Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.988
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 165(7): 1632-1643, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27315480

RESUMEN

Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/química , Péptidos/farmacología , Ponzoñas/farmacología , Animales , Células CHO , Calcio/metabolismo , Línea Celular , Cricetulus , AMP Cíclico/metabolismo , Exenatida , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxintomodulina/química , Oxintomodulina/metabolismo , Péptidos/química , Ratas , Transducción de Señal , Ponzoñas/química
2.
J Biol Chem ; 300(5): 107294, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636665

RESUMEN

Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 µM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 µM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.


Asunto(s)
Potenciales de Acción , Fibrilación Atrial , Exenatida , Canal de Potasio Kv1.5 , Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5 , Bloqueadores del Canal de Sodio Activado por Voltaje , Animales , Humanos , Masculino , Ratas , Potenciales de Acción/efectos de los fármacos , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/metabolismo , Exenatida/farmacología , Exenatida/uso terapéutico , Células HEK293 , Canal de Potasio Kv1.5/antagonistas & inhibidores , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Ratas Sprague-Dawley , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
3.
FASEB J ; 38(10): e23684, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38795334

RESUMEN

Exposure to chronic psychosocial stress is a risk factor for metabolic disorders. Because dipeptidyl peptidase-4 (DPP4) and cysteinyl cathepsin K (CTSK) play important roles in human pathobiology, we investigated the role(s) of DPP4 in stress-related adipocyte differentiation, with a focus on the glucagon-like peptide-1 (GLP-1)/adiponectin-CTSK axis in vivo and in vitro. Plasma and inguinal adipose tissue from non-stress wild-type (DPP4+/+), DPP4-knockout (DPP4-/-) and CTSK-knockout (CTSK-/-) mice, and stressed DPP4+/+, DPP4-/-, CTSK-/-, and DPP4+/+ mice underwent stress exposure plus GLP-1 receptor agonist exenatide loading for 2 weeks and then were analyzed for stress-related biological and/or morphological alterations. On day 14 under chronic stress, stress decreased the weights of adipose tissue and resulted in harmful changes in the plasma levels of DPP4, GLP-1, CTSK, adiponectin, and tumor necrosis factor-α proteins and the adipose tissue levels of CTSK, preadipocyte factor-1, fatty acid binding protein-4, CCAAT/enhancer binding protein-α, GLP-1 receptor, peroxisome proliferator-activated receptor-γ, perilipin2, secreted frizzled-related protein-4, Wnt5α, Wnt11 and ß-catenin proteins and/or mRNAs as well as macrophage infiltration in adipose tissue; these changes were rectified by DPP4 deletion. GLP-1 receptor activation and CTSK deletion mimic the adipose benefits of DPP4 deficiency. In vitro, CTSK silencing and overexpression respectively prevented and facilitated stress serum and oxidative stress-induced adipocyte differentiation accompanied with changes in the levels of pref-1, C/EBP-α, and PPAR-γ in 3T3-L1 cells. Thus, these findings indicated that increased DPP4 plays an essential role in stress-related adipocyte differentiation, possibly through a negative regulation of GLP-1/adiponectin-CTSK axis activation in mice under chronic stress conditions.


Asunto(s)
Adipocitos , Adiponectina , Catepsina K , Diferenciación Celular , Dipeptidil Peptidasa 4 , Péptido 1 Similar al Glucagón , Ratones Noqueados , Animales , Ratones , Adiponectina/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Adipocitos/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/genética , Catepsina K/metabolismo , Catepsina K/genética , Masculino , Ratones Endogámicos C57BL , Estrés Psicológico/metabolismo , Células 3T3-L1 , Exenatida/farmacología , PPAR gamma/metabolismo , Adipogénesis
4.
Am J Physiol Cell Physiol ; 327(1): C74-C96, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738303

RESUMEN

Activation of incretin receptors by their cognate agonist augments sustained cAMP generation both from the plasma membrane as well as from the endosome. To address the functional outcome of this spatiotemporal signaling, we developed a nonacylated glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor dual agonist I-M-150847 that reduced receptor internalization following activation of the incretin receptors. The incretin receptor dual agonist I-M-150847 was developed by replacing the tryptophan cage of exendin-4 tyrosine substituted at the amino terminus with the C-terminal undecapeptide sequence of oxyntomodulin that placed lysine 30 of I-M-150847 in frame with the corresponding lysine residue of GIP. The peptide I-M-150847 is a partial agonist of GLP-1R and GIPR; however, the receptors, upon activation by I-M-150847, undergo reduced internalization that promotes agonist-mediated iterative cAMP signaling and augments glucose-stimulated insulin exocytosis in pancreatic ß cells. Chronic administration of I-M-150847 improved glycemic control, enhanced insulin sensitivity, and provided profound weight loss in diet-induced obese (DIO) mice. Our results demonstrated that despite being a partial agonist, I-M-150847, by reducing the receptor internalization upon activation, enhanced the incretin effect and reversed obesity.NEW & NOTEWORTHY Replacement of the tryptophan cage (Trp-cage) with the C-terminal oxyntomodulin undecapeptide along with the tyrosine substitution at the amino terminus converts the selective glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 to a novel GLP-1R and GIPR dual agonist I-M-150847. Reduced internalization of incretin receptors upon activation by the GLP-1R and GIPR dual agonist I-M-150847 promotes iterative receptor signaling that enhances the incretin effect and reverses obesity.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Incretinas , Ratones Endogámicos C57BL , Obesidad , Animales , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones , Masculino , Incretinas/farmacología , Incretinas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Control Glucémico/métodos , Ratones Obesos , Receptores de la Hormona Gastrointestinal/agonistas , Receptores de la Hormona Gastrointestinal/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Humanos , Dieta Alta en Grasa/efectos adversos , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Insulina/metabolismo , Exenatida/farmacología , Transducción de Señal/efectos de los fármacos , AMP Cíclico/metabolismo
5.
Am J Physiol Endocrinol Metab ; 326(5): E567-E576, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477664

RESUMEN

Signaling through prostaglandin E2 EP3 receptor (EP3) actively contributes to the ß-cell dysfunction of type 2 diabetes (T2D). In T2D models, full-body EP3 knockout mice have a significantly worse metabolic phenotype than wild-type controls due to hyperphagia and severe insulin resistance resulting from loss of EP3 in extra-pancreatic tissues, masking any potential beneficial effects of EP3 loss in the ß cell. We hypothesized ß-cell-specific EP3 knockout (EP3 ßKO) mice would be protected from high-fat diet (HFD)-induced glucose intolerance, phenocopying mice lacking the EP3 effector, Gαz, which is much more limited in its tissue distribution. When fed a HFD for 16 wk, though, EP3 ßKO mice were partially, but not fully, protected from glucose intolerance. In addition, exendin-4, an analog of the incretin hormone, glucagon-like peptide 1, more strongly potentiated glucose-stimulated insulin secretion in islets from both control diet- and HFD-fed EP3 ßKO mice as compared with wild-type controls, with no effect of ß-cell-specific EP3 loss on islet insulin content or markers of replication and survival. However, after 26 wk of diet feeding, islets from both control diet- and HFD-fed EP3 ßKO mice secreted significantly less insulin as a percent of content in response to stimulatory glucose, with or without exendin-4, with elevated total insulin content unrelated to markers of ß-cell replication and survival, revealing severe ß-cell dysfunction. Our results suggest that EP3 serves a critical role in temporally regulating ß-cell function along the progression to T2D and that there exist Gαz-independent mechanisms behind its effects.NEW & NOTEWORTHY The EP3 receptor is a strong inhibitor of ß-cell function and replication, suggesting it as a potential therapeutic target for the disease. Yet, EP3 has protective roles in extrapancreatic tissues. To address this, we designed ß-cell-specific EP3 knockout mice and subjected them to high-fat diet feeding to induce glucose intolerance. The negative metabolic phenotype of full-body knockout mice was ablated, and EP3 loss improved glucose tolerance, with converse effects on islet insulin secretion and content.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Células Secretoras de Insulina , Animales , Ratones , Secreción de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Exenatida/farmacología , Intolerancia a la Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Glucosa/metabolismo , Ratones Noqueados , Prostaglandinas/metabolismo , Prostaglandinas/farmacología
6.
Mol Med ; 30(1): 58, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720283

RESUMEN

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Exenatida , Receptor del Péptido 1 Similar al Glucagón , Mitofagia , Transducción de Señal , Calcificación Vascular , Animales , Mitofagia/efectos de los fármacos , Calcificación Vascular/etiología , Calcificación Vascular/metabolismo , Calcificación Vascular/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ratones , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Humanos , Exenatida/farmacología , Exenatida/uso terapéutico , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
7.
Nat Chem Biol ; 18(3): 256-263, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34937906

RESUMEN

Recent advances in G-protein-coupled receptor (GPCR) structural elucidation have strengthened previous hypotheses that multidimensional signal propagation mediated by these receptors depends, in part, on their conformational mobility; however, the relationship between receptor function and static structures is inherently uncertain. Here, we examine the contribution of peptide agonist conformational plasticity to activation of the glucagon-like peptide 1 receptor (GLP-1R), an important clinical target. We use variants of the peptides GLP-1 and exendin-4 (Ex4) to explore the interplay between helical propensity near the agonist N terminus and the ability to bind to and activate the receptor. Cryo-EM analysis of a complex involving an Ex4 analog, the GLP-1R and Gs heterotrimer revealed two receptor conformers with distinct modes of peptide-receptor engagement. Our functional and structural data, along with molecular dynamics (MD) simulations, suggest that receptor conformational dynamics associated with flexibility of the peptide N-terminal activation domain may be a key determinant of agonist efficacy.


Asunto(s)
Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Exenatida , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/química , Péptidos/química , Dominios Proteicos
8.
FASEB J ; 37(4): e22859, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36906290

RESUMEN

Islet transplantation (IT) is an effective ß-cell replacement therapy for patients with type 1 diabetes; however, the lack of methods to detect islet grafts and evaluate their ß-cell mass (BCM) has limited the further optimization of IT protocols. Therefore, the development of noninvasive ß-cell imaging is required. In this study, we investigated the utility of the 111 Indium-labeled exendin-4 probe {[Lys12(111In-BnDTPA-Ahx)] exendin-4} (111 In exendin-4) to evaluate islet graft BCM after intraportal IT. The probe was cultured with various numbers of isolated islets. Streptozotocin-induced diabetic mice were intraportally transplanted with 150 or 400 syngeneic islets. After a 6-week observation following IT, the ex-vivo liver graft uptake of 111 In-exendin-4 was compared with the liver insulin content. In addition, the in-vivo liver graft uptake of 111 In exendin-4 using SPECT/CT was compared with that of liver graft BCM measured by a histological method. As a result, probe accumulation was significantly correlated with islet numbers. The ex-vivo liver graft uptake in the 400-islet-transplanted group was significantly higher than that in the control and the 150-islet-transplanted groups, consistent with glycemic control and liver insulin content. In conclusion, in-vivo SPECT/CT displayed liver islet grafts, and uptakes were corroborated by histological liver BCM. 111 In-exendin-4 SPECT/CT can be used to visualize and evaluate liver islet grafts noninvasively after intraportal IT.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Ratones , Animales , Exenatida , Diabetes Mellitus Experimental/patología , Péptidos/farmacología , Insulina , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía Computarizada por Rayos X
9.
J Biomed Sci ; 31(1): 38, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38627765

RESUMEN

BACKGROUND: Mitochondria are essential organelles involved in cellular energy production. Changes in mitochondrial function can lead to dysfunction and cell death in aging and age-related disorders. Recent research suggests that mitochondrial dysfunction is closely linked to neurodegenerative diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonist has gained interest as a potential treatment for Parkinson's disease (PD). However, the exact mechanisms responsible for the therapeutic effects of GLP-1R-related agonists are not yet fully understood. METHODS: In this study, we explores the effects of early treatment with PT320, a sustained release formulation of the GLP-1R agonist Exenatide, on mitochondrial functions and morphology in a progressive PD mouse model, the MitoPark (MP) mouse. RESULTS: Our findings demonstrate that administration of a clinically translatable dose of PT320 ameliorates the reduction in tyrosine hydroxylase expression, lowers reactive oxygen species (ROS) levels, and inhibits mitochondrial cytochrome c release during nigrostriatal dopaminergic denervation in MP mice. PT320 treatment significantly preserved mitochondrial function and morphology but did not influence the reduction in mitochondria numbers during PD progression in MP mice. Genetic analysis indicated that the cytoprotective effect of PT320 is attributed to a reduction in the expression of mitochondrial fission protein 1 (Fis1) and an increase in the expression of optic atrophy type 1 (Opa1), which is known to play a role in maintaining mitochondrial homeostasis and decreasing cytochrome c release through remodeling of the cristae. CONCLUSION: Our findings suggest that the early administration of PT320 shows potential as a neuroprotective treatment for PD, as it can preserve mitochondrial function. Through enhancing mitochondrial health by regulating Opa1 and Fis1, PT320 presents a new neuroprotective therapy in PD.


Asunto(s)
Citocromos c , Exenatida , Agonistas Receptor de Péptidos Similares al Glucagón , Enfermedades Mitocondriales , Citocromos c/uso terapéutico , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Exenatida/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Modelos Animales de Enfermedad
10.
Diabetes Obes Metab ; 26(4): 1395-1406, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287130

RESUMEN

AIM: Novel long-acting drugs for type 2 diabetes mellitus may optimize patient compliance and glycaemic control. Exendin-4-IgG4-Fc (E4F4) is a long-acting glucagon-like peptide-1 receptor agonist. This first-in-human study investigated the safety, tolerability, pharmacokinetic, pharmacodynamic and immunogenicity profiles of a single subcutaneous injection of E4F4 in healthy subjects. METHODS: This single-centre, randomized, double-blind, placebo-controlled phase 1 clinical trial included 96 subjects in 10 sequential cohorts that were provided successively higher doses of E4F4 (0.45, 0.9, 1.8, 3.15, 4.5, 6.3, 8.1, 10.35, 12.6 and 14.85 mg) or placebo (ChinaDrugTrials.org.cn: ChiCTR2100049732). The primary endpoint was safety and tolerability of E4F4. Secondary endpoints were pharmacokinetic, pharmacodynamic and immunogenicity profiles of E4F4. Safety data to day 15 after the final subject in a cohort had been dosed were reviewed before commencing the next dose level. RESULTS: E4F4 was safe and well tolerated among healthy Chinese participants in this study. There was no obvious dose-dependent relationship between frequency, severity or causality of treatment-emergent adverse events. Cmax and area under the curve of E4F4 were dose proportional over the 0.45-14.85 mg dose range. Median Tmax and t1/2 ranged from 146 to 210 h and 199 to 252 h, respectively, across E4F4 doses, with no dose-dependent trends. For the intravenous glucose tolerance test, area under the curve of glucose in plasma from time 0 to 180 min showed a dose-response relationship in the 1.8-10.35 mg dose range, with an increased response at the higher doses. CONCLUSION: E4F4 exhibited an acceptable safety profile and linear pharmacokinetics in healthy subjects. The recommended phase 2 dose is 4.5-10.35 mg once every 2 weeks.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Exenatida/efectos adversos , Voluntarios Sanos , Área Bajo la Curva , Prueba de Tolerancia a la Glucosa , Método Doble Ciego , Relación Dosis-Respuesta a Droga
11.
Diabetes Obes Metab ; 26(7): 2925-2932, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38650544

RESUMEN

AIM: To determine if the dispensing of glucagon-like peptide (GLP)-1 receptor agonists is associated with increased dispensing of antidepressants. MATERIALS AND METHODS: We used cross-sectional, case-control and retrospective cohort study designs to examine the association between dispensed GLP-1 receptor agonists and antidepressants between 2012 and 2022 in the 10% random sample of the Australian Pharmaceutical Benefits Scheme (PBS) data. PBS-listed GLP-1 receptor agonists, exenatide, dulaglutide and semaglutide were the exposures. Outcomes were the odds ratio [ORs; 99% confidence interval (CI)] and hazard ratio (99% CI) of being dispensed any antidepressant. Analyses were adjusted for demographic measures and the dispensing of medicines to manage cardiovascular diseases or anxiety/insomnia. Statistical tests were two-sided at the 1% level of significance. RESULTS: In total, 358 075 of 1 746 391 individuals were dispensed antidepressants, and 8495 of the 24 783 dispensed a GLP-1 receptor agonist were also dispensed an antidepressant in 2022 (OR 1.44; 99% CI 1.38-1.50); 24 103 of the 1 746 391 participants had been dispensed a GLP-1 receptor agonist between 2012 and 2021, and of these 8083 were dispensed antidepressants in 2022 (OR 1.52; 99% CI 1.46-1.59). The 2012 cohort included 1 213 316 individuals who had not been dispensed antidepressants that year. The hazard ratio of being dispensed an antidepressant between 2013 and 2022 following the dispensing of a GLP-1 receptor agonist was 1.19 (99% CI 1.12-1.27). Additional analyses restricting the time of exposure confirmed these associations for all PBS-listed GLP-1 receptor agonists. CONCLUSIONS: Individuals exposed to GLP-1 receptor agonists are at greater risk of being dispensed antidepressants. The possible impact of GLP-1 receptor agonists on the mood of consumers requires ongoing vigilance and further research.


Asunto(s)
Antidepresivos , Exenatida , Receptor del Péptido 1 Similar al Glucagón , Péptidos Similares al Glucagón , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Masculino , Femenino , Estudios Transversales , Antidepresivos/uso terapéutico , Persona de Mediana Edad , Estudios de Casos y Controles , Péptidos Similares al Glucagón/uso terapéutico , Péptidos Similares al Glucagón/efectos adversos , Péptidos Similares al Glucagón/análogos & derivados , Estudios Retrospectivos , Exenatida/uso terapéutico , Australia/epidemiología , Anciano , Estudios Longitudinales , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Adulto , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Agonistas Receptor de Péptidos Similares al Glucagón
12.
Diabetes Obes Metab ; 26(6): 2209-2228, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38505997

RESUMEN

AIM: The cardiovascular benefits provided by glucagon-like peptide-1 receptor agonists (GLP-1RAs) extend beyond weight reduction and glycaemic control. One possible mechanism may relate to blood pressure (BP) reduction. We aim to quantify the BP-lowering effects of GLP1-RAs. METHODS: A comprehensive database search for placebo-controlled randomized controlled trials on GLP-1RA treatment was conducted until December 2023. Data extraction and quality assessment were carried out, employing a robust statistical analysis using a random effects model to determine outcomes with a mean difference (MD) in mmHg and 95% confidence intervals (CIs). The primary endpoint was the mean difference in systolic BP (SBP) and diastolic BP. Subgroup analyses and meta-regressions were done to account for covariates. RESULTS: Compared with placebo, GLP-1RAs modestly reduced SBP [semaglutide: MD -3.40 (95% CI -4.22 to -2.59, p < .001); liraglutide: MD -2.61 (95% CI -3.48 to -1.74, p < .001); dulaglutide: MD -1.46 (95% CI -2.20 to -0.72, p < .001); and exenatide: MD -3.36 (95% CI -3.63 to -3.10, p < .001)]. This benefit consistently increased with longer treatment durations. Diastolic BP reduction was only significant in the exenatide group [MD -0.94 (95% CI -1.78 to -0.1), p = .03]. Among semaglutide cohorts, mean changes in glycated haemoglobin and mean changes in body mass index were directly associated with SBP reduction. CONCLUSION: Patients on GLP-1RA experienced modest SBP lowering compared with placebo. This observed effect was associated with weight/body mass index reduction and better glycaemic control, which suggests that BP-lowering is an indirect effect of GLP-1RA and unlikely to be responsible for the benefits.


Asunto(s)
Presión Sanguínea , Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Presión Sanguínea/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/sangre , Ensayos Clínicos Controlados Aleatorios como Asunto , Liraglutida/uso terapéutico , Péptidos Similares al Glucagón/uso terapéutico , Péptidos Similares al Glucagón/análogos & derivados , Exenatida/uso terapéutico , Exenatida/farmacología , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Agonistas Receptor de Péptidos Similares al Glucagón
13.
Diabetes Obes Metab ; 26(1): 329-338, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37818589

RESUMEN

AIM: The aim of the present study was to assess the long-term therapeutic efficacy of a recently discovered 28 amino acid peptide, Δ-theraphotoxin-Ac1 (Δ-TRTX-Ac1), originally isolated from venom of the Aphonopelma chalcodes tarantula. Δ-TRTX-Ac has previously been shown to improve pancreatic beta-cell function and suppress appetite. MATERIALS AND METHODS: Δ-TRTX-Ac1 was administered twice daily in high-fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF/STZ mice, for 28 days both alone and in combination with the venom-derived glucagon-like peptide-1 (GLP-1) mimetic, exenatide. RESULTS: Initial pharmacokinetic profiling of ΔTRTX-Ac1 revealed a plasma half-life of 2 h in mice, with ΔTRTX-Ac1 also evidenced in the pancreas 12 h post-injection. Accordingly, HFF-STZ mice received twice-daily injections of Δ-TRTX-Ac1, exenatide or a combination of both peptides for 28 days. As anticipated, HFF/STZ mice presented with hyperglycaemia, impaired glucose tolerance, decreased plasma and pancreatic insulin and disturbed pancreatic islet morphology. Administration of ΔTRTX-Ac1 reduced body weight, improved glucose tolerance and augmented pancreatic insulin content while decreasing glucagon content. Exenatide had similar benefits on body weight and pancreatic hormone content while also reducing circulating glucose. ΔTRTX-Ac1 decreased energy expenditure on day 28 whereas exenatide had no impact. All treatment regimens restored pancreatic islet and beta-cell area towards lean control levels, which was linked to significantly elevated beta-cell proliferation rates. In terms of benefits of combined ΔTRTX-Ac1 and exenatide treatment over individual agents, there was augmentation of glucose tolerance and ambulatory activity with combination therapy, and these mice presented with increased pancreatic glucagon. CONCLUSION: These data highlight the therapeutic promise of ΔTRTX-Ac1 for diabetes, with suggestion that benefits could be enhanced through combined administration with exenatide.


Asunto(s)
Glucagón , Hipoglucemiantes , Ratones , Animales , Exenatida , Glucagón/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Glucemia/metabolismo , Péptidos/farmacología , Péptidos/uso terapéutico , Insulina/metabolismo , Ponzoñas/farmacología , Ponzoñas/uso terapéutico , Glucosa , Peso Corporal
14.
Inflamm Res ; 73(7): 1185-1201, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38748233

RESUMEN

OBJECTIVE: Poorly controlled diabetes frequently exacerbates lung infection, thereby complicating treatment strategies. Recent studies have shown that exendin-4 exhibits not only hypoglycemic but also anti-inflammatory properties. This study aimed to explore the role of exendin-4 in lung infection with diabetes, as well as its association with NOD1/NF-κB and the T1R2/T1R3 sweet taste receptor. METHODS: 16HBE human bronchial epithelial cells cultured with 20 mM glucose were stimulated with lipopolysaccharide (LPS) isolated from Pseudomonas aeruginosa (PA). Furthermore, Sprague‒Dawley rats were fed a high-fat diet, followed by intraperitoneal injection of streptozotocin and intratracheal instillation of PA. The levels of TNF-α, IL-1ß and IL-6 were evaluated using ELISAs and RT‒qPCR. The expression of T1R2, T1R3, NOD1 and NF-κB p65 was assayed using western blotting and immunofluorescence staining. Pathological changes in the lungs of the rats were observed using hematoxylin and eosin (H&E) staining. RESULTS: At the same dose of LPS, the 20 mM glucose group produced more proinflammatory cytokines (TNF-α, IL-1ß and IL-6) and had higher levels of T1R2, T1R3, NOD1 and NF-κB p65 than the normal control group (with 5.6 mM glucose). However, preintervention with exendin-4 significantly reduced the levels of the aforementioned proinflammatory cytokines and signaling molecules. Similarly, diabetic rats infected with PA exhibited increased levels of proinflammatory cytokines in their lungs and increased expression of T1R2, T1R3, NOD1 and NF-κB p65, and these effects were reversed by exendin-4. CONCLUSIONS: Diabetic hyperglycemia can exacerbate inflammation during lung infection, promote the increase in NOD1/NF-κB, and promote T1R2/T1R3. Exendin-4 can ameliorate PA-related pneumonia with diabetes and overexpression of NOD1/NF-κB. Additionally, exendin-4 suppresses T1R2/T1R3, potentially through its hypoglycemic effect or through a direct mechanism. The correlation between heightened expression of T1R2/T1R3 and an intensified inflammatory response in lung infection with diabetes requires further investigation.


Asunto(s)
Diabetes Mellitus Experimental , Exenatida , Proteína Adaptadora de Señalización NOD1 , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Ratas Sprague-Dawley , Animales , Exenatida/farmacología , Exenatida/uso terapéutico , Humanos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Masculino , Infecciones por Pseudomonas/tratamiento farmacológico , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD1/genética , Citocinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , FN-kappa B/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/microbiología , Línea Celular , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ratas , Lipopolisacáridos , Péptidos/farmacología , Péptidos/uso terapéutico
15.
J Cardiovasc Pharmacol ; 83(6): 621-634, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547520

RESUMEN

ABSTRACT: Type 2 diabetes mellitus increases the risk of cardiovascular diseases. Therefore, elucidation of the cardiovascular effects of antidiabetics is crucial. Incretin-based therapies are increasingly used for type 2 diabetes mellitus treatment as monotherapy and in combination. We aimed to study the effects of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sitagliptin on beating rates in isolated atria from diabetic rats. The chronotropic responses to GLP-1 RAs and sitagliptin as monotherapy and in combinations with metformin, pioglitazone, and glimepiride in isolated atria from control and diabetic rats were determined. GLP-1 (7-36), GLP-1 (9-36), and exendin-4 (1-39) produced increases in beating rates in both control and diabetic rat atria. However, sitagliptin increased the beating frequency only in the diabetic group. Exendin (9-39), nitro- l -arginine methyl ester hydrochloride, and indomethacin blocked responses to GLP-1 RAs but not the response to sitagliptin. Glibenclamide, 4-aminopyridine, apamin, charybdotoxin, superoxide dismutase, and catalase incubations did not change responses to GLP-1 RAs and sitagliptin. GLP-1 RAs increase beating rates in isolated rat atrium through GLP-1 receptor, nitric oxide, and cyclooxygenase pathways but not potassium channels and reactive oxygen radicals.


Asunto(s)
Diabetes Mellitus Experimental , Receptor del Péptido 1 Similar al Glucagón , Atrios Cardíacos , Frecuencia Cardíaca , Hipoglucemiantes , Fosfato de Sitagliptina , Animales , Fosfato de Sitagliptina/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Masculino , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Hipoglucemiantes/farmacología , Ratas , Ratas Wistar , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/metabolismo , Exenatida/farmacología , Incretinas/farmacología , Péptido 1 Similar al Glucagón/agonistas , Péptido 1 Similar al Glucagón/metabolismo , Pirazinas/farmacología , Agonistas Receptor de Péptidos Similares al Glucagón
16.
Brain ; 146(5): 1821-1830, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36907221

RESUMEN

Therapeutics to reduce intracranial pressure are an unmet need. Preclinical data have demonstrated a novel strategy to lower intracranial pressure using glucagon-like peptide-1 (GLP-1) receptor signalling. Here, we translate these findings into patients by conducting a randomized, placebo-controlled, double-blind trial to assess the effect of exenatide, a GLP-1 receptor agonist, on intracranial pressure in idiopathic intracranial hypertension. Telemetric intracranial pressure catheters enabled long-term intracranial pressure monitoring. The trial enrolled adult women with active idiopathic intracranial hypertension (intracranial pressure >25 cmCSF and papilloedema) who receive subcutaneous exenatide or placebo. The three primary outcome measures were intracranial pressure at 2.5 h, 24 h and 12 weeks and alpha set a priori at less than 0.1. Among the 16 women recruited, 15 completed the study (mean age 28 ± 9, body mass index 38.1 ± 6.2 kg/m2, intracranial pressure 30.6 ± 5.1 cmCSF). Exenatide significantly and meaningfully lowered intracranial pressure at 2.5 h -5.7 ± 2.9 cmCSF (P = 0.048); 24 h -6.4 ± 2.9 cmCSF (P = 0.030); and 12 weeks -5.6 ± 3.0 cmCSF (P = 0.058). No serious safety signals were noted. These data provide confidence to proceed to a phase 3 trial in idiopathic intracranial hypertension and highlight the potential to utilize GLP-1 receptor agonist in other conditions characterized by raised intracranial pressure.


Asunto(s)
Diabetes Mellitus Tipo 2 , Seudotumor Cerebral , Adulto , Humanos , Femenino , Adulto Joven , Exenatida , Seudotumor Cerebral/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/uso terapéutico , Péptidos , Ponzoñas/uso terapéutico , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico
17.
Exp Cell Res ; 423(2): 113469, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36627100

RESUMEN

Ischemia-reperfusion (I/R) injury (IRI) is a common clinical consequence of myocardial infarction. Exendin-4 is a glucagon-like peptide-1 (GLP-1) analog that has been demonstrated to alleviate myocardial IRI. Autophagy, a lysosomal pathway balancing cell survival and cell death, is engaged in myocardial IRI. However, whether exendin-4 exerts a protective effect on myocardial IRI by modulating autophagy remains elusive. Herein, we investigated the effect of exendin-4 on autophagic flux and explored the underlying molecular mechanisms. Our data revealed that the autophagic flux was blocked in the human ventricular cardiomyocyte cell lines (AC16) subjected to oxygen glucose deprivation/reoxygenation (OGD/R) in vitro. Exendin-4 pre-treatment markedly restored the blocked autophagic flux induced by OGD/R through promoting nuclear translocation of TFEB and transcription of genes involving autophagy initiation, the effect of which was reversed by TFEB knockdown. The restoration of autophagic flux contributed to multiple beneficial effects of exendin-4 in cardiomyocytes, including reduction of oxidative stress, preservation of mitochondrial network as well as inhibition of cytochrome c leakage from mitochondrial permeability transition pore (MPTP) and the resulting apoptosis. Moreover, the administration of exendin-4 reduced infarct size and preserved cardiac function through its anti-apoptosis and antioxidative effects in vivo. These results shed some light on understanding the novel mechanism of exendin-4 as a protective agent against myocardial IRI.


Asunto(s)
Daño por Reperfusión Miocárdica , Humanos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Exenatida/farmacología , Exenatida/uso terapéutico , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
18.
BMC Vet Res ; 20(1): 211, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762728

RESUMEN

Beneficial weight-loss properties of glucagon-like peptide-1 receptor agonists (GLP-1RA) in obese people, with corresponding improvements in cardiometabolic risk factors, are well established. OKV-119 is an investigational drug delivery system that is being developed for the long-term delivery of the GLP-1RA exenatide to feline patients. The purpose of this study was to evaluate the drug release characteristics of subcutaneous OKV-119 implants configured to release exenatide for 84 days. Following a 7-day acclimation period, five purpose-bred cats were implanted with OKV-119 protypes and observed for a 112-day study period. Food intake, weekly plasma exenatide concentrations and body weight were measured. Exenatide plasma concentrations were detected at the first measured timepoint (Day 7) and maintained above baseline for over 84 Days. Over the first 28 days, reduced caloric intake and a reduction in body weight were observed in four of five cats. In these cats, a body weight reduction of at least 5% was maintained throughout the 112-day study period. This study demonstrates that a single OKV-119 implant can deliver the GLP-1RA exenatide for a months long duration. Results suggest that exposure to exenatide plasma concentrations ranging from 1.5 ng/ml to 4 ng/ml are sufficient for inducing weight loss in cats.


Asunto(s)
Exenatida , Animales , Exenatida/administración & dosificación , Exenatida/farmacocinética , Exenatida/farmacología , Gatos , Masculino , Femenino , Sistemas de Liberación de Medicamentos/veterinaria , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacocinética , Peso Corporal , Liberación de Fármacos , Implantes de Medicamentos , Ingestión de Alimentos/efectos de los fármacos , Ponzoñas/administración & dosificación , Ponzoñas/farmacocinética , Receptor del Péptido 1 Similar al Glucagón/agonistas
19.
J Pak Med Assoc ; 74(1): 138-140, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38219182

RESUMEN

The aim of the study was to investigate th e in flue nce of Exenatide comb ined with Met formin on fasti ng blood glucose, postpr andial glucose, triglycerides, total cholesterol, alanine aminotransferase, aspartate aminotransferase, and inte s tinal flora in typ e 2 diab etes mellitus cases with non-alcoholic fatty liver disease. A total of 128 type 2 diabetes mellitus patients with non-alcoholic fatty liver disease, diagnosed from Januar y 2019 to January 2022, were included and randomly assigned to either G roup A (n=64) or Gro up B (n =64). Group A received Metformin, while Group B received Exenatide injection and Metfor min. After 24 weeks of treat ment, blood glucose indices (fasting blood glucose and postprandial glucose), blood lipid indices (triglycerides and total cholesterol), liver func tion indices (alanine aminotransferase and aspar tate aminotransferase) were all lower in Group B than in Group A (p<0.001 for all). Counts o f Escherichia coli and Enterococcus faecalis were lower in Group B than in Group A (both p<0.05), counts of Bifidobacteria and Lactobacillus were highe r i n Group B than in Grou p A (both p<0.05). Combin ation of Exenati de and Metformi n may have synergistic effects in improving metabo lic an d hepatic pa rameters, a s well as re gulat ing intestinal flora, which cou ld provide a pro misin g therapeutic option for the management of these patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Metformina/uso terapéutico , Exenatida/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Glucemia , Hígado , Triglicéridos , Colesterol , Transaminasas/uso terapéutico , Hipoglucemiantes/uso terapéutico
20.
JAAPA ; 37(5): 12-14, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38662894

RESUMEN

ABSTRACT: Glucagon-like peptide 1 agonists (GLP1s) and the novel glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 agonist are effective drugs for reducing A1C and weight in patients with type 2 diabetes. However, clinicians may find it difficult to discern which drug to prescribe in specific clinical scenarios. This article discusses evidence-based clinical use of these drugs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Hipoglucemiantes , Pérdida de Peso , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Pérdida de Peso/efectos de los fármacos , Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/uso terapéutico , Liraglutida/uso terapéutico , Polipéptido Inhibidor Gástrico/uso terapéutico , Polipéptido Inhibidor Gástrico/agonistas , Exenatida/uso terapéutico , Exenatida/administración & dosificación , Péptidos/uso terapéutico , Hemoglobina Glucada , Receptor del Péptido 1 Similar al Glucagón/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA