Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.575
Filtrar
Más filtros

Colección BVS Ecuador
Intervalo de año de publicación
1.
Nature ; 622(7982): 410-417, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758949

RESUMEN

The Kv2.1 voltage-activated potassium (Kv) channel is a prominent delayed-rectifier Kv channel in the mammalian central nervous system, where its mechanisms of activation and inactivation are critical for regulating intrinsic neuronal excitability1,2. Here we present structures of the Kv2.1 channel in a lipid environment using cryo-electron microscopy to provide a framework for exploring its functional mechanisms and how mutations causing epileptic encephalopathies3-7 alter channel activity. By studying a series of disease-causing mutations, we identified one that illuminates a hydrophobic coupling nexus near the internal end of the pore that is critical for inactivation. Both functional and structural studies reveal that inactivation in Kv2.1 results from dynamic alterations in electromechanical coupling to reposition pore-lining S6 helices and close the internal pore. Consideration of these findings along with available structures for other Kv channels, as well as voltage-activated sodium and calcium channels, suggests that related mechanisms of inactivation are conserved in voltage-activated cation channels and likely to be engaged by widely used therapeutics to achieve state-dependent regulation of channel activity.


Asunto(s)
Activación del Canal Iónico , Mutación , Canales de Potasio Shab , Animales , Humanos , Microscopía por Crioelectrón , Interacciones Hidrofóbicas e Hidrofílicas , Activación del Canal Iónico/genética , Canales de Potasio Shab/genética , Canales de Potasio Shab/metabolismo , Canales de Potasio Shab/ultraestructura , Espasmos Infantiles/genética
2.
Proc Natl Acad Sci U S A ; 121(9): e2312757121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38386709

RESUMEN

MECP2, CDKL5, and FMR1 are three X-linked neurodevelopmental genes associated with Rett, CDKL5-, and fragile-X syndrome, respectively. These syndromes are characterized by distinct constellations of severe cognitive and neurobehavioral anomalies, reflecting the broad but unique expression patterns of each of the genes in the brain. As these disorders are not thought to be neurodegenerative and may be reversible, a major goal has been to restore expression of the functional proteins in the patient's brain. Strategies have included gene therapy, gene editing, and selective Xi-reactivation methodologies. However, tissue penetration and overall delivery to various regions of the brain remain challenging for each strategy. Thus, gaining insights into how much restoration would be required and what regions/cell types in the brain must be targeted for meaningful physiological improvement would be valuable. As a step toward addressing these questions, here we perform a meta-analysis of single-cell transcriptomics data from the human brain across multiple developmental stages, in various brain regions, and in multiple donors. We observe a substantial degree of expression variability for MECP2, CDKL5, and FMR1 not only across cell types but also between donors. The wide range of expression may help define a therapeutic window, with the low end delineating a minimum level required to restore physiological function and the high end informing toxicology margin. Finally, the inter-cellular and inter-individual variability enable identification of co-varying genes and will facilitate future identification of biomarkers.


Asunto(s)
Encéfalo , Síndromes Epilépticos , Terapia Genética , Espasmos Infantiles , Humanos , Encéfalo/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Genes Ligados a X , Terapia Genética/métodos , Proteínas Serina-Treonina Quinasas/genética
3.
J Neurosci ; 44(8)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38148154

RESUMEN

SCN2A encodes NaV1.2, an excitatory neuron voltage-gated sodium channel and a major monogenic cause of neurodevelopmental disorders, including developmental and epileptic encephalopathies (DEE) and autism. Clinical presentation and pharmocosensitivity vary with the nature of SCN2A variant dysfunction and can be divided into gain-of-function (GoF) cases with pre- or peri-natal seizures and loss-of-function (LoF) patients typically having infantile spasms after 6 months of age. We established and assessed patient induced pluripotent stem cell (iPSC) - derived neuronal models for two recurrent SCN2A DEE variants with GoF R1882Q and LoF R853Q associated with early- and late-onset DEE, respectively. Two male patient-derived iPSC isogenic pairs were differentiated using Neurogenin-2 overexpression yielding populations of cortical-like glutamatergic neurons. Functional properties were assessed using patch clamp and multielectrode array recordings and transcriptomic profiles obtained with total mRNA sequencing after 2-4 weeks in culture. At 3 weeks of differentiation, increased neuronal activity at cellular and network levels was observed for R1882Q iPSC-derived neurons. In contrast, R853Q neurons showed only subtle changes in excitability after 4 weeks and an overall reduced network activity after 7 weeks in vitro. Consistent with the reported efficacy in some GoF SCN2A patients, phenytoin (sodium channel blocker) reduced the excitability of neurons to the control levels in R1882Q neuronal cultures. Transcriptomic alterations in neurons were detected for each variant and convergent pathways suggested potential shared mechanisms underlying SCN2A DEE. In summary, patient iPSC-derived neuronal models of SCN2A GoF and LoF pathogenic variants causing DEE show specific functional and transcriptomic in vitro phenotypes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Espasmos Infantiles , Humanos , Masculino , Células Madre Pluripotentes Inducidas/metabolismo , Convulsiones/genética , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Fenotipo , Neuronas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/genética
4.
Hum Mol Genet ; 32(23): 3276-3298, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37688574

RESUMEN

Cyclin-dependent kinase-like 5 (CDKL5) is a serine-threonine kinase enriched in the forebrain to regulate neuronal development and function. Patients with CDKL5 deficiency disorder (CDD), a severe neurodevelopmental condition caused by mutations of CDKL5 gene, present early-onset epilepsy as the most prominent feature. However, spontaneous seizures have not been reported in mouse models of CDD, raising vital questions on the human-mouse differences and the roles of CDKL5 in early postnatal brains. Here, we firstly measured electroencephalographic (EEG) activities via a wireless telemetry system coupled with video-recording in neonatal mice. We found that mice lacking CDKL5 exhibited spontaneous epileptic EEG discharges, accompanied with increased burst activities and ictal behaviors, specifically at postnatal day 12 (P12). Intriguingly, those epileptic spikes disappeared after P14. We next performed an unbiased transcriptome profiling in the dorsal hippocampus and motor cortex of Cdkl5 null mice at different developmental timepoints, uncovering a set of age-dependent and brain region-specific alterations of gene expression in parallel with the transient display of epileptic activities. Finally, we validated multiple differentially expressed genes, such as glycine receptor alpha 2 and cholecystokinin, at the transcript or protein levels, supporting the relevance of these genes to CDKL5-regulated excitability. Our findings reveal early-onset neuronal hyperexcitability in mouse model of CDD, providing new insights into CDD etiology and potential molecular targets to ameliorate intractable neonatal epilepsy.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Espasmos Infantiles , Humanos , Animales , Ratones , Transcriptoma/genética , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Epilepsia/genética , Prosencéfalo/metabolismo , Ratones Noqueados
5.
EMBO J ; 40(23): e108271, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34605059

RESUMEN

Mutations in the gene encoding the CDKL5 kinase are among the most common genetic causes of childhood epilepsy and can also give rise to the severe neurodevelopmental condition CDD (CDKL5 deficiency disorder). Despite its importance for human health, the phosphorylation targets and cellular roles of CDKL5 are poorly understood, especially in the cell nucleus. Here, we report that CDKL5 is recruited to sites of DNA damage in actively transcribed regions of the nucleus. A quantitative phosphoproteomic screen for nuclear CDKL5 substrates reveals a network of transcriptional regulators including Elongin A (ELOA), phosphorylated on a specific CDKL5 consensus motif. Recruitment of CDKL5 and ELOA to damaged DNA, and subsequent phosphorylation of ELOA, requires both active transcription and the synthesis of poly(ADP-ribose) (PAR), to which CDKL5 can bind. Critically, CDKL5 kinase activity is essential for the transcriptional silencing of genes induced by DNA double-strand breaks. Thus, CDKL5 is a DNA damage-sensing, PAR-controlled transcriptional modulator, a finding with implications for understanding the molecular basis of CDKL5-related diseases.


Asunto(s)
Roturas del ADN de Doble Cadena , Daño del ADN , Elonguina/metabolismo , Neuronas/patología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Activación Transcripcional , Elonguina/genética , Síndromes Epilépticos/genética , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/patología , Humanos , Mutación , Neuronas/metabolismo , Fosfoproteínas/genética , Fosforilación , Poli Adenosina Difosfato Ribosa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Espasmos Infantiles/patología
6.
Ann Neurol ; 96(5): 932-943, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39096015

RESUMEN

OBJECTIVE: To understand the etiological landscape and phenotypic differences between 2 developmental and epileptic encephalopathy (DEE) syndromes: DEE with spike-wave activation in sleep (DEE-SWAS) and epileptic encephalopathy with spike-wave activation in sleep (EE-SWAS). METHODS: All patients fulfilled International League Against Epilepsy (ILAE) DEE-SWAS or EE-SWAS criteria with a Core cohort (n = 91) drawn from our Epilepsy Genetics research program, together with 10 etiologically solved patients referred by collaborators in the Expanded cohort (n = 101). Detailed phenotyping and analysis of molecular genetic results were performed. We compared the phenotypic features of individuals with DEE-SWAS and EE-SWAS. Brain-specific gene co-expression analysis was performed for D/EE-SWAS genes. RESULTS: We identified the etiology in 42/91 (46%) patients in our Core cohort, including 29/44 (66%) with DEE-SWAS and 13/47 (28%) with EE-SWAS. A genetic etiology was identified in 31/91 (34%). D/EE-SWAS genes were highly co-expressed in brain, highlighting the importance of channelopathies and transcriptional regulators. Structural etiologies were found in 12/91 (13%) individuals. We identified 10 novel D/EE-SWAS genes with a range of functions: ATP1A2, CACNA1A, FOXP1, GRIN1, KCNMA1, KCNQ3, PPFIA3, PUF60, SETD1B, and ZBTB18, and 2 novel copy number variants, 17p11.2 duplication and 5q22 deletion. Although developmental regression patterns were similar in both syndromes, DEE-SWAS was associated with a longer duration of epilepsy and poorer intellectual outcome than EE-SWAS. INTERPRETATION: DEE-SWAS and EE-SWAS have highly heterogeneous genetic and structural etiologies. Phenotypic analysis highlights valuable clinical differences between DEE-SWAS and EE-SWAS which inform clinical care and prognostic counseling. Our etiological findings pave the way for the development of precision therapies. ANN NEUROL 2024;96:932-943.


Asunto(s)
Espasmos Infantiles , Humanos , Femenino , Masculino , Preescolar , Niño , Lactante , Espasmos Infantiles/genética , Espasmos Infantiles/fisiopatología , Adolescente , Electroencefalografía , Sueño/fisiología , Sueño/genética , Estudios de Cohortes , Fenotipo , Adulto , Adulto Joven
7.
Mol Psychiatry ; 29(6): 1844-1856, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38326557

RESUMEN

CDKL5 is a brain-enriched serine/threonine kinase, associated with a profound developmental and epileptic encephalopathy called CDKL5 deficiency disorder (CDD). To design targeted therapies for CDD, it is essential to determine where CDKL5 is expressed and is active in the brain and test if compensatory mechanisms exist at cellular level. We generated conditional Cdkl5 knockout mice in excitatory neurons, inhibitory neurons and astrocytes. To assess CDKL5 activity, we utilized a phosphospecific antibody for phosphorylated EB2, a well-known substrate of CDKL5. We found that CDKL5 and EB2 pS222 were prominent in excitatory and inhibitory neurons but were not detected in astrocytes. We observed that approximately 15-20% of EB2 pS222 remained in Cdkl5 knockout brains and primary neurons. Surprisingly, the remaining phosphorylation was modulated by NMDA and PP1/PP2A in neuronal CDKL5 knockout cultures, indicating the presence of a compensating kinase. Using a screen of candidate kinases with highest homology to the CDKL5 kinase domain, we found that CDKL2 and ICK can phosphorylate EB2 S222 in HEK293T cells and in primary neurons. We then generated Cdkl5/Cdkl2 dual knockout mice to directly test if CDKL2 phosphorylates EB2 in vivo and found that CDKL2 phosphorylates CDKL5 substrates in the brain. This study is the first indication that CDKL2 could potentially replace CDKL5 functions in the brain, alluding to novel therapeutic possibilities.


Asunto(s)
Encéfalo , Síndromes Epilépticos , Ratones Noqueados , Neuronas , Proteínas Serina-Treonina Quinasas , Espasmos Infantiles , Animales , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Neuronas/metabolismo , Encéfalo/metabolismo , Fosforilación , Humanos , Células HEK293 , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/genética , Espasmos Infantiles/metabolismo , Espasmos Infantiles/genética , Astrocitos/metabolismo
8.
Mol Ther ; 32(10): 3331-3345, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39033321

RESUMEN

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare neurodevelopmental disorder caused by a mutation in the X-linked CDKL5 gene. CDKL5 is a serine/threonine kinase that is critical for axon outgrowth and dendritic morphogenesis as well as synapse formation, maturation, and maintenance. This disorder is characterized by early-onset epilepsy, hypotonia, and failure to reach cognitive and motor developmental milestones. Because the disease is monogenic, delivery of the CDKL5 gene to the brain of patients should provide clinical benefit. To this end, we designed a gene therapy vector, adeno-associated virus (AAV)9.Syn.hCDKL5, in which human CDKL5 gene expression is driven by the synapsin promoter. In biodistribution studies conducted in mice, intracerebroventricular (i.c.v.) injection resulted in broader, more optimal biodistribution than did intra-cisterna magna (i.c.m.) delivery. AAV9.Syn.hCDKL5 treatment increased phosphorylation of EB2, a bona fide CDKL5 substrate, demonstrating biological activity in vivo. Our data provide proof of concept that i.c.v. delivery of AAV9.Syn.hCDKL5 to neonatal male Cdkl5 knockout mice reduces pathology and reduces aberrant behavior. Functional improvements were seen at doses of 3e11 to 5e11 vector genomes/g brain, which resulted in transfection of ≥50% of the neurons. Functional improvements were not seen at lower doses, suggesting a requirement for broad distribution for efficacy.


Asunto(s)
Síndromes Epilépticos , Terapia Genética , Proteínas Serina-Treonina Quinasas , Espasmos Infantiles , Animales , Humanos , Masculino , Ratones , Encéfalo/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Síndromes Epilépticos/terapia , Síndromes Epilépticos/genética , Expresión Génica , Terapia Genética/métodos , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Discapacidad Intelectual Ligada al Cromosoma X/terapia , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Espasmos Infantiles/terapia , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Distribución Tisular
9.
Cell Mol Life Sci ; 81(1): 347, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136782

RESUMEN

CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.


Asunto(s)
Síndromes Epilépticos , Células Madre Pluripotentes Inducidas , Neuronas , Proteínas Serina-Treonina Quinasas , Espasmos Infantiles , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Neuronas/metabolismo , Neuronas/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Fosforilación , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/genética , Síndromes Epilépticos/patología , Espasmos Infantiles/metabolismo , Espasmos Infantiles/genética , Espasmos Infantiles/patología
10.
J Med Genet ; 61(6): 536-542, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38272663

RESUMEN

BACKGROUND: PHACTR1 (phosphatase and actin regulators) plays a key role in cortical migration and synaptic activity by binding and regulating G-actin and PPP1CA. This study aimed to expand the genotype and phenotype of patients with de novo variants in PHACTR1 and analyse the impact of variants on protein-protein interaction. METHODS: We identified seven patients with PHACTR1 variants by trio-based whole-exome sequencing. Additional two subjects were ascertained from two centres through GeneMatcher. The genotype-phenotype correlation was determined, and AlphaFold-Multimer was used to predict protein-protein interactions and interfaces. RESULTS: Eight individuals carried missense variants and one had CNV in the PHACTR1. Infantile epileptic spasms syndrome (IESS) was the unifying phenotype in eight patients with missense variants of PHACTR1. They could present with other types of seizures and often exhibit drug-resistant epilepsy with a poor prognosis. One patient with CNV displayed a developmental encephalopathy phenotype. Using AlphaFold-Multimer, our findings indicate that PHACTR1 and G-actin-binding sequences overlap with PPP1CA at the RPEL3 domain, which suggests possible competition between PPP1CA and G-actin for binding to PHACTR1 through a similar polymerisation interface. In addition, patients carrying missense variants located at the PHACTR1-PPP1CA or PHACTR1-G-actin interfaces consistently exhibit the IESS phenotype. These missense variants are mostly concentrated in the overlapping sequence (RPEL3 domain). CONCLUSIONS: Patients with variants in PHACTR1 can have a phenotype of developmental encephalopathy in addition to IESS. Moreover, our study confirmed that the variants affect the binding of PHACTR1 to G-actin or PPP1CA, resulting in neurological disorders in patients.


Asunto(s)
Secuenciación del Exoma , Estudios de Asociación Genética , Proteínas de Microfilamentos , Mutación Missense , Fenotipo , Espasmos Infantiles , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Actinas/genética , Predisposición Genética a la Enfermedad , Genotipo , Proteínas de Microfilamentos/genética , Mutación Missense/genética , Enfermedades del Sistema Nervioso/genética , Proteína Fosfatasa 1/genética , Espasmos Infantiles/genética
11.
J Med Genet ; 61(7): 652-660, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38508705

RESUMEN

BACKGROUND: The ZFHX3 gene plays vital roles in embryonic development, cell proliferation, neuronal differentiation and neuronal death. This study aims to explore the relationship between ZFHX3 variants and epilepsy. METHODS: Whole-exome sequencing was performed in a cohort of 378 patients with partial (focal) epilepsy. A Drosophila Zfh2 knockdown model was used to validate the association between ZFHX3 and epilepsy. RESULTS: Compound heterozygous ZFHX3 variants were identified in eight unrelated cases. The burden of ZFHX3 variants was significantly higher in the case cohort, shown by multiple/specific statistical analyses. In Zfh2 knockdown flies, the incidence and duration of seizure-like behaviour were significantly greater than those in the controls. The Zfh2 knockdown flies exhibited more firing in excitatory neurons. All patients presented partial seizures. The five patients with variants in the C-terminus/N-terminus presented mild partial epilepsy. The other three patients included one who experienced frequent non-convulsive status epilepticus and two who had early spasms. These three patients had also neurodevelopmental abnormalities and were diagnosed as developmental epileptic encephalopathy (DEE), but achieved seizure-free after antiepileptic-drug treatment without adrenocorticotropic-hormone/steroids. The analyses of temporal expression (genetic dependent stages) indicated that ZFHX3 orthologous were highly expressed in the embryonic stage and decreased dramatically after birth. CONCLUSION: ZFHX3 is a novel causative gene of childhood partial epilepsy and DEE. The patients of infantile spasms achieved seizure-free after treatment without adrenocorticotropic-hormone/steroids implies a significance of genetic diagnosis in precise treatment. The genetic dependent stage provided an insight into the underlying mechanism of the evolutional course of illness.


Asunto(s)
Epilepsias Parciales , Proteínas de Homeodominio , Espasmos Infantiles , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Epilepsias Parciales/genética , Epilepsias Parciales/tratamiento farmacológico , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Proteínas de Homeodominio/genética , Mutación , Espasmos Infantiles/genética , Drosophila
12.
J Neurosci ; 43(11): 2002-2020, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36759195

RESUMEN

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe early-onset epileptic encephalopathy resulting mainly from de novo mutations in the X-linked CDKL5 gene. To determine whether loss of presynaptic CDKL5 function contributes to CDD, we examined synaptic vesicle (SV) recycling in primary hippocampal neurons generated from Cdkl5 knockout rat males. Using a genetically encoded reporter, we revealed that CDKL5 is selectively required for efficient SV endocytosis. We showed that CDKL5 kinase activity is both necessary and sufficient for optimal SV endocytosis, since kinase-inactive mutations failed to correct endocytosis in Cdkl5 knockout neurons, whereas the isolated CDKL5 kinase domain fully restored SV endocytosis kinetics. Finally, we demonstrated that CDKL5-mediated phosphorylation of amphiphysin 1, a putative presynaptic target, is not required for CDKL5-dependent control of SV endocytosis. Overall, our findings reveal a key presynaptic role for CDKL5 kinase activity and enhance our insight into how its dysfunction may culminate in CDD.SIGNIFICANCE STATEMENT Loss of cyclin-dependent kinase like 5 (CDKL5) function is a leading cause of monogenic childhood epileptic encephalopathy. However, information regarding its biological role is scarce. In this study, we reveal a selective presynaptic role for CDKL5 in synaptic vesicle endocytosis and that its protein kinase activity is both necessary and sufficient for this role. The isolated protein kinase domain is sufficient to correct this loss of function, which may facilitate future gene therapy strategies if presynaptic dysfunction is proven to be central to the disorder. It also reveals that a CDKL5-specific substrate is located at the presynapse, the phosphorylation of which is required for optimal SV endocytosis.


Asunto(s)
Espasmos Infantiles , Vesículas Sinápticas , Animales , Masculino , Ratas , Quinasas Ciclina-Dependientes/metabolismo , Endocitosis/fisiología , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Vesículas Sinápticas/metabolismo
13.
J Neurosci ; 43(8): 1422-1440, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36717229

RESUMEN

Infantile and epileptic spasms syndrome (IESS) is a childhood epilepsy syndrome characterized by infantile or late-onset spasms, abnormal neonatal EEG, and epilepsy. Few treatments exist for IESS, clinical outcomes are poor, and the molecular and circuit-level etiologies of IESS are not well understood. Multiple human IESS risk genes are linked to Wnt/ß-catenin signaling, a pathway that controls developmental transcriptional programs and promotes glutamatergic excitation via ß-catenin's role as a synaptic scaffold. We previously showed that deleting adenomatous polyposis coli (APC), a component of the ß-catenin destruction complex, in excitatory neurons (APC cKO mice, APCfl/fl x CaMKIIαCre) increased ß-catenin levels in developing glutamatergic neurons and led to infantile behavioral spasms, abnormal neonatal EEG, and adult epilepsy. Here, we tested the hypothesis that the development of GABAergic interneurons (INs) is disrupted in APC cKO male and female mice. IN dysfunction is implicated in human IESS, is a feature of other rodent models of IESS, and may contribute to the manifestation of spasms and seizures. We found that parvalbumin-positive INs (PV+ INs), an important source of cortical inhibition, were decreased in number, underwent disproportionate developmental apoptosis, and had altered dendrite morphology at P9, the peak of behavioral spasms. PV+ INs received excessive excitatory input, and their intrinsic ability to fire action potentials was reduced at all time points examined (P9, P14, P60). Subsequently, GABAergic transmission onto pyramidal neurons was uniquely altered in the somatosensory cortex of APC cKO mice at all ages, with both decreased IPSC input at P14 and enhanced IPSC input at P9 and P60. These results indicate that inhibitory circuit dysfunction occurs in APC cKOs and, along with known changes in excitation, may contribute to IESS-related phenotypes.SIGNIFICANCE STATEMENT Infantile and epileptic spasms syndrome (IESS) is a devastating epilepsy with limited treatment options and poor clinical outcomes. The molecular, cellular, and circuit disruptions that cause infantile spasms and seizures are largely unknown, but inhibitory GABAergic interneuron dysfunction has been implicated in rodent models of IESS and may contribute to human IESS. Here, we use a rodent model of IESS, the APC cKO mouse, in which ß-catenin signaling is increased in excitatory neurons. This results in altered parvalbumin-positive GABAergic interneuron development and GABAergic synaptic dysfunction throughout life, showing that pathology arising in excitatory neurons can initiate long-term interneuron dysfunction. Our findings further implicate GABAergic dysfunction in IESS, even when pathology is initiated in other neuronal types.


Asunto(s)
Poliposis Adenomatosa del Colon , Epilepsia , Espasmos Infantiles , Masculino , Animales , Femenino , Ratones , Humanos , Niño , Espasmos Infantiles/metabolismo , Parvalbúminas/metabolismo , Ratones Noqueados , beta Catenina/metabolismo , Interneuronas/fisiología , Convulsiones , Epilepsia/metabolismo , Espasmo/metabolismo , Espasmo/patología , Poliposis Adenomatosa del Colon/metabolismo , Poliposis Adenomatosa del Colon/patología
14.
J Proteome Res ; 23(10): 4316-4326, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-38857073

RESUMEN

This study aimed to identify characteristic proteins in infantile epileptic spasm syndrome (IESS) patients' plasma, offering insights into potential early diagnostic biomarkers and its underlying causes. Plasma samples were gathered from 60 patients with IESS and 40 healthy controls. Data-independent acquisition proteomic analysis was utilized to identify differentially expressed proteins (DEPs). These DEPs underwent functional annotation through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Gene set enrichment analysis (GSEA) was employed for both GO (GSEA-GO) and KEGG (GSEA-KEGG) analyses to examine the gene expression profiles. Receiver operating characteristic (ROC) curves assessed biomarkers' discriminatory capacity. A total of 124 DEPs were identified in IESS patients' plasma, mainly linked to pathways, encompassing chemokines, cytokines, and oxidative detoxification. GSEA-GO and GSEA-KEGG analyses indicated significant enrichment of genes associated with cell migration, focal adhesion, and phagosome pathways. ROC curve analysis demonstrated that the combination of PRSS1 and ACTB, PRSS3, ACTB, and PRSS1 alone exhibited AUC values exceeding 0.7. This study elucidated the significant contribution of cytokines, chemokines, oxidative detoxification, and phagosomes to the IESS pathogenesis. The combination of PRSS1 and ACTB holds promise as biomarkers for the early diagnosis of IESS.


Asunto(s)
Biomarcadores , Proteómica , Espasmos Infantiles , Humanos , Espasmos Infantiles/sangre , Espasmos Infantiles/genética , Proteómica/métodos , Lactante , Femenino , Masculino , Biomarcadores/sangre , Ontología de Genes , Curva ROC , Estudios de Casos y Controles , Actinas/genética , Actinas/sangre , Citocinas/sangre
15.
Neurogenetics ; 25(3): 225-232, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38622440

RESUMEN

Developmental and epileptic encephalopathy (DEEs) (OMIM#618,328) is characterized by seizures, hypotonia, and brain abnormalities, often arising from mutations in genes crucial for brain function. Among these genes, GLS stands out due to its vital role in the central nervous system (CNS), with homozygous variants potentially causing DEE type 71. Using Whole Exome Sequencing (WES) on a patient exhibiting symptoms of epileptic encephalopathy, we identified a novel homozygous variant, NM_014905.5:c.1849G > T; p.(Asp617Tyr), in the GLS gene. The 5-year-old patient, born to consanguineous parents, presented with developmental delay, encephalopathy, frequent seizures, and hypotonia. Sanger sequencing further validated the GLS gene variant in both the patient and his family. Furthermore, our bioinformatics analysis indicated that this missense variant could lead to alteration of splicing, resulting in the activation of a cryptic donor site and potentially causing loss of protein function. Our finding highlights the pathogenic significance of the GLS gene, particularly in the context of brain disorders, specifically DEE71.


Asunto(s)
Secuenciación del Exoma , Homocigoto , Humanos , Masculino , Preescolar , Mutación Missense , Linaje , Discapacidades del Desarrollo/genética , Epilepsia/genética , Consanguinidad , Femenino , Espasmos Infantiles/genética
16.
Neurogenetics ; 25(2): 119-130, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38388889

RESUMEN

The terms developmental epileptic encephalopathy with spike-and-wave activation in sleep (DEE-SWAS) and epileptic encephalopathy with spike-and-wave activation in sleep (EE-SWAS) designate a spectrum of conditions that are typified by different combinations of motor, cognitive, language, and behavioral regression linked to robust spike-and-wave activity during sleep. In this study, we aimed at describing the clinical and molecular findings in "(developmental) epileptic encephalopathy with spike-and-wave activation in sleep" (D)EE-SWAS) patients as well as at contributing to the genetic etiologic spectrum of (D)EE-SWAS. Single nucleotide polymorphism (SNP) array and whole-exome sequencing (WES) techniques were used to determine the underlying genetic etiologies. Of the 24 patients included in the study, 8 (33%) were female and 16 (67%) were male. The median age at onset of the first seizure was 4 years and the median age at diagnosis of (D)EE-SWAS was 5 years. Of the 24 cases included in the study, 13 were compatible with the clinical diagnosis of DEE-SWAS and 11 were compatible with the clinical diagnosis of EE-SWAS. Abnormal perinatal history was present in four cases (17%), and two cases (8%) had a family history of epilepsy. Approximately two-thirds (63%) of all patients had abnormalities detected on brain computerized tomography/magnetic resonance (CT/MR) imaging. After SNP array and WES analysis, the genetic etiology was revealed in 7 out of 24 (29%) cases. Three of the variants detected were novel (SLC12A5, DLG4, SLC9A6). This study revealed for the first time that Smith-Magenis syndrome, SCN8A-related DEE type 13 and SLC12A5 gene variation are involved in the genetic etiology of (D)EE-SWAS. (D)EE-SWAS is a genetically diverse disorder with underlying copy number variations and single-gene abnormalities. In the current investigation, rare novel variations in genes known to be related to (D)EE-SWAS and not previously reported genes to be related to (D)EE-SWAS were discovered, adding to the molecular genetic spectrum. Molecular etiology enables the patient and family to receive thorough and accurate genetic counseling as well as a personalized medicine approach.


Asunto(s)
Secuenciación del Exoma , Sueño , Humanos , Masculino , Femenino , Niño , Turquía , Preescolar , Sueño/genética , Polimorfismo de Nucleótido Simple , Electroencefalografía , Espasmos Infantiles/genética , Lactante , Estudios de Cohortes , Epilepsia/genética , Adolescente
17.
Neurogenetics ; 25(3): 281-286, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38498292

RESUMEN

Mannosyl-oligosaccharide glucosidase - congenital disorder of glycosylation (MOGS-CDG) is determined by biallelic mutations in the mannosyl-oligosaccharide glucosidase (glucosidase I) gene. MOGS-CDG is a rare disorder affecting the processing of N-Glycans (CDG type II) and is characterized by prominent neurological involvement including hypotonia, developmental delay, seizures and movement disorders. To the best of our knowledge, 30 patients with MOGS-CDG have been published so far. We described a child who is compound heterozygous for two novel variants in the MOGS gene. He presented Early Infantile Developmental and Epileptic Encephalopathy (EI-DEE) in the absence of other specific systemic involvement and unrevealing first-line biochemical findings. In addition to the previously described features, the patient presented a Hirschprung disease, never reported before in individuals with MOGS-CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación , Secuenciación del Exoma , Humanos , Masculino , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/diagnóstico , Lactante , alfa-Glucosidasas/genética , Mutación/genética , Espasmos Infantiles/genética , Espasmos Infantiles/diagnóstico , Epilepsia/genética , Epilepsia/diagnóstico , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/diagnóstico
18.
Hum Mol Genet ; 31(23): 4107-4120, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35861639

RESUMEN

Cyclin-dependent kinase-like 5 (Cdkl5) deficiency disorder (CDD) is a severe neurodevelopmental condition caused by mutations in the X-linked Cdkl5 gene. CDD is characterized by early-onset seizures in the first month of life, intellectual disability, motor and social impairment. No effective treatment is currently available and medical management is only symptomatic and supportive. Recently, mouse models of Cdkl5 disorder have demonstrated that mice lacking Cdkl5 exhibit autism-like phenotypes, hyperactivity and dysregulations of the arousal system, suggesting the possibility to use these features as translational biomarkers. In this study, we tested Cdkl5 male and female mutant mice in an appetitive operant conditioning chamber to assess cognitive and motor abilities, and performed pupillometry to assess the integrity of the arousal system. Then, we evaluated the performance of artificial intelligence models to classify the genotype of the animals from the behavioral and physiological phenotype. The behavioral results show that CDD mice display impulsivity, together with low levels of cognitive flexibility and perseverative behaviors. We assessed arousal levels by simultaneously recording pupil size and locomotor activity. Pupillometry reveals in CDD mice a smaller pupil size and an impaired response to unexpected stimuli associated with hyperlocomotion, demonstrating a global defect in arousal modulation. Finally, machine learning reveals that both behavioral and pupillometry parameters can be considered good predictors of CDD. Since early diagnosis is essential to evaluate treatment outcomes and pupillary measures can be performed easily, we proposed the monitoring of pupil size as a promising biomarker for CDD.


Asunto(s)
Pupila , Espasmos Infantiles , Animales , Ratones , Masculino , Femenino , Ratones Noqueados , Inteligencia Artificial , Espasmos Infantiles/genética , Conducta Impulsiva , Proteínas Serina-Treonina Quinasas
19.
Br J Haematol ; 204(3): 1067-1071, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37984840

RESUMEN

Biallelic pathogenic variants in CAD, that encode the multienzymatic protein required for de-novo pyrimidine biosynthesis, cause early infantile epileptic encephalopathy-50. This rare disease, characterized by developmental delay, intractable seizures and anaemia, is amenable to treatment with uridine. We present a patient with macrocytic anaemia, elevated haemoglobin-A2 levels, anisocytosis, poikilocytosis and target cells in the blood smear, and mild developmental delay. A next-generation sequencing panel revealed biallelic variants in CAD. Functional studies did not support complete abrogation of protein function; however, the patient responded to uridine supplement. We conclude that biallelic hypomorphic CAD variants may cause a primarily haematological phenotype.


Asunto(s)
Anemia Macrocítica , Anemia , Espasmos Infantiles , Humanos , Espasmos Infantiles/genética , Uridina , Hemoglobinas
20.
Clin Genet ; 106(2): 161-179, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38544467

RESUMEN

We summarize the copy number variations (CNVs) and phenotype spectrum of infantile epileptic spasms syndrome (IESS) in a Chinese cohort. The CNVs were identified by genomic copy number variation sequencing. The CNVs and clinical data were analyzed. 74 IESS children with CNVs were enrolled. 35 kinds of CNVs were identified. There were 11 deletions and 5 duplications not reported previously in IESS, including 2 CNVs not reported in epilepsy. 87.8% were de novo, 9.5% were inherited from mother and 2.7% from father. Mosaicism occurred in one patient with Xq21.31q25 duplication. 16.2% (12/74) were 1p36 deletion, and 20.3% (15/74) were 15q11-q13 duplication. The age of seizure onset ranged from 17 days to 24 months. Seizure types included epileptic spasms, focal seizures, tonic seizures, and myoclonic seizures. All patients displayed developmental delay. Additional features included craniofacial anomaly, microcephaly, congenital heart defects, and hemangioma. 29.7% of patients were seizure-free for more than 12 months, and 70.3% still had seizures after trying 2 or more anti-seizure medications. In conclusion, CNVs is a prominent etiology of IESS. 1p36 deletion and 15q duplication occurred most frequently. CNV detection should be performed in patients with IESS of unknown causes, especially in children with craniofacial anomalies and microcephaly.


Asunto(s)
Variaciones en el Número de Copia de ADN , Fenotipo , Espasmos Infantiles , Humanos , Variaciones en el Número de Copia de ADN/genética , Espasmos Infantiles/genética , Femenino , Masculino , Lactante , Duplicación Cromosómica/genética , Cromosomas Humanos Par 15/genética , Preescolar , Recién Nacido , Deleción Cromosómica , Mosaicismo , Aberraciones Cromosómicas , Discapacidad Intelectual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA