Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.777
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 579(7800): 603-608, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32132710

RESUMEN

Acetaldehyde is a highly reactive, DNA-damaging metabolite that is produced upon alcohol consumption1. Impaired detoxification of acetaldehyde is common in the Asian population, and is associated with alcohol-related cancers1,2. Cells are protected against acetaldehyde-induced damage by DNA crosslink repair, which when impaired causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cells and a predisposition to cancer3,4. The combined inactivation of acetaldehyde detoxification and the FA pathway induces mutation, accelerates malignancies and causes the rapid attrition of blood stem cells5-7. However, the nature of the DNA damage induced by acetaldehyde and how this is repaired remains a key question. Here we generate acetaldehyde-induced DNA interstrand crosslinks and determine their repair mechanism in Xenopus egg extracts. We find that two replication-coupled pathways repair these lesions. The first is the FA pathway, which operates using excision-analogous to the mechanism used to repair the interstrand crosslinks caused by the chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced crosslinks results in increased mutation frequency and an altered mutational spectrum compared with the repair of cisplatin-induced crosslinks. The second repair mechanism requires replication fork convergence, but does not involve DNA incisions-instead the acetaldehyde crosslink itself is broken. The Y-family DNA polymerase REV1 completes repair of the crosslink, culminating in a distinct mutational spectrum. These results define the repair pathways of DNA interstrand crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an excision-independent mechanism.


Asunto(s)
Acetaldehído/química , Reactivos de Enlaces Cruzados/química , Daño del ADN , Reparación del ADN , Replicación del ADN/fisiología , ADN/química , Etanol/química , Anemia de Fanconi/metabolismo , Animales , Cisplatino/química , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , Etanol/farmacología , Mutagénesis/efectos de los fármacos , Nucleotidiltransferasas/metabolismo , Mutación Puntual/efectos de los fármacos , Mutación Puntual/genética , Xenopus , Proteínas de Xenopus/metabolismo
2.
J Neurosci ; 44(9)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38242696

RESUMEN

Much remains unknown about the etiology of compulsion-like alcohol drinking, where consumption persists despite adverse consequences. The role of the anterior insula (AIC) in emotion, motivation, and interoception makes this brain region a likely candidate to drive challenge-resistant behavior, including compulsive drinking. Indeed, subcortical projections from the AIC promote compulsion-like intake in rats and are recruited in heavy-drinking humans during compulsion for alcohol, highlighting the importance of and need for more information about AIC activity patterns that support aversion-resistant responding. Single-unit activity was recorded in the AIC from 15 male rats during alcohol-only and compulsion-like consumption. We found three sustained firing phenotypes, sustained-increase, sustained-decrease, and drinking-onset cells, as well as several firing patterns synchronized with licking. While many AIC neurons had session-long activity changes, only neurons with firing increases at drinking onset had greater activity under compulsion-like conditions. Further, only cells with persistent firing increases maintained activity during pauses in licking, suggesting roles in maintaining drive for alcohol during breaks. AIC firing was not elevated during saccharin drinking, similar to lack of effect of AIC inhibition on sweet fluid intake in many studies. In addition, we observed subsecond changes in AIC neural activity tightly entrained to licking. One lick-synched firing pattern (determined for all licks in a session) predicted compulsion-like drinking, while a separate lick-associated pattern correlated with greater consumption across alcohol intake conditions. Collectively, these data provide a more integrated model for the role of AIC firing in compulsion-like drinking, with important relevance for how the AIC promotes sustained motivated responding more generally.


Asunto(s)
Consumo de Bebidas Alcohólicas , Motivación , Humanos , Ratas , Masculino , Animales , Consumo de Bebidas Alcohólicas/psicología , Etanol/farmacología , Gusto , Conducta Animal
3.
J Neurosci ; 44(4)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38050120

RESUMEN

The insular cortex (IC) integrates sensory and interoceptive cues to inform downstream circuitry executing adaptive behavioral responses. The IC communicates with areas involved canonically in stress and motivation. IC projections govern stress and ethanol recruitment of bed nucleus of the stria terminalis (BNST) activity necessary for the emergence of negative affective behaviors during alcohol abstinence. Here, we assess the impact of the chronic drinking forced abstinence (CDFA) volitional home cage ethanol intake paradigm on synaptic and excitable properties of IC neurons that project to the BNST (IC→BNST). Using whole-cell patch-clamp electrophysiology, we investigated IC→BNST circuitry 24 h or 2 weeks following forced abstinence (FA) in female C57BL6/J mice. We find that IC→BNST cells are transiently more excitable following acute ethanol withdrawal. In contrast, in vivo ethanol exposure via intraperitoneal injection, ex vivo via ethanol wash, and acute FA from a natural reward (sucrose) all failed to alter excitability. In situ hybridization studies revealed that at 24 h post FA BK channel mRNA expression is reduced in IC. Further, pharmacological inhibition of BK channels mimicked the 24 h FA phenotype, while BK activation was able to decrease AP firing in control and 24 h FA subjects. All together these data suggest a novel mechanism of homeostatic plasticity that occurs in the IC→BNST circuitry following chronic drinking.


Asunto(s)
Etanol , Núcleos Septales , Humanos , Ratones , Animales , Femenino , Etanol/farmacología , Corteza Insular , Núcleos Septales/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Neuronas/fisiología
4.
J Neurosci ; 44(16)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38453466

RESUMEN

Chronic pain and alcohol use disorder (AUD) are highly comorbid, and patients with chronic pain are more likely to meet the criteria for AUD. Evidence suggests that both conditions alter similar brain pathways, yet this relationship remains poorly understood. Prior work shows that the anterior insular cortex (AIC) is involved in both chronic pain and AUD. However, circuit-specific changes elicited by the combination of pain and alcohol use remain understudied. The goal of this work was to elucidate the converging effects of binge alcohol consumption and chronic pain on AIC neurons that send projections to the dorsolateral striatum (DLS). Here, we used the Drinking-in-the-Dark (DID) paradigm to model binge-like alcohol drinking in mice that underwent spared nerve injury (SNI), after which whole-cell patch-clamp electrophysiological recordings were performed in acute brain slices to measure intrinsic and synaptic properties of AIC→DLS neurons. In male, but not female, mice, we found that SNI mice with no prior alcohol exposure consumed less alcohol compared with sham mice. Electrophysiological analyses showed that AIC→DLS neurons from SNI-alcohol male mice displayed increased neuronal excitability and increased frequency of miniature excitatory postsynaptic currents. However, mice exposed to alcohol prior to SNI consumed similar amounts of alcohol compared with sham mice following SNI. Together, our data suggest that the interaction of chronic pain and alcohol drinking have a direct effect on both intrinsic excitability and synaptic transmission onto AIC→DLS neurons in mice, which may be critical in understanding how chronic pain alters motivated behaviors associated with alcohol.


Asunto(s)
Alcoholismo , Consumo Excesivo de Bebidas Alcohólicas , Dolor Crónico , Enfermedades del Sistema Nervioso Periférico , Humanos , Ratones , Animales , Masculino , Dolor Crónico/metabolismo , Corteza Insular , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Etanol/farmacología , Neuronas/metabolismo , Alcoholismo/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo
5.
Circulation ; 149(24): 1875-1884, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38587557

RESUMEN

BACKGROUND: Renal denervation (RDN) has demonstrated clinically relevant reductions in blood pressure (BP) among individuals with uncontrolled hypertension despite lifestyle intervention and medications. The safety and effectiveness of alcohol-mediated RDN have not been formally studied in this indication. METHODS: TARGET BP I is a prospective, international, sham-controlled, randomized, patient- and assessor-blinded trial investigating the safety and efficacy of alcohol-mediated RDN. Patients with office systolic BP (SBP) ≥150 and ≤180 mm Hg, office diastolic BP ≥90 mm Hg, and mean 24-hour ambulatory SBP ≥135 and ≤170 mm Hg despite prescription of 2 to 5 antihypertensive medications were enrolled. The primary end point was the baseline-adjusted change in mean 24-hour ambulatory SBP 3 months after the procedure. Secondary end points included mean between-group differences in office and ambulatory BP at additional time points. RESULTS: Among 301 patients randomized 1:1 to RDN or sham control, RDN was associated with a significant reduction in 24-hour ambulatory SBP at 3 months (mean±SD, -10.0±14.2 mm Hg versus -6.8±12.1 mm Hg; treatment difference, -3.2 mm Hg [95% CI, -6.3 to 0.0]; P=0.0487). Subgroup analysis of the primary end point revealed no significant interaction across predefined subgroups. At 3 months, the mean change in office SBP was -12.7±18.3 and -9.7±17.3 mm Hg (difference, -3.0 [95% CI, -7.0 to 1.0]; P=0.173) for RDN and sham, respectively. No significant differences in ambulatory or office diastolic BP were observed. Adverse safety events through 6 months were uncommon, with one instance of accessory renal artery dissection in the RDN group (0.7%). No significant between-group differences in medication changes or patient adherence were identified. CONCLUSIONS: Alcohol-mediated RDN was associated with a modest but statistically significant reduction in 24-hour ambulatory SBP compared with sham control. No significant differences between groups in office BP or 6-month major adverse events were observed. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02910414.


Asunto(s)
Antihipertensivos , Presión Sanguínea , Hipertensión , Riñón , Humanos , Femenino , Masculino , Persona de Mediana Edad , Antihipertensivos/uso terapéutico , Hipertensión/fisiopatología , Hipertensión/tratamiento farmacológico , Hipertensión/cirugía , Presión Sanguínea/efectos de los fármacos , Anciano , Riñón/inervación , Estudios Prospectivos , Etanol/efectos adversos , Etanol/administración & dosificación , Etanol/farmacología , Resultado del Tratamiento , Monitoreo Ambulatorio de la Presión Arterial , Simpatectomía/efectos adversos , Simpatectomía/métodos , Arteria Renal/inervación
6.
FASEB J ; 38(1): e23341, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031982

RESUMEN

Binge drinking (BD) is an especially pro-oxidant pattern of alcohol consumption, particularly widespread in the adolescent population. In the kidneys, it affects the glomerular filtration rate (GFR), leading to high blood pressure. BD exposure also disrupts folic acid (FA) homeostasis and its antioxidant properties. The aim of this study is to test a FA supplementation as an effective therapy against the oxidative, nitrosative, and apoptotic damage as well as the renal function alteration occurred after BD in adolescence. Four groups of adolescent rats were used: control, BD (exposed to intraperitoneal alcohol), control FA-supplemented group and BD FA-supplemented group. Dietary FA content in control groups was 2 ppm, and 8 ppm in supplemented groups. BD provoked an oxidative imbalance in the kidneys by dysregulating antioxidant enzymes and increasing the enzyme NADPH oxidase 4 (NOX4), which led to an increase in caspase-9. BD also altered the renal nitrosative status affecting the expression of the three nitric oxide (NO) synthase (NOS) isoforms, leading to a decrease in NO levels. Functionally, BD produced a hydric-electrolytic imbalance, a low GFR and an increase in blood pressure. FA supplementation to BD adolescent rats improved the oxidative, nitrosative, and apoptotic balance, recovering the hydric-electrolytic equilibrium and blood pressure. However, neither NO levels nor GFR were recovered, showing in this study for the first time that NO availability in the kidneys plays a crucial role in GFR regulation that the antioxidant effects of FA cannot repair.


Asunto(s)
Antioxidantes , Consumo Excesivo de Bebidas Alcohólicas , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Óxido Nítrico/metabolismo , Presión Sanguínea , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Tasa de Filtración Glomerular , Riñón/metabolismo , Suplementos Dietéticos , Etanol/farmacología , Ácido Fólico/farmacología , Ácido Fólico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Estrés Oxidativo
7.
Mol Psychiatry ; 29(2): 529-542, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135755

RESUMEN

Large conductance potassium (BK) channels are among the most sensitive molecular targets of ethanol and genetic variations in the channel-forming α subunit have been nominally associated with alcohol use disorders. However, whether the action of ethanol at BK α influences the motivation to drink alcohol remains to be determined. To address this question, we first tested the effect of systemically administered BK channel modulators on voluntary alcohol consumption in C57BL/6J males. Penitrem A (blocker) exerted dose-dependent effects on moderate alcohol intake, while paxilline (blocker) and BMS-204352 (opener) were ineffective. Because pharmacological manipulations are inherently limited by non-specific effects, we then sought to investigate the behavioral relevance of ethanol's direct interaction with BK α by introducing in the mouse genome a point mutation known to render BK channels insensitive to ethanol while preserving their physiological function. The BK α K361N substitution prevented ethanol from reducing spike threshold in medial habenula neurons. However, it did not alter acute responses to ethanol in vivo, including ataxia, sedation, hypothermia, analgesia, and conditioned place preference. Furthermore, the mutation did not have reproducible effects on alcohol consumption in limited, continuous, or intermittent access home cage two-bottle choice paradigms conducted in both males and females. Notably, in contrast to previous observations made in mice missing BK channel auxiliary ß subunits, the BK α K361N substitution had no significant impact on ethanol intake escalation induced by chronic intermittent alcohol vapor inhalation. It also did not affect the metabolic and locomotor consequences of chronic alcohol exposure. Altogether, these data suggest that the direct interaction of ethanol with BK α does not mediate the alcohol-related phenotypes examined here in mice.


Asunto(s)
Consumo de Bebidas Alcohólicas , Etanol , Ratones Endogámicos C57BL , Animales , Etanol/farmacología , Masculino , Ratones , Consumo de Bebidas Alcohólicas/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Femenino
8.
Cell Mol Life Sci ; 81(1): 34, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214802

RESUMEN

This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.


Asunto(s)
Enfermedades Gastrointestinales , Hepatopatías Alcohólicas , Enfermedades Mitocondriales , Humanos , Hígado/metabolismo , Etanol/farmacología , Apoptosis , Estrés Oxidativo , Inflamación/patología , Enfermedades Gastrointestinales/metabolismo , Hepatocitos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Mitocondriales/metabolismo , Enfermedades Mitocondriales/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35131859

RESUMEN

Bioprosthetic heart valves (BHV) fabricated from glutaraldehyde-fixed heterograft tissue, such as bovine pericardium (BP), are widely used for treating heart valve disease, a group of disorders that affects millions. Structural valve degeneration (SVD) of BHV due to both calcification and the accumulation of advanced glycation end products (AGE) with associated serum proteins limits durability. We hypothesized that BP modified with poly-2-methyl-2-oxazoline (POZ) to inhibit protein entry would demonstrate reduced accumulation of AGE and serum proteins, mitigating SVD. In vitro studies of POZ-modified BP demonstrated reduced accumulation of serum albumin and AGE. BP-POZ in vitro maintained collagen microarchitecture per two-photon microscopy despite AGE incubation, and in cell culture studies was associated with no change in tumor necrosis factor-α after exposure to AGE and activated macrophages. Comparing POZ and polyethylene glycol (PEG)-modified BP in vitro, BP-POZ was minimally affected by oxidative conditions, whereas BP-PEG was susceptible to oxidative deterioration. In juvenile rat subdermal implants, BP-POZ demonstrated reduced AGE formation and serum albumin infiltration, while calcification was not inhibited. However, BP-POZ rat subdermal implants with ethanol pretreatment demonstrated inhibition of both AGE accumulation and calcification. Ex vivo laminar flow studies with human blood demonstrated BP-POZ enhanced thromboresistance with reduced white blood cell accumulation. We conclude that SVD associated with AGE and serum protein accumulation can be mitigated through POZ functionalization that both enhances biocompatibility and facilitates ethanol pretreatment inhibition of BP calcification.


Asunto(s)
Enfermedades de las Válvulas Cardíacas/tratamiento farmacológico , Enfermedades de las Válvulas Cardíacas/terapia , Oxazoles/farmacología , Pericardio/efectos de los fármacos , Animales , Materiales Biocompatibles , Calcificación Fisiológica/efectos de los fármacos , Calcinosis/tratamiento farmacológico , Calcinosis/metabolismo , Calcinosis/terapia , Línea Celular , Colágeno/metabolismo , Etanol/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Enfermedades de las Válvulas Cardíacas/metabolismo , Prótesis Valvulares Cardíacas , Xenoinjertos/efectos de los fármacos , Humanos , Masculino , Oxidación-Reducción/efectos de los fármacos , Pericardio/metabolismo , Ratas , Ratas Sprague-Dawley , Células THP-1
10.
J Neurosci ; 43(12): 2210-2220, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36750369

RESUMEN

Ethanol tolerance is the first type of behavioral plasticity and neural plasticity that is induced by ethanol intake, and yet its molecular and circuit bases remain largely unexplored. Here, we characterize the following three distinct forms of ethanol tolerance in male Drosophila: rapid, chronic, and repeated. Rapid tolerance is composed of two short-lived memory-like states, one that is labile and one that is consolidated. Chronic tolerance, induced by continuous exposure, lasts for 2 d, induces ethanol preference, and hinders the development of rapid tolerance through the activity of histone deacetylases (HDACs). Unlike rapid tolerance, chronic tolerance is independent of the immediate early gene Hr38/Nr4a Chronic tolerance is suppressed by the sirtuin HDAC Sirt1, whereas rapid tolerance is enhanced by Sirt1 Moreover, rapid and chronic tolerance map to anatomically distinct regions of the mushroom body learning and memory centers. Chronic tolerance, like long-term memory, is dependent on new protein synthesis and it induces the kayak/c-fos immediate early gene, but it depends on CREB signaling outside the mushroom bodies, and it does not require the Radish GTPase. Thus, chronic ethanol exposure creates an ethanol-specific memory-like state that is molecularly and anatomically different from other forms of ethanol tolerance.SIGNIFICANCE STATEMENT The pattern and concentration of initial ethanol exposure causes operationally distinct types of ethanol tolerance to form. We identify separate molecular and neural circuit mechanisms for two forms of ethanol tolerance, rapid and chronic. We also discover that chronic tolerance forms an ethanol-specific long-term memory-like state that localizes to learning and memory circuits, but it is different from appetitive and aversive long-term memories. By contrast, rapid tolerance is composed of labile and consolidated short-term memory-like states. The multiple forms of ethanol memory-like states are genetically tractable for understanding how initial forms of ethanol-induced neural plasticity form a substrate for the longer-term brain changes associated with alcohol use disorder.


Asunto(s)
Alcoholismo , Proteínas de Drosophila , Animales , Masculino , Drosophila/metabolismo , Sirtuina 1/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Etanol/farmacología , Alcoholismo/metabolismo , Cuerpos Pedunculados/metabolismo , Drosophila melanogaster/genética , Receptores Citoplasmáticos y Nucleares/metabolismo
11.
J Neurosci ; 43(42): 7056-7068, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37657933

RESUMEN

The central nucleus of the amygdala (CeA) is implicated in alcohol use disorder (AUD) and AUD-associated plasticity. The CeA is a primarily GABAergic nucleus that is subdivided into lateral and medial compartments with genetically diverse subpopulations. GABAA receptors are heteromeric pentamers with subunits conferring distinct physiological characteristics. GABAA receptor signaling in the CeA has been implicated in ethanol-associated plasticity; however, population-specific changes in inhibitory signaling and subunit expression remain unclear. Here, we combined electrophysiology with single-cell gene expression analysis of population markers and GABAA receptor subunits to examine population-specific changes in inhibitory control in male and female rats following chronic ethanol exposure. We found that chronic ethanol exposure and withdrawal produced global changes in GABAA receptor subunit expression at the transcript and protein levels, increased excitability in female CeA neurons, and increased inhibitory synaptic transmission in male CeA neurons. When we examined CeA neurons at the single-cell level we found heterogenous populations, as previously reported. We observed ethanol-induced increases in excitability only in somatostatin neurons in the CeA of females, decreases in excitability only in the protein kinase C delta (PKCd) population in males, and ethanol-induced increases in inhibitory transmission in male PKCd and calbindin 2-expressing CeA neurons. There were no population-specific differences in GABAA receptor (Gabr) subunits in males but reduced GabrA5 expression in female somatostatin neurons. Collectively, these findings suggest that defined CeA populations display differential ethanol sensitivity in males and females, which may play a role in sex differences in vulnerability to AUD or expression of AUD pathology.SIGNIFICANCE STATEMENT The CeA is involved in the effects of ethanol in the brain; however, the population-specific changes in CeA activity remain unclear. We used recordings of CeA neuronal activity and single-cell gene expression to examine population-specific changes in inhibitory control in male and female rats following chronic ethanol exposure and found sex- and population-specific effects of chronic ethanol exposure and withdrawal. Specifically, female CeA neurons displayed increased excitability in the somatostatin CeA population, whereas male CeA neurons displayed increased inhibitory control in both PKCd and calbindin populations and decreased excitability in the PKCd population. These findings identify CeA populations that display differential sensitivity to ethanol exposure, which may contribute to sex differences in vulnerability to alcohol use disorder.


Asunto(s)
Alcoholismo , Núcleo Amigdalino Central , Ratas , Femenino , Masculino , Animales , Etanol/farmacología , Núcleo Amigdalino Central/metabolismo , Alcoholismo/metabolismo , Receptores de GABA-A/metabolismo , Transmisión Sináptica/fisiología , Somatostatina/metabolismo
12.
J Biol Chem ; 299(4): 103071, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36849008

RESUMEN

Lipid droplets (LDs) are fat-storing organelles enclosed by a phospholipid monolayer, which harbors membrane-associated proteins that regulate distinct LD functions. LD proteins are degraded by the ubiquitin-proteasome system (UPS) and/or by lysosomes. Because chronic ethanol (EtOH) consumption diminishes the hepatic functions of the UPS and lysosomes, we hypothesized that continuous EtOH consumption slows the breakdown of lipogenic LD proteins targeted for degradation, thereby causing LD accumulation. Here, we report that LDs from livers of EtOH-fed rats exhibited higher levels of polyubiquitylated-proteins, linked at either lysine 48 (directed to proteasome) or lysine 63 (directed to lysosomes) than LDs from pair-fed control rats. MS proteomics of LD proteins, immunoprecipitated with UB remnant motif antibody (K-ε-GG), identified 75 potential UB proteins, of which 20 were altered by chronic EtOH administration. Among these, hydroxysteroid 17ß-dehydrogenase 11 (HSD17ß11) was prominent. Immunoblot analyses of LD fractions revealed that EtOH administration enriched HSD17ß11 localization to LDs. When we overexpressed HSD17ß11 in EtOH-metabolizing VA-13 cells, the steroid dehydrogenase 11 became principally localized to LDs, resulting in elevated cellular triglycerides (TGs). Ethanol exposure augmented cellular TG, while HSD17ß11 siRNA decreased both control and EtOH-induced TG accumulation. Remarkably, HSD17ß11 overexpression lowered the LD localization of adipose triglyceride lipase. EtOH exposure further reduced this localization. Reactivation of proteasome activity in VA-13 cells blocked the EtOH-induced rises in both HSD17ß11 and TGs. Our findings indicate that EtOH exposure blocks HSD17ß11 degradation by inhibiting the UPS, thereby stabilizing HSD17ß11 on LD membranes, to prevent lipolysis by adipose triglyceride lipase and promote cellular LD accumulation.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Etanol , Hígado Graso , Animales , Ratas , Etanol/farmacología , Etanol/metabolismo , Hígado Graso/metabolismo , Lipasa/genética , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Lisina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/metabolismo
13.
J Biol Chem ; 299(12): 105472, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979914

RESUMEN

Preexposure to mild stress often improves cellular tolerance to subsequent severe stress. Severe ethanol stress (10% v/v) causes persistent and pronounced translation repression in Saccharomyces cerevisiae. However, it remains unclear whether preexposure to mild stress can mitigate translation repression in yeast cells under severe ethanol stress. We found that the translational activity of yeast cells pretreated with 6% (v/v) ethanol was initially significantly repressed under subsequent 10% ethanol but was then gradually restored even under severe ethanol stress. We also found that 10% ethanol caused the aggregation of Ded1, which plays a key role in translation initiation as a DEAD-box RNA helicase. Pretreatment with 6% ethanol led to the gradual disaggregation of Ded1 under subsequent 10% ethanol treatment in wild-type cells but not in fes1Δhsp104Δ cells, which are deficient in Hsp104 with significantly reduced capacity for Hsp70. Hsp104 and Hsp70 are key components of the bi-chaperone system that play a role in yeast protein quality control. fes1Δhsp104Δ cells did not restore translational activity under 10% ethanol, even after pretreatment with 6% ethanol. These results indicate that the regeneration of Ded1 through the bi-chaperone system leads to the gradual restoration of translational activity under continuous severe stress. This study provides new insights into the acquired tolerance of yeast cells to severe ethanol stress and the resilience of their translational activity.


Asunto(s)
ARN Helicasas DEAD-box , Etanol , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Etanol/farmacología , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Front Neuroendocrinol ; 71: 101094, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37558184

RESUMEN

Sexually dimorphic effects of alcohol, following binge drinking, chronic intoxication, and withdrawal, are documented at the level of the transcriptome and in behavioral and physiological responses. The purpose of the current review is to update and to expand upon contributions of the endocrine system to alcohol drinking and withdrawal in females, with a focus on animal models. Steroids important in the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes, the reciprocal interactions between these axes, the effects of chronic alcohol use on steroid levels, and the genomic and rapid membrane-associated effects of steroids and neurosteroids in models of alcohol drinking and withdrawal are described. Importantly, comparison between males and females highlight some divergent effects of sex- and stress-steroids on alcohol drinking- and withdrawal-related behaviors, and the distinct differences in response emphasize the importance of considering sex in the development of novel pharmacotherapies for the treatment of alcohol use disorder.


Asunto(s)
Consumo de Bebidas Alcohólicas , Alcoholismo , Masculino , Animales , Femenino , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Alcoholismo/tratamiento farmacológico , Etanol/farmacología , Esteroides , Modelos Animales de Enfermedad
15.
Eur J Neurosci ; 59(7): 1500-1518, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185906

RESUMEN

Discrete alcohol cues and contexts are relapse triggers for people with alcohol use disorder exerting particularly powerful control over behaviour when they co-occur. Here, we investigated the neural substrates subserving the capacity for alcohol-associated contexts to elevate responding to an alcohol-predictive conditioned stimulus (CS). Specifically, rats were trained in a distinct 'alcohol context' to respond by entering a fluid port during a discrete auditory CS that predicted the delivery of alcohol and were familiarized with a 'neutral context' wherein alcohol was never available. When conditioned CS responding was tested by presenting the CS without alcohol, we found that augmenting glutamatergic activity in the nucleus accumbens (NAc) shell by microinfusing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) reduced responding to an alcohol CS in an alcohol, but not neutral, context. Further, AMPA microinfusion robustly affected behaviour, attenuating the number, duration and latency of CS responses selectively in the alcohol context. Although dopaminergic inputs to the NAc shell were previously shown to be necessary for CS responding in an alcohol context, here, chemogenetic excitation of ventral tegmental area (VTA) dopamine neurons and their inputs to the NAc shell did not affect CS responding. Critically, chemogenetic excitation of VTA dopamine neurons affected feeding behaviour and elevated c-fos immunoreactivity in the VTA and NAc shell, validating the chemogenetic approach. These findings enrich our understanding of the substrates underlying Pavlovian responding for alcohol and reveal that the capacity for contexts to modulate responding to discrete alcohol cues is delicately underpinned by the NAc shell.


Asunto(s)
Señales (Psicología) , Núcleo Accumbens , Humanos , Ratas , Animales , Núcleo Accumbens/fisiología , Ratas Long-Evans , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Etanol/farmacología , Condicionamiento Operante/fisiología
16.
Biochem Biophys Res Commun ; 714: 149968, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657445

RESUMEN

BACKGROUND: Chronic alcohol enhances oxidative stress, but the temporal response of antioxidant genes in skeletal muscle following a binge drinking episode remains unknown. METHODS: Experiment 1: C57BL/6Hsd female mice received an IP injection of saline (CON; n = 39) or ethanol (ETOH; n = 39) (5 g/kg). Gastrocnemius muscles were collected from baseline (untreated; n = 3), CON (n = 3), and ETOH (n = 3) mice every 4 h for 48 h. Experiment 2: Gastrocnemius muscles were collected from control-fed (CON-FED; n = 17), control-fasted (CON-FAST; n = 18), or alcohol-fed (ETOH-FED; n = 18) mice every 4hrs for 20hrs after saline or ethanol (5 g/kg). RESULTS: EtOH enhanced Superoxide dismutase 1 (Sod1) and NADPH Oxidase 4 (Nox4) from 24 to 48hr after the binge, while Sod2 and Nox2 were suppressed. Nuclear factor erythroid-derived 2-like 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) increased 12hrs after intoxication. Cytochrome P450 oxidoreductase (Por), Heme oxygenase 1 (Ho1), Peroxiredoxin 6 (Prdx6), Glutamate-cysteine ligase catalytic subunit (Gclc), Glutamate-cysteine ligase modifier subunit (Gclm), and Glutathione-disulfide reductase (Gsr) were increased by ETOH starting 12-16hrs post-binge. Fasting had similar effects on Nrf2 compared to alcohol, but downstream targets of NRF2, including Por, Ho1, Gclc, and Gclm, were differentially altered with fasting and EtOH. CONCLUSION: These data suggest that acute alcohol intoxication induced markers of oxidative stress and antioxidant signaling through the NRF2 pathway and that there were effects of alcohol independent of a possible decrease in food intake caused by binge intoxication.


Asunto(s)
Antioxidantes , Consumo Excesivo de Bebidas Alcohólicas , Etanol , Músculo Esquelético , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Animales , Femenino , Ratones , Antioxidantes/metabolismo , Etanol/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 4/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/genética
17.
J Pharmacol Exp Ther ; 389(3): 258-267, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38135508

RESUMEN

The cognitive impairments that are often observed in patients with alcohol use disorder (AUD) partially contribute to the extremely low rates of treatment initiation and adherence. Brain acetylcholine receptors (AChR) mediate and modulate cognitive and reward-related behavior, and their distribution can be altered by long-term heavy drinking. Therefore, AChRs are promising pharmacotherapeutic targets for treating the cognitive symptoms of AUD. In the present study, the procognitive efficacy of two AChR agonists, xanomeline and varenicline, were evaluated in group-housed monkeys who self-administered ethanol for more than 1 year. The muscarinic AChR antagonist scopolamine was used to disrupt performance of a serial stimulus discrimination and reversal (SDR) task designed to probe cognitive flexibility, defined as the ability to modify a previously learned behavior in response to a change in reinforcement contingencies. The ability of xanomeline and varenicline to remediate the disruptive effects of scopolamine was compared between socially dominant and subordinate monkeys, with lighter and heavier drinking histories, respectively. We hypothesized that subordinate monkeys would be more sensitive to all three drugs. Scopolamine dose-dependently impaired performance on the serial SDR task in all monkeys at doses lower than those that produced nonspecific impairments (e.g., sedation); its potency did not differ between dominant and subordinate monkeys. However, both AChR agonists were effective in remediating the scopolamine-induced deficit in subordinate monkeys but not in dominant monkeys. These findings suggest xanomeline and varenicline may be effective for enhancing cognitive flexibility in individuals with a history of heavy drinking. SIGNIFICANCE STATEMENT: Procognitive effects of two acetylcholine (ACh) receptor agonists were assessed in group-housed monkeys who had several years' experience drinking ethanol. The muscarinic ACh receptor agonist xanomeline and the nicotinic ACh receptor agonist varenicline reversed a cognitive deficit induced by the muscarinic ACh receptor antagonist scopolamine. However, this effect was observed only in lower-ranking (subordinate) monkeys and not higher-ranking (dominant monkeys). Results suggest that ACh agonists may effectively remediate alcohol-induced cognitive deficits in a subpopulation of those with alcohol use disorder.


Asunto(s)
Etanol , Macaca fascicularis , Escopolamina , Animales , Masculino , Etanol/farmacología , Escopolamina/farmacología , Cognición/efectos de los fármacos , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo de Bebidas Alcohólicas/psicología , Vareniclina/farmacología , Agonistas Colinérgicos/farmacología , Nootrópicos/farmacología
18.
J Membr Biol ; 257(1-2): 131-142, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38206377

RESUMEN

Understanding the interaction between ligands and membrane proteins is important for drug design and optimization. Although investigation using live cells is desirable, it is not feasible in some circumstances and cell fixation is performed to reduce cell motion and degradation. This study compared the effects of five fixatives, i.e., formaldehyde vapor (FV), paraformaldehyde (PFA), acetone, methanol, and ethanol, on kinetic measurements via the LigandTracer method. We found that all five fixatives exerted insignificant effects on lectin-glycan interaction. However, antibody-receptor interaction is markedly perturbed by coagulant fixatives. The acetone fixation changed the binding of the anti-human epidermal growth factor receptor 2 (HER2) antibody to HER2 on the cell membrane from a 1:2 to a 1:1 binding model, while methanol and ethanol abolished the antibody binding possibly by removal of the HER2 receptors on the cell membrane. The capability of binding was retained when methanol fixation was performed at lower temperatures, albeit with a binding model of 1:1 instead. Moreover, whereas cell morphology does not exert a substantial impact on lectin-glycan interaction, it can indeed modify the binding model of antibody-receptor interaction. Our results provided insights into the selection of fixatives for cell-based kinetic studies.


Asunto(s)
Acetona , Metanol , Fijadores/farmacología , Cinética , Membrana Celular , Etanol/farmacología , Lectinas , Polisacáridos
19.
Hepatology ; 77(5): 1688-1701, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35844150

RESUMEN

BACKGROUND AND AIMS: Alcohol-associated liver disease (ALD) pathologies include steatosis, inflammation, and injury, which may progress to fibrosis, cirrhosis, and cancer. The liver receives ~60% of fatty acids from adipose tissue triglyceride hydrolysis, but the role of this lipolytic pathway in ALD development has not been directly examined in any genetic animal models with selective inactivation of adipose lipolysis. APPROACH AND RESULTS: Using adipose-specific comparative gene identification-58 (CGI-58) knockout (FAT-KO) mice, a model of impaired adipose lipolysis, we show that mice deficient in adipose lipolysis are almost completely protected against ethanol-induced hepatic steatosis and lipid peroxidation when subjected to the National Institute on Alcohol Abuse and Alcoholism chronic and binge ethanol feeding model. This is unlikely due to reduced lipid synthesis because this regimen of ethanol feeding down-regulated hepatic expression of lipogenic genes similarly in both genotypes. In the pair-fed group, FAT-KO relative to control mice displayed increased hepatocyte injury, neutrophil infiltration, and activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) in the liver; and none of these were exacerbated by ethanol feeding. Activation of STAT3 is associated with a marked increase in hepatic leptin receptor mRNA expression and adipose inflammatory cell infiltration. CONCLUSIONS: Our findings establish a critical role of adipose lipolysis in driving hepatic steatosis and oxidative stress during ALD development.


Asunto(s)
Hígado Graso , Hepatopatías Alcohólicas , Estados Unidos , Ratones , Animales , Etanol/farmacología , Lipólisis , Modelos Animales de Enfermedad , National Institute on Alcohol Abuse and Alcoholism (U.S.) , Hígado Graso/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Ratones Endogámicos C57BL
20.
Hepatology ; 77(4): 1164-1180, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35689610

RESUMEN

BACKGROUND AND AIMS: Intestinal farnesoid X receptor (FXR) plays a critical role in alcohol-associated liver disease (ALD). We aimed to investigate whether alcohol-induced dysbiosis increased intestinal microRNA194 (miR194) that suppressed Fxr transcription and whether Lactobacillus rhamnosus GG-derived exosome-like nanoparticles (LDNPs) protected against ALD through regulation of intestinal miR194-FXR signaling in mice. APPROACH AND RESULTS: Binge-on-chronic alcohol exposure mouse model was utilized. In addition to the decreased ligand-mediated FXR activation, alcohol feeding repressed intestinal Fxr transcription and increased miR194 expression. This transcriptional suppression of Fxr by miR194 was confirmed in intestinal epithelial Caco-2 cells and mouse enteriods. The alcohol feeding-reduced intestinal FXR activation was further demonstrated by the reduced FXR reporter activity in fecal samples and by the decreased fibroblast growth factor 15 (Fgf15) messenger RNA (mRNA) in intestine and protein levels in the serum, which caused an increased hepatic bile acid synthesis and lipogeneses. We further demonstrated that alcohol feeding increased-miR194 expression was mediated by taurine-upregulated gene 1 (Tug1) through gut microbiota regulation of taurine metabolism. Importantly, 3-day oral administration of LDNPs increased bile salt hydrolase (BSH)-harboring bacteria that decreased conjugated bile acids and increased gut taurine concentration, which upregulated Tug1, leading to a suppression of intestinal miR194 expression and recovery of FXR activation. Activated FXR upregulated FGF15 signaling and subsequently reduced hepatic bile acid synthesis and lipogenesis and attenuated ALD. These protective effects of LDNPs were eliminated in intestinal FxrΔIEC and Fgf15-/- mice. We further showed that miR194 was upregulated, whereas BSH activity and taurine levels were decreased in fecal samples of patients with ALD. CONCLUSIONS: Our results demonstrated that gut microbiota-mediated miR194 regulation contributes to ALD pathogenesis and to the protective effects of LDNPs through modulating intestinal FXR signaling.


Asunto(s)
Hepatopatías Alcohólicas , MicroARNs , Animales , Humanos , Ratones , Ácidos y Sales Biliares/metabolismo , Células CACO-2 , Etanol/farmacología , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Taurina/farmacología , Nanopartículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA