Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 87: 75-100, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29328783

RESUMEN

RNA polymerase (Pol) III has a specialized role in transcribing the most abundant RNAs in eukaryotic cells, transfer RNAs (tRNAs), along with other ubiquitous small noncoding RNAs, many of which have functions related to the ribosome and protein synthesis. The high energetic cost of producing these RNAs and their central role in protein synthesis underlie the robust regulation of Pol III transcription in response to nutrients and stress by growth regulatory pathways. Downstream of Pol III, signaling impacts posttranscriptional processes affecting tRNA function in translation and tRNA cleavage into smaller fragments that are increasingly attributed with novel cellular activities. In this review, we consider how nutrients and stress control Pol III transcription via its factors and its negative regulator, Maf1. We highlight recent work showing that the composition of the tRNA population and the function of individual tRNAs is dynamically controlled and that unrestrained Pol III transcription can reprogram central metabolic pathways.


Asunto(s)
ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Animales , Humanos , Modelos Biológicos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación , Conformación Proteica , ARN Polimerasa III/química , Procesamiento Postranscripcional del ARN , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Estrés Fisiológico , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Mol Cell ; 83(15): 2641-2652.e7, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37402369

RESUMEN

RNA polymerase III (Pol III) is responsible for transcribing 5S ribosomal RNA (5S rRNA), tRNAs, and other short non-coding RNAs. Its recruitment to the 5S rRNA promoter requires transcription factors TFIIIA, TFIIIC, and TFIIIB. Here, we use cryoelectron microscopy (cryo-EM) to visualize the S. cerevisiae complex of TFIIIA and TFIIIC bound to the promoter. Gene-specific factor TFIIIA interacts with DNA and acts as an adaptor for TFIIIC-promoter interactions. We also visualize DNA binding of TFIIIB subunits, Brf1 and TBP (TATA-box binding protein), which results in the full-length 5S rRNA gene wrapping around the complex. Our smFRET study reveals that the DNA within the complex undergoes both sharp bending and partial dissociation on a slow timescale, consistent with the model predicted from our cryo-EM results. Our findings provide new insights into the transcription initiation complex assembly on the 5S rRNA promoter and allow us to directly compare Pol III and Pol II transcription adaptations.


Asunto(s)
Factores de Transcripción , Transcripción Genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Factor de Transcripción TFIIIA/genética , Factor de Transcripción TFIIIA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , ADN/metabolismo
3.
Cell ; 163(6): 1375-87, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638071

RESUMEN

TFIIB-related factor 2 (Brf2) is a member of the family of TFIIB-like core transcription factors. Brf2 recruits RNA polymerase (Pol) III to type III gene-external promoters, including the U6 spliceosomal RNA and selenocysteine tRNA genes. Found only in vertebrates, Brf2 has been linked to tumorigenesis but the underlying mechanisms remain elusive. We have solved crystal structures of a human Brf2-TBP complex bound to natural promoters, obtaining a detailed view of the molecular interactions occurring at Brf2-dependent Pol III promoters and highlighting the general structural and functional conservation of human Pol II and Pol III pre-initiation complexes. Surprisingly, our structural and functional studies unravel a Brf2 redox-sensing module capable of specifically regulating Pol III transcriptional output in living cells. Furthermore, we establish Brf2 as a central redox-sensing transcription factor involved in the oxidative stress pathway and provide a mechanistic model for Brf2 genetic activation in lung and breast cancer.


Asunto(s)
Oxidación-Reducción , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae , Alineación de Secuencia , Transducción de Señal
4.
Nature ; 553(7688): 295-300, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29345638

RESUMEN

RNA polymerase III (Pol III) and transcription factor IIIB (TFIIIB) assemble together on different promoter types to initiate the transcription of small, structured RNAs. Here we present structures of Pol III preinitiation complexes, comprising the 17-subunit Pol III and the heterotrimeric transcription factor TFIIIB, bound to a natural promoter in different functional states. Electron cryo-microscopy reconstructions, varying from 3.7 Å to 5.5 Å resolution, include two early intermediates in which the DNA duplex is closed, an open DNA complex, and an initially transcribing complex with RNA in the active site. Our structures reveal an extremely tight, multivalent interaction between TFIIIB and promoter DNA, and explain how TFIIIB recruits Pol III. Together, TFIIIB and Pol III subunit C37 activate the intrinsic transcription factor-like activity of the Pol III-specific heterotrimer to initiate the melting of double-stranded DNA, in a mechanism similar to that of the Pol II system.


Asunto(s)
Microscopía por Crioelectrón , ADN/metabolismo , ADN/ultraestructura , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN Polimerasa III/metabolismo , ARN Polimerasa III/ultraestructura , Sitios de Unión , Dominio Catalítico , ADN/química , Modelos Biológicos , Modelos Moleculares , Unión Proteica , ARN Polimerasa III/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/metabolismo , Factor de Transcripción TFIIIB/ultraestructura , Factores de Transcripción TFII/química , Iniciación de la Transcripción Genética
5.
Nature ; 553(7688): 301-306, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29345637

RESUMEN

RNA polymerase (Pol) III transcribes essential non-coding RNAs, including the entire pool of transfer RNAs, the 5S ribosomal RNA and the U6 spliceosomal RNA, and is often deregulated in cancer cells. The initiation of gene transcription by Pol III requires the activity of the transcription factor TFIIIB to form a transcriptionally active Pol III preinitiation complex (PIC). Here we present electron microscopy reconstructions of Pol III PICs at 3.4-4.0 Å and a reconstruction of unbound apo-Pol III at 3.1 Å. TFIIIB fully encircles the DNA and restructures Pol III. In particular, binding of the TFIIIB subunit Bdp1 rearranges the Pol III-specific subunits C37 and C34, thereby promoting DNA opening. The unwound DNA directly contacts both sides of the Pol III cleft. Topologically, the Pol III PIC resembles the Pol II PIC, whereas the Pol I PIC is more divergent. The structures presented unravel the molecular mechanisms underlying the first steps of Pol III transcription and also the general conserved mechanisms of gene transcription initiation.


Asunto(s)
ARN Polimerasa III/metabolismo , ARN Polimerasa III/ultraestructura , Iniciación de la Transcripción Genética , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Polimerasa I/química , ARN Polimerasa II/química , ARN Polimerasa III/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Moldes Genéticos , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/metabolismo , Factor de Transcripción TFIIIB/ultraestructura , Factores de Transcripción TFII/química
6.
Cell ; 133(1): 29-30, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18394985

RESUMEN

Overexpression of Brf1, a transcription factor of the RNA polymerase III apparatus, can transform cells in vitro and cause tumor formation in vivo. Marshall et al. (2008) now show that one of the transcriptional products of RNA polymerase III, the initiator tRNA(Met), mediates this effect, revealing an unexpected role for this tRNA in tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica , ARN de Transferencia de Metionina/metabolismo , Animales , Línea Celular , Humanos , Modelos Biológicos , ARN Polimerasa III/metabolismo , ARN de Transferencia de Metionina/genética , Factor de Transcripción TFIIIB/metabolismo , Transcripción Genética
7.
Cell ; 133(1): 78-89, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18394991

RESUMEN

Characteristics of transformed and tumor cells include increased levels of protein synthesis and elevated expression of RNA polymerase (pol) III products, such as tRNAs and 5S rRNA. However, whether deregulated pol III transcription contributes to transformation has been unclear. Generating cell lines expressing an inducible pol III-specific transcription factor, Brf1, allowed us to raise tRNA and 5S rRNA levels specifically. Brf1 induction caused an increase in cell proliferation and oncogenic transformation, whereas depletion of Brf1 impeded transformation. Among the gene products induced by Brf1 is the tRNA(iMet) that initiates polypeptide synthesis. Overexpression of tRNA(iMet) is sufficient to stimulate cell proliferation and allow immortalized fibroblasts to form foci in culture and tumors in mice. The data indicate that elevated tRNA synthesis can promote cellular transformation.


Asunto(s)
Proliferación Celular , Transformación Celular Neoplásica , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Células 3T3 , Animales , Células CHO , Ciclo Celular , Línea Celular Tumoral , Cricetinae , Cricetulus , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Biosíntesis de Proteínas , Interferencia de ARN , ARN Polimerasa III/metabolismo , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Transcripción Genética
8.
Genome Res ; 29(8): 1298-1309, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31249062

RESUMEN

Retroelement integration into host genomes affects chromosome structure and function. A goal of a considerable number of investigations is to elucidate features influencing insertion site selection. The Saccharomyces cerevisiae Ty3 retrotransposon inserts proximal to the transcription start sites (TSS) of genes transcribed by RNA polymerase III (RNAP3). In this study, differential patterns of insertion were profiled genome-wide using a random barcode-tagged Ty3. Saturation transposition showed that tRNA genes (tDNAs) are targeted at widely different frequencies even within isoacceptor families. Ectopic expression of Ty3 integrase (IN) showed that it localized to targets independent of other Ty3 proteins and cDNA. IN, RNAP3, and transcription factor Brf1 were enriched at tDNA targets with high frequencies of transposition. To examine potential effects of cis-acting DNA features on transposition, targeting was tested on high-copy plasmids with restricted amounts of 5' flanking sequence plus tDNA. Relative activity of targets was reconstituted in these constructions. Weighting of genomic insertions according to frequency identified an A/T-rich sequence followed by C as the dominant site of strand transfer. This site lies immediately adjacent to the adenines previously implicated in the RNAP3 TSS motif (CAA). In silico DNA structural analysis upstream of this motif showed that targets with elevated DNA curvature coincide with reduced integration. We propose that integration mediated by the Ty3 intasome complex (IN and cDNA) is subject to inputs from a combination of host factor occupancy and insertion site architecture, and that this results in the wide range of Ty3 targeting frequencies.


Asunto(s)
Genoma Fúngico , Integrasas/genética , ARN Polimerasa III/genética , Retroelementos , Saccharomyces cerevisiae/genética , Transcripción Genética , Integrasas/metabolismo , Mutagénesis Insercional , Motivos de Nucleótidos , Plásmidos/química , Plásmidos/metabolismo , ARN Polimerasa III/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Sitio de Iniciación de la Transcripción
9.
Nucleic Acids Res ; 48(20): 11215-11226, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747934

RESUMEN

The ChIP-exo assay precisely delineates protein-DNA crosslinking patterns by combining chromatin immunoprecipitation with 5' to 3' exonuclease digestion. Within a regulatory complex, the physical distance of a regulatory protein to DNA affects crosslinking efficiencies. Therefore, the spatial organization of a protein-DNA complex could potentially be inferred by analyzing how crosslinking signatures vary between its subunits. Here, we present a computational framework that aligns ChIP-exo crosslinking patterns from multiple proteins across a set of coordinately bound regulatory regions, and which detects and quantifies protein-DNA crosslinking events within the aligned profiles. By producing consistent measurements of protein-DNA crosslinking strengths across multiple proteins, our approach enables characterization of relative spatial organization within a regulatory complex. Applying our approach to collections of ChIP-exo data, we demonstrate that it can recover aspects of regulatory complex spatial organization at yeast ribosomal protein genes and yeast tRNA genes. We also demonstrate the ability to quantify changes in protein-DNA complex organization across conditions by applying our approach to analyze Drosophila Pol II transcriptional components. Our results suggest that principled analyses of ChIP-exo crosslinking patterns enable inference of spatial organization within protein-DNA complexes.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Proteínas de Unión al ADN/metabolismo , Exonucleasas/química , ARN de Transferencia/genética , Proteínas Ribosómicas/genética , Alineación de Secuencia/métodos , Factores de Transcripción/metabolismo , Algoritmos , Animales , Sitios de Unión , Simulación por Computador , Proteínas de Unión al ADN/química , Bases de Datos Genéticas , Drosophila/química , Drosophila/genética , Drosophila/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa III/química , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN/métodos , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción TFIII/química , Factores de Transcripción TFIII/genética , Factores de Transcripción TFIII/metabolismo , Sitio de Iniciación de la Transcripción
10.
Biochem Biophys Res Commun ; 540: 95-100, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33453679

RESUMEN

Acquired middle ear cholesteatoma leads to hearing loss, ear discharge, ear pain, and more serious intracranial complications. However, there is still no effective treatment other than surgery. TFIIB-related factor 2 (BRF2) acted as a redox sensor overexpressing in oxidative stress which linked endoplasmic reticulum (ER) stress, while glucose-regulated protein 78 (GRP78) was a biomarker of ER stress in cancer, atherosclerosis and inflammation. In our study, we investigated the roles of BRF2 and GRP78 in acquired middle ear cholesteatoma. Our results revealed that the expression of BRF2 was significant increased in acquired middle ear cholesteatoma, and which was positively correlated with the expression of GRP78. In addition, BRF2 and GRP78 showed colocalization in epithelium of acquired middle ear cholesteatomas and HaCaT cells. Prolongation of LPS stimulation in HaCaT cells escalated the expression of BRF2 and GRP78. To confirm the role of BRF2 and GRP78, we transfected si-BRF2 into HaCaT cells. All results indicated that BRF2 expression positively regulates the expression of GRP78 and may participate in the pathogenesis of acquire middle ear cholesteatoma.


Asunto(s)
Colesteatoma del Oído Medio/metabolismo , Proteínas de Choque Térmico/metabolismo , Factor de Transcripción TFIIIB/metabolismo , Línea Celular Tumoral , Chaperón BiP del Retículo Endoplásmico , Técnicas de Silenciamiento del Gen , Proteínas de Choque Térmico/deficiencia , Humanos , Lipopolisacáridos/inmunología , Factor de Transcripción TFIIIB/deficiencia , Regulación hacia Arriba
11.
Mol Cell ; 45(4): 541-52, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22281053

RESUMEN

Polo-like kinase Plk1 controls numerous aspects of cell-cycle progression. We show that it associates with tRNA and 5S rRNA genes and regulates their transcription by RNA polymerase III (pol III) through direct binding and phosphorylation of transcription factor Brf1. During interphase, Plk1 promotes tRNA and 5S rRNA expression by phosphorylating Brf1 directly on serine 450. However, this stimulatory modification is overridden at mitosis, when elevated Plk1 activity causes Brf1 phosphorylation on threonine 270 (T270), which prevents pol III recruitment. Thus, although Plk1 enhances net tRNA and 5S rRNA production, consistent with its proliferation-stimulating function, it also suppresses untimely transcription when cells divide. Genomic instability is apparent in cells with Brf1 T270 mutated to alanine to resist Plk1-directed inactivation, suggesting that chromosome segregation is vulnerable to inappropriate pol III activity.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , ARN Ribosómico 5S/genética , ARN de Transferencia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/genética , Inestabilidad Genómica , Células HeLa , Humanos , Mitosis , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Polimerasa III/metabolismo , ARN Polimerasa III/fisiología , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIIIB/metabolismo , Quinasa Tipo Polo 1
12.
Nucleic Acids Res ; 46(14): 7250-7260, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29945249

RESUMEN

Transposable elements amplify in genomes as selfish DNA elements and challenge host fitness because their intrinsic integration steps during mobilization can compromise genome integrity. In gene-dense genomes, transposable elements are notably under selection to avoid insertional mutagenesis of host protein-coding genes. We describe an example of convergent evolution in the distantly related amoebozoan Dictyostelium discoideum and the yeast Saccharomyces cerevisiae, in which the D. discoideum retrotransposon DGLT-A and the yeast Ty3 element developed different mechanisms to facilitate position-specific integration at similar sites upstream of tRNA genes. Transcription of tRNA genes by RNA polymerase III requires the transcription factor complexes TFIIIB and TFIIIC. Whereas Ty3 recognizes tRNA genes mainly through interactions of its integrase with TFIIIB subunits, the DGLT-A-encoded ribonuclease H contacts TFIIIC subunit Tfc4 at an interface that covers tetratricopeptide repeats (TPRs) 7 and 8. A major function of this interface is to connect TFIIIC subcomplexes τA and τB and to facilitate TFIIIB assembly. During the initiation of tRNA gene transcription τB is displaced from τA, which transiently exposes the TPR 7/8 surface of Tfc4 on τA. We propose that the DGLT-A intasome uses this binding site to obtain access to genomic DNA for integration during tRNA gene transcription.


Asunto(s)
Dictyostelium/genética , Regulación de la Expresión Génica , ARN de Transferencia/genética , Retroelementos/genética , Saccharomyces cerevisiae/genética , Sitios de Unión/genética , Evolución Molecular , Mutagénesis Insercional/genética , ARN Polimerasa III/metabolismo , Factor de Transcripción TFIIIB/metabolismo , Factores de Transcripción TFIII/metabolismo
13.
Nucleic Acids Res ; 46(18): 9444-9455, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30053100

RESUMEN

Transcription of transfer RNA genes by RNA polymerase III (Pol III) is controlled by general factors, TFIIIB and TFIIIC, and a negative regulator, Maf1. Here we report the interplay between TFIIIC and Maf1 in controlling Pol III activity upon the physiological switch of yeast from fermentation to respiration. TFIIIC directly competes with Pol III for chromatin occupancy as demonstrated by inversely correlated tDNA binding. The association of TFIIIC with tDNA was stronger under unfavorable respiratory conditions and in the presence of Maf1. Induction of tDNA transcription by glucose-activated protein kinase A (PKA) was correlated with the down-regulation of TFIIIC occupancy on tDNA. The conditions that activate the PKA signaling pathway promoted the binding of TFIIIB subunits, Brf1 and Bdp1, with tDNA, but decreased their interaction with TFIIIC. Association of Brf1 and Bdp1 with TFIIIC was much stronger under repressive conditions, potentially restricting TFIIIB recruitment to tDNA and preventing Pol III recruitment. Altogether, we propose a model in which, depending on growth conditions, TFIIIC promotes activation or repression of tDNA transcription.


Asunto(s)
ARN de Transferencia/genética , Factores de Transcripción TFIII/fisiología , Transcripción Genética , Respiración de la Célula/genética , Fermentación/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
14.
Nucleic Acids Res ; 46(22): 11698-11711, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30247619

RESUMEN

tRNA genes are transcribed by RNA polymerase III (RNAPIII). During recent years it has become clear that RNAPIII activity is strictly regulated by the cell in response to environmental cues and the homeostatic status of the cell. However, the molecular mechanisms that control RNAPIII activity to regulate the amplitude of tDNA transcription in normally cycling cells are not well understood. Here, we show that tRNA levels fluctuate during the cell cycle and reveal an underlying molecular mechanism. The cyclin Clb5 recruits the cyclin dependent kinase Cdk1 to tRNA genes to boost tDNA transcription during late S phase. At tDNA genes, Cdk1 promotes the recruitment of TFIIIC, stimulates the interaction between TFIIIB and TFIIIC, and increases the dynamics of RNA polymerase III in vivo. Furthermore, we identified Bdp1 as a putative Cdk1 substrate in this process. Preventing Bdp1 phosphorylation prevented cell cycle-dependent recruitment of TFIIIC and abolished the cell cycle-dependent increase in tDNA transcription. Our findings demonstrate that under optimal growth conditions Cdk1 gates tRNA synthesis in S phase by regulating the RNAPIII machinery, revealing a direct link between the cell cycle and RNAPIII activity.


Asunto(s)
Proteína Quinasa CDC2/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Ciclo Celular/genética , ARN Polimerasa III/genética , ARN de Transferencia/genética , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Fosforilación , Unión Proteica , ARN Polimerasa III/metabolismo , ARN de Transferencia/metabolismo , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Factores de Transcripción TFIII/genética , Factores de Transcripción TFIII/metabolismo
15.
Nucleic Acids Res ; 46(3): 1157-1166, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29177422

RESUMEN

Rpc82 is a TFIIE-related subunit of the eukaryotic RNA polymerase III (pol III) complex. Rpc82 contains four winged-helix (WH) domains and a C-terminal coiled-coil domain. Structural resolution of the pol III complex indicated that Rpc82 anchors on the clamp domain of the pol III cleft to interact with the duplex DNA downstream of the transcription bubble. However, whether Rpc82 interacts with a transcription factor is still not known. Here, we report that a structurally disordered insertion in the third WH domain of Rpc82 is important for cell growth and in vitro transcription activity. Site-specific photo-crosslinking analysis indicated that the WH3 insertion interacts with the TFIIB-related transcription factor Brf1 within the pre-initiation complex (PIC). Moreover, crosslinking and hydroxyl radical probing analyses revealed Rpc82 interactions with the upstream DNA and the protrusion and wall domains of the pol III cleft. Our genetic and biochemical analyses thus provide new molecular insights into the function of Rpc82 in pol III transcription.


Asunto(s)
ADN de Hongos/química , ADN/química , Regulación Fúngica de la Expresión Génica , ARN Polimerasa III/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIIB/química , Iniciación de la Transcripción Genética , Secuencia de Aminoácidos , Secuencia de Bases , Benzofenonas/química , Sitios de Unión , Clonación Molecular , Reactivos de Enlaces Cruzados/química , ADN/genética , ADN/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Radical Hidroxilo/química , Modelos Moleculares , Fenilalanina/análogos & derivados , Fenilalanina/química , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo
16.
J Cell Physiol ; 234(8): 13843-13850, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30618167

RESUMEN

Lung cancer belongs to a leading popular and malignant cancer around the world. However, the root mechanism underlying lung cancer progression remains unclear. Recently, long noncoding RNA (lncRNA) has been identified as important for tumorigenesis. LncRNA MNX1-AS1 is proven to regulate colon adenocarcinoma, cervical cancer, glioblastoma, and ovarian cancer. Whether MNX1-AS1 participates in lung cancer needs investigation. In our research, we found that MNX1-AS1 was dramatically upregulated in lung cancer. MNX1-AS1 upregulation indicated poor prognosis in lung cancer patients. Functionally, MNX1-AS1 promoted lung cancer progression through regulating proliferation, migration, and invasion. Mechanistically, MNX1-AS1 was found to locate in the cytoplasm and interact with miR-527. Through inhibiting miR-527 availability, MNX1-AS1 facilitated BRF2 expression. Restoration of BRF2 rescued defects of proliferation, migration, and invasion caused by MNX1-AS1 knockdown. Taken together, our study found a novel signaling pathway, namely MNX1-AS1/miR-527/BRF2 axis, involved in lung cancer progression.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Transducción de Señal , Factor de Transcripción TFIIIB/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica , ARN Largo no Codificante/genética
17.
Surg Today ; 49(2): 158-169, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30182305

RESUMEN

PURPOSE: Radical lymph-node dissection surgery in patients with cN0 middle thoracic esophageal squamous cell carcinoma (ESCC) remains controversial. We sought a novel biomarker that could be used for decision-making in relation to radical lymph-node dissection. METHODS: One hundred and nineteen patients with cN0 middle thoracic ESCC undergoing three-field lymph-node dissection (3FLND) or two-field lymph-node dissection (Ivor Lewis) esophagectomy were reviewed. A survival analysis, and Chi-square and parametric tests were performed. RESULTS: A Cox regression analysis revealed that the expression of BRF2 was an independent prognostic factor for overall survival (P = 0.014) and progression-free survival (P = 0.014). The survival of patients who underwent 3FLND was better than that of patients who underwent Ivor Lewis esophagectomy in the BRF2 overexpression group (P = 0.002), but not in the BRF2 nonoverexpression group (P = 0.386). The risk of lymph-node recurrence and the number of recurrent lymph nodes in patients with the overexpression of BRF2 were increased in the Ivor Lewis group in comparison to the 3FLND group (P = 0.01 and P < 0.001). The risk of cervical and superior mediastinal lymph-node recurrence was positively correlated with the overexpression of BRF2 (P = 0.027). Furthermore, in the Ivor Lewis group, a significant correlation was found between the risk of lymph-node recurrence or the number of recurrent lymph nodes and the expression of BRF2 (P = 0.002 and P = 0.004), but not in the 3FLND group (P = 0.193 and P = 0.694). CONCLUSIONS: 3FLND generated better survival outcomes and reduced the rate of lymph-node recurrence in comparison to Ivor Lewis in patients with the overexpression of BRF2. BRF2 can be used as an indicator for radical lymph-node dissection surgery in cN0 ESCC patients.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/cirugía , Toma de Decisiones Clínicas/métodos , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/cirugía , Esofagectomía/métodos , Expresión Génica , Escisión del Ganglio Linfático/métodos , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Anciano , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/prevención & control , Estadificación de Neoplasias , Modelos de Riesgos Proporcionales , Resultado del Tratamiento
18.
Genome Res ; 22(4): 681-92, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22287102

RESUMEN

Although retroviruses are relatively promiscuous in choice of integration sites, retrotransposons can display marked integration specificity. In yeast and slime mold, some retrotransposons are associated with tRNA genes (tDNAs). In the Saccharomyces cerevisiae genome, the long terminal repeat retrotransposon Ty3 is found at RNA polymerase III (Pol III) transcription start sites of tDNAs. Ty1, 2, and 4 elements also cluster in the upstream regions of these genes. To determine the extent to which other Pol III-transcribed genes serve as genomic targets for Ty3, a set of 10,000 Ty3 genomic retrotranspositions were mapped using high-throughput DNA sequencing. Integrations occurred at all known tDNAs, two tDNA relics (iYGR033c and ZOD1), and six non-tDNA, Pol III-transcribed types of genes (RDN5, SNR6, SNR52, RPR1, RNA170, and SCR1). Previous work in vitro demonstrated that the Pol III transcription factor (TF) IIIB is important for Ty3 targeting. However, seven loci that bind the TFIIIB loader, TFIIIC, were not targeted, underscoring the unexplained absence of TFIIIB at those sites. Ty3 integrations also occurred in two open reading frames not previously associated with Pol III transcription, suggesting the existence of a small number of additional sites in the yeast genome that interact with Pol III transcription complexes.


Asunto(s)
ADN Polimerasa III/genética , Mutagénesis Insercional , Retroelementos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Sitios de Unión/genética , ADN Polimerasa III/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética
19.
BMC Cancer ; 15: 905, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26573593

RESUMEN

BACKGROUND: BRF2 is a transcription factor required for synthesis of a small group of non-coding RNAs by RNA polymerase III. Overexpression of BRF2 can transform human mammary epithelial cells. In both breast and lung cancers, the BRF2 gene is amplified and overexpressed and may serve as an oncogenic driver. Furthermore, elevated BRF2 can be independently prognostic of unfavorable survival. Dietary soy isoflavones increase metastasis to lungs in a model of breast cancer and a recent study reported significantly increased cell proliferation in breast cancer patients who used soy supplementation. The soy isoflavone daidzein is a major food-derived phytoestrogen that is structurally similar to estrogen. The putative estrogenic effect of soy raises concern that high consumption of soy foods by breast cancer patients may increase tumor growth. METHODS: Expression of BRF2 RNA and protein was assayed in ER-positive or -negative human breast cancer cells after exposure to daidzein. We also measured mRNA stability, promoter methylation and response to the demethylating agent 5-azacytidine. In addition, expression was compared between mice fed diets enriched or deprived of isoflavones. RESULTS: We demonstrate that the soy isoflavone daidzein specifically stimulates expression of BRF2 in ER-positive breast cancer cells, as well as the related factor BRF1. Induction is accompanied by increased levels of non-coding RNAs that are regulated by BRF2 and BRF1. Daidzein treatment stabilizes BRF2 and BRF1 mRNAs and selectively decreases methylation of the BRF2 promoter. Functional significance of demethylation is supported by induction of BRF2 by the methyltransferase inhibitor 5-azacytidine. None of these effects are observed in an ER-negative breast cancer line, when tested in parallel with ER-positive breast cancer cells. In vivo relevance is suggested by the significantly elevated levels of BRF2 mRNA detected in female mice fed a high-isoflavone commercial diet. In striking contrast, BRF2 and BRF1 mRNA levels are suppressed in matched male mice fed the same isoflavone-enriched diet. CONCLUSIONS: The BRF2 gene that is implicated in cancer can be induced in human breast cancer cells by the isoflavone daidzein, through promoter demethylation and/or mRNA stabilization. Dietary isoflavones may also induce BRF2 in female mice, whereas the converse occurs in males.


Asunto(s)
Neoplasias de la Mama/metabolismo , Isoflavonas/farmacología , Proteínas de Neoplasias/metabolismo , Fitoestrógenos/farmacología , Factor de Transcripción TFIIIB/metabolismo , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Metilación de ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Regiones Promotoras Genéticas/efectos de los fármacos , Proto-Oncogenes Mas , ARN Mensajero/metabolismo , ARN Neoplásico/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIIIB/genética
20.
Nucleic Acids Res ; 41(17): 8135-43, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23856458

RESUMEN

TFIIIB and TFIIIC are multi-subunit factors required for transcription by RNA polymerase III. We present a genome-wide high-resolution footprint map of TFIIIB-TFIIIC complexes in Saccharomyces cerevisiae, obtained by paired-end sequencing of micrococcal nuclease-resistant DNA. On tRNA genes, TFIIIB and TFIIIC form stable complexes with the same distinctive occupancy pattern but in mirror image, termed 'bootprints'. Global analysis reveals that the TFIIIB-TFIIIC transcription complex exhibits remarkable structural elasticity: tRNA genes vary significantly in length but remain protected by TFIIIC. Introns, when present, are markedly less protected. The RNA polymerase III transcription terminator is flexibly accommodated within the transcription complex and, unexpectedly, plays a major structural role by delimiting its 3'-boundary. The ETC sites, where TFIIIC binds without TFIIIB, exhibit different bootprints, suggesting that TFIIIC forms complexes involving other factors. We confirm six ETC sites and report a new site (ETC10). Surprisingly, TFIIIC, but not TFIIIB, interacts with some centromeric nucleosomes, suggesting that interactions between TFIIIC and the centromere may be important in the 3D organization of the nucleus.


Asunto(s)
ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIIB/metabolismo , Factores de Transcripción TFIII/metabolismo , Sitios de Unión , Centrómero/metabolismo , Cromatina/química , Huella de ADN/métodos , Nucleosomas/metabolismo , Saccharomyces cerevisiae/enzimología , Regiones Terminadoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA