativas/metabolismo , Lytechinus/genética , Femenino , Masculino , Erizos de Mar/genética , Membranas Asociadas a Mitocondrias
6.
Trends Genet ; 39(7): 528-530, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024335

RESUMEN

Marine larvae have factored heavily in pursuits to understand the origin and evolution of animal life cycles. Recent comparisons of gene expression and chromatin state in different species of sea urchin and annelid show how evolutionary changes in embryonic gene regulation can lead to markedly different larval forms.


Asunto(s)
Estadios del Ciclo de Vida , Erizos de Mar , Animales , Larva/genética , Estadios del Ciclo de Vida/genética , Erizos de Mar/genética
7.
Development ; 150(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607745

RESUMEN

Sea urchins and other echinoderms are important experimental models for studying developmental processes. The lack of approaches for conditional gene perturbation, however, has made it challenging to investigate the late developmental functions of genes that have essential roles during early embryogenesis and genes that have diverse functions in multiple tissues. The doxycycline-controlled Tet-On system is a widely used molecular tool for temporally and spatially regulated transgene expression. Here, we optimized the Tet-On system to conditionally induce gene expression in sea urchin embryos. Using this approach, we explored the roles the MAPK signaling plays in skeletogenesis by expressing genes that perturb the pathway specifically in primary mesenchyme cells during later stages of development. We demonstrated the wide utility of the Tet-On system by applying it to a second sea urchin species and in cell types other than the primary mesenchyme cells. Our work provides a robust and flexible platform for the spatiotemporal regulation of gene expression in sea urchins, which will considerably enhance the utility of this prominent model system.


Asunto(s)
Desarrollo Embrionario , Erizos de Mar , Animales , Erizos de Mar/genética , Expresión Génica , Regulación del Desarrollo de la Expresión Génica
8.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37139779

RESUMEN

Defining pattern formation mechanisms during embryonic development is important for understanding the etiology of birth defects and to inform tissue engineering approaches. In this study, we used tricaine, a voltage-gated sodium channel (VGSC) inhibitor, to show that VGSC activity is required for normal skeletal patterning in Lytechinus variegatus sea urchin larvae. We demonstrate that tricaine-mediated patterning defects are rescued by an anesthetic-insensitive version of the VGSC LvScn5a. Expression of this channel is enriched in the ventrolateral ectoderm, where it spatially overlaps with posterolaterally expressed Wnt5. We show that VGSC activity is required to spatially restrict Wnt5 expression to this ectodermal region that is adjacent and instructive to clusters of primary mesenchymal cells that initiate secretion of the larval skeleton as triradiates. Tricaine-mediated Wnt5 spatial expansion correlates with the formation of ectopic PMC clusters and triradiates. These defects are rescued by Wnt5 knockdown, indicating that the spatial expansion of Wnt5 is responsible for the patterning defects induced by VGSC inhibition. These results demonstrate a previously unreported connection between bioelectrical status and the spatial control of patterning cue expression during embryonic pattern formation.


Asunto(s)
Lytechinus , Erizos de Mar , Animales , Larva , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Embrión no Mamífero/metabolismo
9.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37902109

RESUMEN

Multinucleated cells, or syncytia, are found in diverse taxa. Their biological function is often associated with the compartmentalization of biochemical or cellular activities within the syncytium. How such compartments are generated and maintained is poorly understood. The sea urchin embryonic skeleton is secreted by a syncytium, and local patterns of skeletal growth are associated with distinct sub-domains of gene expression within the syncytium. For such molecular compartments to be maintained and to control local patterns of skeletal growth: (1) the mobility of TFs must be restricted to produce stable differences in the transcriptional states of nuclei within the syncytium; and (2) the mobility of biomineralization proteins must also be restricted to produce regional differences in skeletal growth. To test these predictions, we expressed fluorescently tagged forms of transcription factors and biomineralization proteins in sub-domains of the skeletogenic syncytium. We found that both classes of proteins have restricted mobility within the syncytium and identified motifs that limit their mobility. Our findings have general implications for understanding the functional and molecular compartmentalization of syncytia.


Asunto(s)
Erizos de Mar , Factores de Transcripción , Animales , Factores de Transcripción/metabolismo , Células Gigantes/metabolismo , Mesodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica
10.
Trends Immunol ; 44(2): 129-145, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623953

RESUMEN

There are striking similarities between the sea urchin cavity macrophage-like phagocytes (coelomocytes) and mammalian cavity macrophages in not only their location, but also their behaviors. These cells are crucial for maintaining homeostasis within the cavity following a breach, filling the gap and functioning as a barrier between vital organs and the environment. In this review, we summarize the evolving literature regarding these Gata6+ large peritoneal macrophages (GLPMs), focusing on ontogeny, their responses to perturbations, including their rapid aggregation via coagulation, as well as scavenger receptor cysteine-rich domains and their potential roles in diseases, such as cancer. We challenge the 50-year old phenomenon of the 'macrophage disappearance reaction' (MDR) and propose the new term 'macrophage disturbance of homeostasis reaction' (MDHR), which may better describe this complex phenomenon.


Asunto(s)
Factor de Transcripción GATA6 , Macrófagos Peritoneales , Mamíferos , Animales , Factor de Transcripción GATA6/inmunología , Macrófagos Peritoneales/inmunología , Mamíferos/inmunología , Fagocitos/inmunología , Erizos de Mar/inmunología
11.
Cell ; 144(3): 414-26, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21295701

RESUMEN

The spatial organization of cells depends on their ability to sense their own shape and size. Here, we investigate how cell shape affects the positioning of the nucleus, spindle and subsequent cell division plane. To manipulate geometrical parameters in a systematic manner, we place individual sea urchin eggs into microfabricated chambers of defined geometry (e.g., triangles, rectangles, and ellipses). In each shape, the nucleus is positioned at the center of mass and is stretched by microtubules along an axis maintained through mitosis and predictive of the future division plane. We develop a simple computational model that posits that microtubules sense cell geometry by probing cellular space and orient the nucleus by exerting pulling forces that scale to microtubule length. This model quantitatively predicts division-axis orientation probability for a wide variety of cell shapes, even in multicellular contexts, and estimates scaling exponents for length-dependent microtubule forces.


Asunto(s)
División Celular , Forma de la Célula , Erizos de Mar/citología , Animales , Núcleo Celular/metabolismo , Interfase , Microtúbulos/metabolismo , Mitosis , Modelos Biológicos , Huso Acromático/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(10): e2218901120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848553

RESUMEN

In 1983 to 1984, a mass mortality event caused a Caribbean-wide, >95% population reduction of the echinoid grazer, Diadema antillarum. This led to blooms of algae contributing to the devastation of scleractinian coral populations. Since then, D. antillarum exhibited only limited and patchy population recovery in shallow water, and in 2022 was struck by a second mass mortality reported over many reef localities in the Caribbean. Half-a-century time-series analyses of populations of this sea urchin from St. John, US Virgin Islands, reveal that the 2022 event has reduced population densities by 98.00% compared to 2021, and by 99.96% compared to 1983. In 2021, coral cover throughout the Caribbean was approaching the lowest values recorded in modern times. However, prior to 2022, locations with small aggregations of D. antillarum produced grazing halos in which weedy corals were able to successfully recruit and become the dominant coral taxa. The 2022 mortality has eliminated these algal-free halos on St. John and perhaps many other regions, thereby increasing the risk that these reefs will further transition into coral-free communities.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Región del Caribe , Dinámica Poblacional , Erizos de Mar
13.
Dev Biol ; 508: 123-137, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38290645

RESUMEN

microRNAs are evolutionarily conserved non-coding RNAs that direct post-transcriptional regulation of target transcripts. In vertebrates, microRNA-1 (miR-1) is expressed in muscle and has been found to play critical regulatory roles in vertebrate angiogenesis, a process that has been proposed to be analogous to sea urchin skeletogenesis. Results indicate that both miR-1 inhibitor and miR-1 mimic-injected larvae have significantly less F-actin enriched circumpharyngeal muscle fibers and fewer gut contractions. In addition, miR-1 regulates the positioning of skeletogenic primary mesenchyme cells (PMCs) and skeletogenesis of the sea urchin embryo. Interestingly, the gain-of-function of miR-1 leads to more severe PMC patterning and skeletal branching defects than its loss-of-function. The results suggest that miR-1 directly suppresses Ets1/2, Tbr, and VegfR7 of the skeletogenic gene regulatory network, and Nodal, and Wnt1 signaling components. This study identifies potential targets of miR-1 that impacts skeletogenesis and muscle formation and contributes to a deeper understanding of miR-1's function during development.


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Embrión no Mamífero/metabolismo , Erizos de Mar/genética , Erizos de Mar/metabolismo , Transducción de Señal/genética , Redes Reguladoras de Genes , Regulación del Desarrollo de la Expresión Génica/genética , Mesodermo/metabolismo
14.
Dev Biol ; 514: 12-27, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38862087

RESUMEN

The development of the sea urchin larval body plan is well understood from extensive studies of embryonic patterning. However, fewer studies have investigated the late larval stages during which the unique pentaradial adult body plan develops. Previous work on late larval development highlights major tissue changes leading up to metamorphosis, but the location of specific cell types during juvenile development is less understood. Here, we improve on technical limitations by applying highly sensitive hybridization chain reaction fluorescent in situ hybridization (HCR-FISH) to the fast-developing and transparent sea urchin Lytechinus pictus, with a focus on skeletogenic cells. First, we show that HCR-FISH can be used in L. pictus to precisely localize skeletogenic cells in the rudiment. In doing so, we provide a detailed staging scheme for the appearance of skeletogenic cells around the rudiment prior to and during biomineralization and show that many skeletogenic cells unassociated with larval rods localize outside of the rudiment prior to localizing inside. Second, we show that downstream biomineralization genes have similar expression patterns during larval and juvenile skeletogenesis, suggesting some conservation of skeletogenic mechanisms during development between stages. Third, we find co-expression of blastocoelar and skeletogenic cell markers around juvenile skeleton located outside of the rudiment, which is consistent with data showing that cells from the non-skeletogenic mesoderm embryonic lineage contribute to the juvenile skeletogenic cell lineage. This work sets the foundation for subsequent studies of other cell types in the late larva of L. pictus to better understand juvenile body plan development, patterning, and evolution.


Asunto(s)
Larva , Lytechinus , Animales , Lytechinus/embriología , Larva/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Hibridación Fluorescente in Situ , Erizos de Mar/embriología , Metamorfosis Biológica , Tipificación del Cuerpo/genética , Biomineralización
15.
J Cell Sci ; 136(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37345489

RESUMEN

One presenilin gene (PSEN) is expressed in the sea urchin embryo, in the vegetal pole of the gastrula and then mainly in cilia cells located around the digestive system of the pluteus, as we recently have reported. PSEN expression must be accurately regulated for correct execution of these two steps of development. While investigating PSEN expression changes in embryos after expansion of endoderm with LiCl or of ectoderm with Zn2+ by whole-mount in situ hybridization (WISH) and quantitative PCR (qPCR), we detected natural antisense transcription of PSEN. We then found that Endo16 and Wnt5, markers of endo-mesoderm, and of Hnf6 and Gsc, markers of ectoderm, are also sense and antisense transcribed. We discuss that general gene expression could depend on both sense and antisense transcription. This mechanism, together with the PSEN gene, should be included in gene regulatory networks (GRNs) that theorize diverse processes in this species. We suggest that it would also be relevant to investigate natural antisense transcription of PSEN in the field of Alzheimer's disease (AD) where the role of human PSEN1 and PSEN2 is well known.


Asunto(s)
Presenilinas , Erizos de Mar , Humanos , Animales , Presenilinas/genética , Hibridación in Situ , Expresión Génica , Erizos de Mar/genética , Regulación del Desarrollo de la Expresión Génica
16.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35666622

RESUMEN

Sea urchins are premier model organisms for the study of early development. However, the lengthy generation times of commonly used species have precluded application of stable genetic approaches. Here, we use the painted sea urchin Lytechinus pictus to address this limitation and to generate a homozygous mutant sea urchin line. L. pictus has one of the shortest generation times of any currently used sea urchin. We leveraged this advantage to generate a knockout mutant of the sea urchin homolog of the drug transporter ABCB1, a major player in xenobiotic disposition for all animals. Using CRISPR/Cas9, we generated large fragment deletions of ABCB1 and used these readily detected deletions to rapidly genotype and breed mutant animals to homozygosity in the F2 generation. The knockout larvae are produced according to expected Mendelian distribution, exhibit reduced xenobiotic efflux activity and can be grown to maturity. This study represents a major step towards more sophisticated genetic manipulation of the sea urchin and the establishment of reproducible sea urchin animal resources.


Asunto(s)
Lytechinus , Xenobióticos , Animales , Técnicas Genéticas , Larva/genética , Lytechinus/genética , Erizos de Mar/genética
17.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399063

RESUMEN

Echinoderms represent a broad phylum with many tractable features to test evolutionary changes and constraints. Here, we present a single-cell RNA-sequencing analysis of early development in the sea star Patiria miniata, to complement the recent analysis of two sea urchin species. We identified 20 cell states across six developmental stages from 8 hpf to mid-gastrula stage, using the analysis of 25,703 cells. The clusters were assigned cell states based on known marker gene expression and by in situ RNA hybridization. We found that early (morula, 8-14 hpf) and late (blastula-to-mid-gastrula) cell states are transcriptionally distinct. Cells surrounding the blastopore undergo rapid cell state changes that include endomesoderm diversification. Of particular import to understanding germ cell specification is that we never see Nodal pathway members within Nanos/Vasa-positive cells in the region known to give rise to the primordial germ cells (PGCs). The results from this work contrast the results of PGC specification in the sea urchin, and the dataset presented here enables deeper comparative studies in tractable developmental models for testing a variety of developmental mechanisms.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Estrellas de Mar , Animales , Estrellas de Mar/genética , Erizos de Mar/genética , Células Germinativas/metabolismo , ARN/genética
18.
Proc Natl Acad Sci U S A ; 119(36): e2118539119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037344

RESUMEN

Ecological interactions are not uniform across time and can vary with environmental conditions. Yet, interactions among species are often measured with short-term controlled experiments whose outcomes can depend greatly on the particular environmental conditions under which they are performed. As an alternative, we use empirical dynamic modeling to estimate species interactions across a wide range of environmental conditions directly from existing long-term monitoring data. In our case study from a southern California kelp forest, we test whether interactions between multiple kelp and sea urchin species can be reliably reconstructed from time-series data and whether those interactions vary predictably in strength and direction across observed fluctuations in temperature, disturbance, and low-frequency oceanographic regimes. We show that environmental context greatly alters the strength and direction of species interactions. In particular, the state of the North Pacific Gyre Oscillation seems to drive the competitive balance between kelp species, asserting bottom-up control on kelp ecosystem dynamics. We show the importance of specifically studying variation in interaction strength, rather than mean interaction outcomes, when trying to understand the dynamics of complex ecosystems. The significant context dependency in species interactions found in this study argues for a greater utilization of long-term data and empirical dynamic modeling in studies of the dynamics of other ecosystems.


Asunto(s)
Ecosistema , Kelp , Modelos Biológicos , Animales , Bosques , Océano Pacífico , Erizos de Mar , Temperatura , Movimientos del Agua
19.
Proc Natl Acad Sci U S A ; 119(40): e2203904119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161891

RESUMEN

Many calcifying organisms utilize metabolic CO2 to generate CaCO3 minerals to harden their shells and skeletons. Carbonic anhydrases are evolutionary ancient enzymes that have been proposed to play a key role in the calcification process, with the underlying mechanisms being little understood. Here, we used the calcifying primary mesenchyme cells (PMCs) of sea urchin larva to study the role of cytosolic (iCAs) and extracellular carbonic anhydrases (eCAs) in the cellular carbon concentration mechanism (CCM). Molecular analyses identified iCAs and eCAs in PMCs and highlight the prominent expression of a glycosylphosphatidylinositol-anchored membrane-bound CA (Cara7). Intracellular pH recordings in combination with CO2 pulse experiments demonstrated iCA activity in PMCs. iCA activity measurements, together with pharmacological approaches, revealed an opposing contribution of iCAs and eCAs on the CCM. H+-selective electrodes were used to demonstrate eCA-catalyzed CO2 hydration rates at the cell surface. Knockdown of Cara7 reduced extracellular CO2 hydration rates accompanied by impaired formation of specific skeletal segments. Finally, reduced pHi regulatory capacities during inhibition and knockdown of Cara7 underscore a role of this eCA in cellular HCO3- uptake. This work reveals the function of CAs in the cellular CCM of a marine calcifying animal. Extracellular hydration of metabolic CO2 by Cara7 coupled to HCO3- uptake mechanisms mitigates the loss of carbon and reduces the cellular proton load during the mineralization process. The findings of this work provide insights into the cellular mechanisms of an ancient biological process that is capable of utilizing CO2 to generate a versatile construction material.


Asunto(s)
Calcificación Fisiológica , Dióxido de Carbono , Carbono , Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Erizos de Mar , Animales , Bicarbonatos/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Glicosilfosfatidilinositoles , Concentración de Iones de Hidrógeno , Protones , Erizos de Mar/enzimología
20.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35169074

RESUMEN

Cells are filled with macromolecules and polymer networks that set scale-dependent viscous and elastic properties to the cytoplasm. Although the role of these parameters in molecular diffusion, reaction kinetics, and cellular biochemistry is being increasingly recognized, their contributions to the motion and positioning of larger organelles, such as mitotic spindles for cell division, remain unknown. Here, using magnetic tweezers to displace and rotate mitotic spindles in living embryos, we uncovered that the cytoplasm can impart viscoelastic reactive forces that move spindles, or passive objects with similar size, back to their original positions. These forces are independent of cytoskeletal force generators yet reach hundreds of piconewtons and scale with cytoplasm crowding. Spindle motion shears and fluidizes the cytoplasm, dissipating elastic energy and limiting spindle recoils with functional implications for asymmetric and oriented divisions. These findings suggest that bulk cytoplasm material properties may constitute important control elements for the regulation of division positioning and cellular organization.


Asunto(s)
Citoplasma/fisiología , Elasticidad/fisiología , Huso Acromático/fisiología , Animales , Fenómenos Biomecánicos/fisiología , División Celular/fisiología , Difusión , Cinética , Fenómenos Magnéticos , Microtúbulos , Mitosis/fisiología , Orgánulos , Erizos de Mar , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA