Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36868220

RESUMEN

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Asunto(s)
Euphausiacea , Genoma , Animales , Relojes Circadianos/genética , Ecosistema , Euphausiacea/genética , Euphausiacea/fisiología , Genómica , Análisis de Secuencia de ADN , Elementos Transponibles de ADN , Evolución Biológica , Adaptación Fisiológica
2.
Nature ; 618(7965): 526-530, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316721

RESUMEN

The export of carbon from the ocean surface and storage in the ocean interior is important in the modulation of global climate1-4. The West Antarctic Peninsula experiences some of the largest summer particulate organic carbon (POC) export rates, and one of the fastest warming rates, in the world5,6. To understand how warming may alter carbon storage, it is necessary to first determine the patterns and ecological drivers of POC export7,8. Here we show that Antarctic krill (Euphausia superba) body size and life-history cycle, as opposed to their overall biomass or regional environmental factors, exert the dominant control on the POC flux. We measured POC fluxes over 21 years, the longest record in the Southern Ocean, and found a significant 5-year periodicity in the annual POC flux, which oscillated in synchrony with krill body size, peaking when the krill population was composed predominately of large individuals. Krill body size alters the POC flux through the production and export of size-varying faecal pellets9, which dominate the total flux. Decreases in winter sea ice10, an essential habitat for krill, are causing shifts in the krill population11, which may alter these export patterns of faecal pellets, leading to changes in ocean carbon storage.


Asunto(s)
Tamaño Corporal , Carbono , Euphausiacea , Material Particulado , Animales , Regiones Antárticas , Biomasa , Carbono/metabolismo , Euphausiacea/anatomía & histología , Euphausiacea/crecimiento & desarrollo , Euphausiacea/fisiología , Material Particulado/metabolismo , Océanos y Mares , Dinámica Poblacional , Agua de Mar , Cubierta de Hielo , Ecosistema , Secuestro de Carbono
3.
PLoS Biol ; 19(10): e3001413, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34665816

RESUMEN

Light plays a fundamental role in the ecology of organisms in nearly all habitats on Earth and is central for processes such as vision and the entrainment of the circadian clock. The poles represent extreme light regimes with an annual light cycle including periods of Midnight Sun and Polar Night. The Arctic Ocean extends to the North Pole, and marine light extremes reach their maximum extent in this habitat. During the Polar Night, traditional definitions of day and night and seasonal photoperiod become irrelevant since there are only "twilight" periods defined by the sun's elevation below the horizon at midday; we term this "midday twilight." Here, we characterize light across a latitudinal gradient (76.5° N to 81° N) during Polar Night in January. Our light measurements demonstrate that the classical solar diel light cycle dominant at lower latitudes is modulated during Arctic Polar Night by lunar and auroral components. We therefore question whether this particular ambient light environment is relevant to behavioral and visual processes. We reveal from acoustic field observations that the zooplankton community is undergoing diel vertical migration (DVM) behavior. Furthermore, using electroretinogram (ERG) recording under constant darkness, we show that the main migratory species, Arctic krill (Thysanoessa inermis) show endogenous increases in visual sensitivity during the subjective night. This change in sensitivity is comparable to that under exogenous dim light acclimations, although differences in speed of vision suggest separate mechanisms. We conclude that the extremely weak midday twilight experienced by krill at high latitudes during the darkest parts of the year has physiological and ecological relevance.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Euphausiacea/fisiología , Euphausiacea/efectos de la radiación , Luz , Acústica , Animales , Organismos Acuáticos/fisiología , Atmósfera , Modelos Biológicos , Visión Ocular/fisiología , Zooplancton/fisiología
4.
Nature ; 556(7702): 497-500, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29670284

RESUMEN

Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing1-3. However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres3,5,6. This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .


Asunto(s)
Artemia/fisiología , Difusión , Agua de Mar/análisis , Natación , Movimientos del Agua , Animales , Euphausiacea/fisiología , Agua de Mar/química , Factores de Tiempo , Zooplancton/fisiología
5.
Proc Natl Acad Sci U S A ; 117(1): 472-478, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871184

RESUMEN

The unique engulfment filtration strategy of microphagous rorqual whales has evolved relatively recently (<5 Ma) and exploits extreme predator/prey size ratios to overcome the maneuverability advantages of swarms of small prey, such as krill. Forage fish, in contrast, have been engaged in evolutionary arms races with their predators for more than 100 million years and have performance capabilities that suggest they should easily evade whale-sized predators, yet they are regularly hunted by some species of rorqual whales. To explore this phenomenon, we determined, in a laboratory setting, when individual anchovies initiated escape from virtually approaching whales, then used these results along with in situ humpback whale attack data to model how predator speed and engulfment timing affected capture rates. Anchovies were found to respond to approaching visual looming stimuli at expansion rates that give ample chance to escape from a sea lion-sized predator, but humpback whales could capture as much as 30-60% of a school at once because the increase in their apparent (visual) size does not cross their prey's response threshold until after rapid jaw expansion. Humpback whales are, thus, incentivized to delay engulfment until they are very close to a prey school, even if this results in higher hydrodynamic drag. This potential exaptation of a microphagous filter feeding strategy for fish foraging enables humpback whales to achieve 7× the energetic efficiency (per lunge) of krill foraging, allowing for flexible foraging strategies that may underlie their ecological success in fluctuating oceanic conditions.


Asunto(s)
Reacción de Fuga/fisiología , Conducta Alimentaria , Peces/fisiología , Yubarta/fisiología , Conducta Predatoria/fisiología , Animales , Evolución Biológica , Euphausiacea/fisiología , Filtración , Yubarta/anatomía & histología , Hidrodinámica , Maxilares/anatomía & histología , Locomoción/fisiología , Modelos Biológicos , Tamaño de los Órganos/fisiología , Factores de Tiempo
6.
Proc Biol Sci ; 289(1969): 20212361, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35193400

RESUMEN

Antarctic krill swarms are one of the largest known animal aggregations, and yet, despite being the keystone species of the Southern Ocean, little is known about how swarms are formed and maintained. Understanding the local interactions between individuals that provide the basis for these swarms is fundamental to knowing how swarms arise in nature, and what potential factors might lead to their breakdown. Here, we analysed the trajectories of captive, wild-caught krill in 3D to determine individual-level interaction rules and quantify patterns of information flow. Our results demonstrate that krill align with near neighbours and that they regulate both their direction and speed relative to the positions of groupmates. These results suggest that social factors are vital to the formation and maintenance of swarms. Furthermore, krill operate a novel form of collective organization, with measures of information flow and individual movement adjustments expressed most strongly in the vertical dimension, a finding not seen in other swarming species. This research represents a vital step in understanding the fundamentally important swarming behaviour of krill.


Asunto(s)
Euphausiacea , Animales , Regiones Antárticas , Euphausiacea/fisiología
7.
Glob Chang Biol ; 28(4): 1359-1375, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34921477

RESUMEN

Poleward range shifts are a global-scale response to warming, but these vary greatly among taxa and are hard to predict for individual species, localized regions or over shorter (years to decadal) timescales. Moving poleward might be easier in the Arctic than in the Southern Ocean, where evidence for range shifts is sparse and contradictory. Here, we compiled a database of larval Antarctic krill, Euphausia superba and, together with an adult database, it showed how their range shift is out of step with the pace of warming. During a 70-year period of rapid warming (1920s-1990s), distribution centres of both larvae and adults in the SW Atlantic sector remained fixed, despite warming by 0.5-1.0°C and losing sea ice. This was followed by a hiatus in surface warming and ice loss, yet during this period the distributions of krill life stages shifted greatly, by ~1000 km, to the south-west. Understanding the mechanism of such step changes is essential, since they herald system reorganizations that are hard to predict with current modelling approaches. We propose that the abrupt shift was driven by climatic controls acting on localized recruitment hotspots, superimposed on thermal niche conservatism. During the warming hiatus, the Southern Annular Mode index continued to become increasingly positive and, likely through reduced feeding success for larvae, this led to a precipitous decline in recruitment from the main reproduction hotspot along the southern Scotia Arc. This cut replenishment to the northern portion of the krill stock, as evidenced by declining density and swarm frequency. Concomitantly, a new, southern reproduction area developed after the 1990s, reinforcing the range shift despite the lack of surface warming. New spawning hotspots may provide the stepping stones needed for range shifts into polar regions, so planning of climate-ready marine protected areas should include these key areas of future habitat.


Asunto(s)
Euphausiacea , Animales , Regiones Antárticas , Clima , Ecosistema , Euphausiacea/fisiología , Cubierta de Hielo
8.
J Fish Biol ; 101(1): 289-301, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35633144

RESUMEN

This study examines the adaptability of a Southern Ocean predator, which is dependent on Antarctic krill (Euphausia superba), to potential changes in food availability. Muscle fatty acids (FAs) of the spiny icefish Chaenodraco wilsoni collected from three areas in the Bransfield Strait (BS), northern Antarctic Peninsula during February-April 2016 give a good representation of their feeding variability. The compositions of 22:6n3 (DHA) and 20:5n3 (EPA) were both higher in the Transitional Zonal Water with Bellingshausen influence (TBW)-controlled C. wilsoni than in the Transitional Zonal Water with Weddell Sea influence (TWW)-controlled fish. This was positively correlated with photoadaptation and carbon sequestration in TBW-controlled phytoplankton. Results for the FAs 16:1n7, 16:0, DHA and EPA indicate the presence of dinoflagellates in all three areas, suggesting that during late summer and early fall, there is a seasonal phytoplankton succession, where small phytoplankton become dominant, in the BS. In addition, the compositions of some long-chain FAs (>20, such as 20:0, 20:1, 22:0 and 22:1n9) and ∑18 indicated that the food chain based on flagellates and copepods was more apparent in TWW-controlled C. wilsoni, especially the effect of El Niño-Southern Oscillation (ENSO) on the variation of prey communities in TWW-controlled areas. FA markers such as SFA/(PUFA+MUFA), ∑15 + ∑17 and ARA were more pronounced in TWW-controlled C. wilsoni, indicating a more strongly carnivorous and benthic food source. In the TBW-TWW confluence, the complex hydrological structure, including the presence of a large number of mesoscale eddies, allows rich nutrients and krill larvae to remain in it, providing a rich food source for the C. wilsoni. Overall, the FA data of this study show that the diet of C. wilsoni varies in different marine environments, aiding their survivability at the face of climate change.


Asunto(s)
Euphausiacea , Animales , Regiones Antárticas , Cambio Climático , Euphausiacea/fisiología , Cadena Alimentaria , Fitoplancton , Estaciones del Año , Agua
9.
J Therm Biol ; 93: 102732, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33077143

RESUMEN

The critical thermal maximum (CTMAX) is the temperature at which animals exhibit loss of motor response because of a temperature-induced collapse of vital physiological systems. A central mechanism hypothesised to underlie the CTMAX of water-breathing ectotherms is insufficient tissue oxygen supply for vital maintenance functions because of a temperature-induced collapse of the cardiorespiratory system. The CTMAX of species conforming to this hypothesis should decrease with declining water oxygen tension (PO2) because they have oxygen-dependent upper thermal limits. However, recent studies have identified a number of fishes and crustaceans with oxygen-independent upper thermal limits, their CTMAX unchanged in progressive aquatic hypoxia. The previous studies, which were performed separately on cold-water, temperate and tropical species, suggest the oxygen-dependence of upper thermal limits and the acute thermal sensitivity of the cardiorespiratory system increases with decreasing habitat temperature. Here we directly test this hypothesis by assessing the oxygen-dependence of CTMAX in the polar Antarctic krill (Euphausia superba), as well as the temperate Baltic prawn (Palaemon adspersus) and brown shrimp (Crangon crangon). We found that P. adspersus and C. crangon maintain CTMAX in progressive hypoxia down to 40 mmHg, and that only E. superba have oxygen-dependent upper thermal limits at normoxia. In E. superba, the observed decline in CTMAX with water PO2 is further supported by heart-rate measurements showing a plateauing, and subsequent decline and collapse of heart performance at CTMAX. Our results support the hypothesis that the oxygen-dependence of upper thermal limits in water-breathing ectotherms and the acute thermal sensitivity of their cardiorespiratory system increases with decreasing habitat temperature.


Asunto(s)
Ecosistema , Euphausiacea/fisiología , Oxígeno/metabolismo , Termotolerancia , Animales , Corazón/fisiología , Movimiento , Consumo de Oxígeno , Respiración
10.
An Acad Bras Cienc ; 91(1): e20180034, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30994753

RESUMEN

Information about euphausiids in central South Atlantic Ocean is scarce; hence, we investigated species composition and distribution of euphausiids along a longitudinal transect in this region, with an emphasis on Thysanopoda. Zooplankton samples were collected from 44 stations during the first Transatlantic Commission (Brazil-Africa). Euphausiids comprised 21,390 individuals across larval stages (nauplius, calyptopis, and furcilia) and adults. Furcilia and adults were classified to species level when possible, with a total of 19 identified species. Overall, Euphausia species frequency of occurrence and abundance were highest in samples collected near the African coast, while Thysanopada species dominated near the Brazilian coast. Of the euphausiids caught, 158 were identified as Thysanopoda, including 2 specimens of T. astylata, 6 T. aequalis, 3 T. pectinata, 2 T. monacantha, 2 T. tricuspida, and 1 T. egregia; 118 damaged specimens could only be identified as Thysanopoda spp., and 24 as T. aequalis / T. astylata complex because of the lack of diagnostic structures. Thysanopada egregia was present in samples collected down to 96 m, which increases the vertical range for this species. This report constitutes the first record of Thysanopoda astylata Brinton, 1975 in Atlantic waters.


Asunto(s)
Distribución Animal/fisiología , Euphausiacea/fisiología , África , Animales , Océano Atlántico , Brasil , Densidad de Población , Dinámica Poblacional , Estaciones del Año , Especificidad de la Especie , Temperatura , Zooplancton/fisiología
11.
J Sci Food Agric ; 98(8): 3049-3056, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29194642

RESUMEN

BACKGROUND: The ability of Antarctic krill, Euphausia superba (Dana, 1852), to thrive in a cold environment comes from its capacity to synthesize cold-adapted enzymes. Its trypsin, as a main substance in the metabolic reactions, plays a key role in the adaption to low temperatures. However, the progress of research on its cold-adaption mechanism is being influenced due to the limited information on its gene and spatial structure. RESULTS: We studied the gene of E. superba trypsin with transcriptome sequencing first, and then discussed its cold-adaption mechanism with the full gene and predicted structure basing on bioinformatics. The results showed the proportion of certain residues played important roles in the cold-adaptation behavior for trypsin. Furthermore, a higher proportion of random coils and reduced steric hindrance might also be key factors promoting its cold adaption. CONCLUSION: This research aimed to reveal the cold-adaption mechanism of E. superba trypsin and provide support for basic research on molecular modification by site-directed mutagenesis of complementary DNA used to produce new and improved recombinant variants with cold adaption. Furthermore, it may broaden its commercial application on minimizing undesirable changes elevated at higher temperature in food processing and in treatment of trauma and inflammation in medicine. © 2017 Society of Chemical Industry.


Asunto(s)
Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Euphausiacea/enzimología , Tripsina/química , Tripsina/genética , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/metabolismo , Secuencia de Bases , Frío , Biología Computacional , Estabilidad de Enzimas , Euphausiacea/química , Euphausiacea/genética , Euphausiacea/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Alineación de Secuencia , Mariscos/análisis , Transcriptoma , Tripsina/metabolismo
12.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29237854

RESUMEN

Antarctic krill form some of the highest concentrations of animal biomass observed in the world's oceans potentially due to their prolific ability to swarm. Determining the movement of Antarctic krill within swarms is important to identify drivers of their behaviour and their biogeochemical impact on their environment. We examined vertical velocity within approximately 2000 krill swarms through the combined use of a shipborne echosounder and an acoustic Doppler current profiler. We revealed a pronounced downward anomaly in vertical velocity within swarms of -0.6 cm s-1 compared with vertical motion outside the swarm. The anomaly changed over the diel cycle, with smaller downward anomalies occurring at night. Swarms in regions of high phytoplankton concentrations (a proxy for food availability) also exhibited significantly smaller downward anomalies. We propose that the anomaly is the result of downward velocities generated by the action of krill beating their swimming appendages. During the night and in high phytoplankton availability, when krill are more likely to feed to the point of satiation, swimming activity is lowered and the anomaly is reduced. Our findings are consistent with laboratory work where krill ceased swimming and adopted a parachute posture when sated. Satiation sinking behaviour can substantially increase the efficiency of carbon transport to depth through depositing faecal pellets at the bottom of swarms, avoiding the reingestion and break-up of pellets by other swarm members.


Asunto(s)
Distribución Animal , Euphausiacea/fisiología , Saciedad , Animales , Conducta Alimentaria , Océanos y Mares
13.
Proc Biol Sci ; 281(1779): 20132376, 2014 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-24478293

RESUMEN

Food is heterogeneously distributed in nature, and understanding how animals search for and exploit food patches is a fundamental challenge in ecology. The classic marginal value theorem (MVT) formulates optimal patch residence time in response to patch quality. The MVT was generally proved in controlled animal experiments; however, owing to the technical difficulties in recording foraging behaviour in the wild, it has been inadequately examined in natural predator-prey systems, especially those in the three-dimensional marine environment. Using animal-borne accelerometers and video cameras, we collected a rare dataset in which the behaviour of a marine predator (penguin) was recorded simultaneously with the capture timings of mobile, patchily distributed prey (krill). We provide qualitative support for the MVT by showing that (i) krill capture rate diminished with time in each dive, as assumed in the MVT, and (ii) dive duration (or patch residence time, controlled for dive depth) increased with short-term, dive-scale krill capture rate, but decreased with long-term, bout-scale krill capture rate, as predicted from the MVT. Our results demonstrate that a single environmental factor (i.e. patch quality) can have opposite effects on animal behaviour depending on the time scale, emphasizing the importance of multi-scale approaches in understanding complex foraging strategies.


Asunto(s)
Euphausiacea/fisiología , Conducta Predatoria , Spheniscidae/fisiología , Animales , Buceo , Modelos Lineales , Modelos Biológicos , Factores de Tiempo
14.
J Exp Biol ; 217(Pt 1): 46-56, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24353203

RESUMEN

Hypoxia (low O2) is a common and natural feature of many marine environments. However, human-induced hypoxia has been on the rise over the past half century and is now recognised as a major problem in the world's seas and oceans. Whilst we have information on how marine invertebrates respond physiologically to hypoxia in the laboratory, we still lack understanding of how they respond to such stress in the wild (now and in the future). Consequently, here the question 'what can an ecophysiological approach tell us about physiological responses of marine invertebrates to hypoxia' is addressed. How marine invertebrates work in the wild when challenged with hypoxia is explored using four case studies centred on different hypoxic environments. The recent integration of the various -omics into ecophysiology is discussed, and a number of advantages of, and challenges to, successful integration are suggested. The case studies and -omic/physiology integration data are used to inform the concluding part of the review, where it is suggested that physiological responses to hypoxia in the wild are not always the same as those predicted from laboratory experiments. This is due to behaviour in the wild modifying responses, and therefore more than one type of 'experimental' approach is essential to reliably determine the actual response. It is also suggested that assuming it is known what a measured response is 'for' can be misleading and that taking parodies of ecophysiology seriously may impede research progress. This review finishes with the suggestion that an -omics approach is, and is becoming, a powerful method of understanding the response of marine invertebrates to environmental hypoxia and may be an ideal way of studying hypoxic responses in the wild. Despite centring on physiological responses to hypoxia, the review hopefully serves as a contribution to the discussion of what (animal) ecophysiology looks like (or should look like) in the 21st century.


Asunto(s)
Organismos Acuáticos/fisiología , Hipoxia , Invertebrados/fisiología , Estrés Fisiológico/fisiología , Animales , Evolución Biológica , Braquiuros/fisiología , Crassostrea/fisiología , Euphausiacea/fisiología , Interacción Gen-Ambiente , Hemocianinas , Nephropidae/fisiología , Océanos y Mares , Oxígeno , Palaemonidae/fisiología
15.
Ecol Appl ; 24(7): 1730-47, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-29210234

RESUMEN

Studies of predator­prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator­prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990­2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned "warm/weak upwelling" and "cool/strong upwelling" years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of "predator­habitat" relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.


Asunto(s)
Charadriiformes/fisiología , Euphausiacea/fisiología , Peces/fisiología , Conducta Predatoria/fisiología , Animales , Océano Pacífico , Dinámica Poblacional , Salinidad , Agua de Mar , Temperatura , Factores de Tiempo
16.
Zoolog Sci ; 31(3): 135-42, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24601775

RESUMEN

As with other marine ecosystems around the world, water temperature has been anomalously warm in recent years in the East China Sea. We analyzed historical data to explore the effects of climatic change on the abundance and distribution variation of Euphausia pacifica in the East China Sea (the Changjiang River estuary and adjacent areas). In 1959, the highest abundance occurred in the spring and autumn, and this krill species was still abundant in May 1974; however, its abundance was significantly reduced in 2002, markedly in spring. Euphausia pacifica was the numerically dominant euphausiid in the East China Sea in 1959. Its mean abundance was up to 1.91 ind m(-3) and 1.64 ind/m(3) in 1959 and 1974, respectively; however, this figure decreased to 0.36 ind m(-3) in 2002. Since 2003, the abundances have been near zero in the most years. Both inter-annual (between November 1959 and 2002) and inter-monthly (between May and June 1959) comparisons suggest that E. pacifica has had a temperature-driven northward movement in response to rising sea surface temperature, especially the positive anomalies since 1997. However, E. pacifica did not come back to the previous habitat when temperature became relative cold. Hence additional factors affecting the E. pacifica distribution and abundance need to be investigated in the future study.


Asunto(s)
Cambio Climático , Euphausiacea/fisiología , Océanos y Mares , Animales , Ecosistema , Densidad de Población , Estaciones del Año , Temperatura , Factores de Tiempo
17.
Ecol Appl ; 23(4): 710-25, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23865224

RESUMEN

Decision-makers charged with implementing ecosystem-based management (EBM) rely on scientists to predict the consequences of decisions relating to multiple, potentially conflicting, objectives. Such predictions are inherently uncertain, and this can be a barrier to decision-making. The Convention on the Conservation of Antarctic Marine Living Resources requires managers of Southern Ocean fisheries to sustain the productivity of target stocks, the health and resilience of the ecosystem, and the performance of the fisheries themselves. The managers of the Antarctic krill fishery in the Scotia Sea and southern Drake Passage have requested advice on candidate management measures consisting of a regional catch limit and options for subdividing this among smaller areas. We developed a spatially resolved model that simulates krill-predator-fishery interactions and reproduces a plausible representation of past dynamics. We worked with experts and stakeholders to identify (1) key uncertainties affecting our ability to predict ecosystem state; (2) illustrative reference points that represent the management objectives; and (3) a clear and simple way of conveying our results to decision-makers. We developed four scenarios that bracket the key uncertainties and evaluated candidate management measures in each of these scenarios using multiple stochastic simulations. The model emphasizes uncertainty and simulates multiple ecosystem components relating to diverse objectives. We summarize the potentially complex results as estimates of the risk that each illustrative objective will not be achieved (i.e., of the state being outside the range specified by the reference point). This approach allows direct comparisons between objectives. It also demonstrates that a candid appraisal of uncertainty, in the form of risk estimates, can be an aid, rather than a barrier, to understanding and using ecosystem model predictions. Management measures that reduce coastal fishing, relative to oceanic fishing, apparently reduce risks to both the fishery and the ecosystem. However, alternative reference points could alter the perceived risks, so further stakeholder involvement is needed to identify risk metrics that appropriately represent their objectives.


Asunto(s)
Toma de Decisiones , Ecosistema , Monitoreo del Ambiente/métodos , Euphausiacea/fisiología , Explotaciones Pesqueras/estadística & datos numéricos , Animales , Simulación por Computador , Conservación de los Recursos Naturales , Monitoreo del Ambiente/estadística & datos numéricos , Modelos Biológicos , Dinámica Poblacional , Conducta Predatoria , Spheniscidae/fisiología
18.
Sci Rep ; 13(1): 5376, 2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-37009788

RESUMEN

Krill are shrimp-like crustaceans with a high degree of mobility and variety of documented swimming behaviors. The caridoid escape response, a fast-start mechanism unique to crustaceans, occurs when the animal performs a series of rapid abdominal flexions and tail flipping that results in powerful backward strokes. The current results quantify the animal kinematics and three-dimensional flow field around a free-swimming Euphausia superba as it performs the caridoid escape maneuver. The specimen performs a single abdominal flexion-tail flip combination that leads to an acceleration over a 42 ms interval allowing it to reach a maximum speed of 57.0 cm/s (17.3 body lengths/s). The krill's tail flipping during the abdominal closure is a significant contributor to the thrust generation during the maneuver. The krill sheds a complex chain of vortex rings in its wake due to the viscous flow effects while the organism accelerates. The vortex ring structure reveals a strong suction flow in the wake, which suggests that the pressure distribution and form drag play a role in the force balance for this maneuver. Antarctic krill typically swim in a low to intermediate Reynolds number (Re) regime where viscous forces are significant, but as shown by this analysis, its high maneuverability allows it to quickly change its body angle and swimming speed.


Asunto(s)
Euphausiacea , Animales , Euphausiacea/fisiología , Hidrodinámica , Natación/fisiología , Fenómenos Biomecánicos , Regiones Antárticas
19.
Ecol Appl ; 22(3): 748-61, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22645808

RESUMEN

The nature and impact of fishing on predators that share a fished resource is an important consideration in ecosystem-based fisheries management. Krill (Euphausia superba) is a keystone species in the Antarctic, serving as a fundamental forage source for predators and simultaneously being subject to fishing. We developed a spatial multispecies operating model (SMOM) of krill-predator fishery dynamics to help advise on allocation of the total krill catch among 15 small-scale management units (SSMUs) in the Scotia Sea, with a goal to reduce the potential impact of fishing on krill predators. The operating model describes the underlying population dynamics and is used in simulations to compare different management options for adjusting fishing activities (e.g., a different spatial distribution of catches). The numerous uncertainties regarding the choice of parameter values pose a major impediment to constructing reliable ecosystem models. The pragmatic solution proposed here involves the use of operating models that are composed of alternative combinations of parameters that essentially try to bound the uncertainty in, for example, the choice of survival rate estimates as well as the functional relationships between predators and prey. Despite the large uncertainties, it is possible to discriminate the ecosystem impacts of different spatial fishing allocations. The spatial structure of the model is fundamental to addressing concerns of localized depletion of prey in the vicinity of land-based predator breeding colonies. Results of the model have been considered in recent management deliberations for spatial allocations of krill catches in the Scotia Sea and their associated impacts on dependent predator species.


Asunto(s)
Caniformia/fisiología , Euphausiacea/fisiología , Explotaciones Pesqueras , Peces/fisiología , Conducta Predatoria/fisiología , Spheniscidae/fisiología , Animales , Regiones Antárticas , Conservación de los Recursos Naturales/métodos , Ecosistema , Monitoreo del Ambiente , Modelos Biológicos , Densidad de Población , Estaciones del Año , Factores de Tiempo
20.
Ecol Appl ; 22(2): 668-84, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22611863

RESUMEN

We created a Bayesian hierarchical model (BHM) to investigate ecosystem relationships between the physical ecosystem (sea ice extent), a prey measure (krill density), predator behaviors (diving and foraging effort of female Antarctic fur seals, Arctocephalus gazella, with pups) and predator characteristics (mass of maternal fur seals and pups). We collected data on Antarctic fur seals from 1987/1988 to 1994/1995 at Seal Island, Antarctica. The BHM allowed us to link together predators and prey into a model that uses all the data efficiently and accounts for major sources of uncertainty. Based on the literature, we made hypotheses about the relationships in the model, which we compared with the model outcome after fitting the BHM. For each BHM parameter, we calculated the mean of the posterior density and the 95% credible interval. Our model confirmed others' findings that increased sea ice was related to increased krill density. Higher krill density led to reduced dive intensity of maternal fur seals, as measured by dive depth and duration, and to less time spent foraging by maternal fur seals. Heavier maternal fur seals and lower maternal foraging effort resulted in heavier pups at 22 d. No relationship was found between krill density and maternal mass, or between maternal mass and foraging effort on pup growth rates between 22 and 85 days of age. Maternal mass may have reflected environmental conditions prior to the pup provisioning season, rather than summer prey densities. Maternal mass and foraging effort were not related to pup growth rates between 22 and 85 d, possibly indicating that food was not limiting, food sources other than krill were being used, or differences occurred before pups reached age 22 d.


Asunto(s)
Euphausiacea/fisiología , Conducta Alimentaria/fisiología , Lobos Marinos/crecimiento & desarrollo , Lobos Marinos/fisiología , Hielo , Modelos Biológicos , Envejecimiento , Animales , Animales Lactantes/crecimiento & desarrollo , Regiones Antárticas , Teorema de Bayes , Peso Corporal , Ecosistema , Monitoreo del Ambiente/métodos , Femenino , Masculino , Océanos y Mares , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA