RESUMEN
STING (stimulator of interferon genes) exerts protective cellular responses to viral infection via induction of interferon production and autophagy. Here, we report the role of STING in modulating the immune responses toward fungal infection. Upon Candida albicans stimulation, STING transited alongside the endoplasmic reticulum (ER) to the phagosomes. In phagosomes, STING directly bound with Src via the N-terminal 18 amino acids of STING, and this binding prevented Src from recruiting and phosphorylating Syk. Consistently, Syk-associated signaling and production of pro-inflammatory cytokines and chemokines were increased in mouse BMDCs (bone-marrow-derived dendritic cells) lacking STING with fungal treatment. STING deficiency improved anti-fungal immunity in systemic C. albicans infection. Importantly, administration of the N-terminal 18-aa (amino acid) peptide of STING improved host outcomes in disseminated fungal infection. Overall, our study identifies a previously unrecognized function of STING in negatively regulating anti-fungal immune responses and offers a potential therapeutic strategy for controlling C. albicans infection.
Asunto(s)
Nucleótidos , Transducción de Señal , Animales , Ratones , Citocinas/metabolismo , Inmunidad Innata , Interferones/metabolismo , Nucleótidos/metabolismo , Fagosomas/metabolismo , Fagosomas/microbiologíaRESUMEN
Phagocytosis is the process by which myeloid phagocytes bind to and internalize potentially dangerous microorganisms1. During phagocytosis, innate immune receptors and associated signalling proteins are localized to the maturing phagosome compartment, forming an immune information processing hub brimming with microorganism-sensing features2-8. Here we developed proximity labelling of phagosomal contents (PhagoPL) to identify proteins localizing to phagosomes containing model yeast and bacteria. By comparing the protein composition of phagosomes containing evolutionarily and biochemically distinct microorganisms, we unexpectedly identified programmed death-ligand 1 (PD-L1) as a protein that specifically enriches in phagosomes containing yeast. We found that PD-L1 directly binds to yeast upon processing in phagosomes. By surface display library screening, we identified the ribosomal protein Rpl20b as a fungal protein ligand for PD-L1. Using an auxin-inducible depletion system, we found that detection of Rpl20b by macrophages cross-regulates production of distinct cytokines including interleukin-10 (IL-10) induced by the activation of other innate immune receptors. Thus, this study establishes PhagoPL as a useful approach to quantifying the collection of proteins enriched in phagosomes during host-microorganism interactions, exemplified by identifying PD-L1 as a receptor that binds to fungi.
Asunto(s)
Antígeno B7-H1 , Proteínas Fúngicas , Fagosomas , Proteínas Ribosómicas , Saccharomyces cerevisiae , Animales , Femenino , Humanos , Masculino , Ratones , Antígeno B7-H1/metabolismo , Escherichia coli/metabolismo , Proteínas Fúngicas/metabolismo , Interacciones Microbiota-Huesped , Inmunidad Innata , Interleucina-10/metabolismo , Ligandos , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Ratones Endogámicos BALB C , Fagocitosis , Fagosomas/química , Fagosomas/metabolismo , Fagosomas/microbiología , Unión Proteica , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Staphylococcus aureus/metabolismoRESUMEN
Mitochondria need to be juxtaposed to phagosomes for the synergistic production of ample reactive oxygen species (ROS) in phagocytes to kill pathogens. However, how phagosomes transmit signals to recruit mitochondria has remained unclear. Here we found that the kinases Mst1 and Mst2 functioned to control ROS production by regulating mitochondrial trafficking and mitochondrion-phagosome juxtaposition. Mst1 and Mst2 activated the GTPase Rac to promote Toll-like receptor (TLR)-triggered assembly of the TRAF6-ECSIT complex that is required for the recruitment of mitochondria to phagosomes. Inactive forms of Rac, including the human Rac2(D57N) mutant, disrupted the TRAF6-ECSIT complex by sequestering TRAF6 and substantially diminished ROS production and enhanced susceptibility to bacterial infection. Our findings demonstrate that the TLR-Mst1-Mst2-Rac signaling axis is critical for effective phagosome-mitochondrion function and bactericidal activity.
Asunto(s)
Fagocitos/inmunología , Fagocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Infecciones Bacterianas/etiología , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Actividad Bactericida de la Sangre/inmunología , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antígenos de Histocompatibilidad Menor , Mitocondrias/inmunología , Mitocondrias/metabolismo , Mitocondrias/microbiología , Fagocitos/microbiología , Fagosomas/inmunología , Fagosomas/metabolismo , Fagosomas/microbiología , Proteína Quinasa C-alfa/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Sepsis/etiología , Sepsis/inmunología , Sepsis/metabolismo , Serina-Treonina Quinasa 3 , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Receptores Toll-Like/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Inhibidor beta de Disociación del Nucleótido Guanina rho/metabolismoRESUMEN
The DNA uptake competence (Com) system of the intracellular bacterial pathogen Listeria monocytogenes is considered nonfunctional. There are no known conditions for DNA transformation, and the Com master activator gene, comK, is interrupted by a temperate prophage. Here, we show that the L. monocytogenes Com system is required during infection to promote bacterial escape from macrophage phagosomes in a manner that is independent of DNA uptake. Further, we find that regulation of the Com system relies on the formation of a functional comK gene via prophage excision. Prophage excision is specifically induced during intracellular growth, primarily within phagosomes, yet, in contrast to classic prophage induction, progeny virions are not produced. This study presents the characterization of an active prophage that serves as a genetic switch to modulate the virulence of its bacterial host in the course of infection.
Asunto(s)
Proteínas Bacterianas/genética , Bacteriófagos/fisiología , Listeria/patogenicidad , Listeria/virología , Macrófagos/inmunología , Macrófagos/microbiología , Fagosomas/microbiología , Activación Viral , Animales , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Células Cultivadas , Femenino , Listeria/genética , Listeria/inmunología , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Alineación de SecuenciaRESUMEN
Eukaryotic cells sterilize the cytosol by using autophagy to route invading bacterial pathogens to the lysosome. During macrophage infection with Mycobacterium tuberculosis, a vacuolar pathogen, exogenous induction of autophagy can limit replication, but the mechanism of autophagy targeting and its role in natural infection remain unclear. Here we show that phagosomal permeabilization mediated by the bacterial ESX-1 secretion system allows cytosolic components of the ubiquitin-mediated autophagy pathway access to phagosomal M. tuberculosis. Recognition of extracelluar bacterial DNA by the STING-dependent cytosolic pathway is required for marking bacteria with ubiquitin, and delivery of bacilli to autophagosomes requires the ubiquitin-autophagy receptors p62 and NDP52 and the DNA-responsive kinase TBK1. Remarkably, mice with monocytes incapable of delivering bacilli to the autophagy pathway are extremely susceptible to infection. Our results reveal an unexpected link between DNA sensing, innate immunity, and autophagy and indicate a major role for this autophagy pathway in resistance to M. tuberculosis infection.
Asunto(s)
Autofagia , ADN Bacteriano/inmunología , Inmunidad Innata , Macrófagos/inmunología , Macrófagos/microbiología , Mycobacterium tuberculosis/fisiología , Animales , Proteína 5 Relacionada con la Autofagia , Citosol/microbiología , Desoxirribonucleasas/metabolismo , Lisosomas/microbiología , Macrófagos/citología , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mycobacterium tuberculosis/genética , Fagosomas/microbiología , Ubiquitina/metabolismo , UbiquitinaciónRESUMEN
The neutrophil phagosome is one of the most hostile environments that bacteria must face and overcome if they are to succeed as pathogens. Targeting bacterial defense mechanisms should lead to new therapies that assist neutrophils to kill pathogens, but this has not yet come to fruition. One of the limiting factors in this effort has been our incomplete knowledge of the complex biochemistry that occurs within the rapidly changing environment of the phagosome. The same compartmentalization that protects host tissue also limits our ability to measure events within the phagosome. In this review, we highlight the limitations in our knowledge, and how the contribution of bacteria to the phagosomal environment is often ignored. There appears to be significant heterogeneity among phagosomes, and it is important to determine whether survivors have more efficient defenses or whether they are ingested into less threatening environments than other bacteria. As part of these efforts, we discuss how monitoring or recovering bacteria from phagosomes can provide insight into the conditions they have faced. We also encourage the use of unbiased screening approaches to identify bacterial genes that are essential for survival inside neutrophil phagosomes.
Asunto(s)
Neutrófilos , Fagosomas , Humanos , Fagosomas/microbiología , Neutrófilos/microbiología , Bacterias , FagocitosisRESUMEN
Legionella pneumophila strains harboring wild-type rpsL such as Lp02rpsLWT cannot replicate in mouse bone marrow-derived macrophages (BMDMs) due to induction of extensive lysosome damage and apoptosis. The bacterial factor directly responsible for inducing such cell death and the host factor involved in initiating the signaling cascade that leads to lysosome damage remain unknown. Similarly, host factors that may alleviate cell death induced by these bacterial strains have not yet been investigated. Using a genome-wide CRISPR/Cas9 screening, we identified Hmg20a and Nol9 as host factors important for restricting strain Lp02rpsLWT in BMDMs. Depletion of Hmg20a protects macrophages from infection-induced lysosomal damage and apoptosis, allowing productive bacterial replication. The restriction imposed by Hmg20a was mediated by repressing the expression of several endo-lysosomal proteins, including the small GTPase Rab7. We found that SUMOylated Rab7 is recruited to the bacterial phagosome via SulF, a Dot/Icm effector that harbors a SUMO-interacting motif (SIM). Moreover, overexpression of Rab7 rescues intracellular growth of strain Lp02rpsLWT in BMDMs. Our results establish that L. pneumophila exploits the lysosomal network for the biogenesis of its phagosome in BMDMs.
Asunto(s)
Legionella pneumophila , Lisosomas , Macrófagos , Fagosomas , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Legionella pneumophila/metabolismo , Legionella pneumophila/genética , Animales , Proteínas de Unión al GTP rab/metabolismo , Ratones , Fagosomas/metabolismo , Fagosomas/microbiología , Lisosomas/metabolismo , Lisosomas/microbiología , Macrófagos/microbiología , Macrófagos/metabolismo , Enfermedad de los Legionarios/metabolismo , Enfermedad de los Legionarios/microbiología , Sumoilación , Ratones Endogámicos C57BL , Endosomas/metabolismo , Endosomas/microbiologíaRESUMEN
Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates many functions of these organelles that allow phagosomes to participate in processes that are essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3 inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3 inflammasome and caspase-1 in host defense.
Asunto(s)
Proteínas Portadoras/inmunología , Caspasa 1/inmunología , Inflamasomas/inmunología , Glicoproteínas de Membrana/inmunología , NADPH Oxidasas/inmunología , Fagosomas/inmunología , Animales , Proteínas Portadoras/metabolismo , Caspasa 1/metabolismo , Células Cultivadas , Activación Enzimática/inmunología , Citometría de Flujo , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , Concentración de Iones de Hidrógeno , Immunoblotting , Inflamasomas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Fagocitosis/inmunología , Fagosomas/metabolismo , Fagosomas/microbiología , Fagosomas/ultraestructura , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/inmunología , Staphylococcus aureus/fisiologíaRESUMEN
Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.
Asunto(s)
Legionella pneumophila , Fagosomas , Proteínas SNARE , Ubiquitinación , Proteínas de Unión al GTP rab , Legionella pneumophila/metabolismo , Humanos , Fagosomas/metabolismo , Fagosomas/microbiología , Proteínas SNARE/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Proteínas Qa-SNARE/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Vacuolas/metabolismo , Vacuolas/microbiología , Células HEK293 , Ratones , Proteínas de Unión a GTP rab7/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Retículo Endoplásmico/metabolismoRESUMEN
SignificanceTuberculosis (TB), an ancient disease of humanity, continues to be a major cause of worldwide death. The causative agent of TB, Mycobacterium tuberculosis, and its close pathogenic relative Mycobacterium marinum, initially infect, evade, and exploit macrophages, a major host defense against invading pathogens. Within macrophages, mycobacteria reside within host membrane-bound compartments called phagosomes. Mycobacterium-induced damage of the phagosomal membranes is integral to pathogenesis, and this activity has been attributed to the specialized mycobacterial secretion system ESX-1, and particularly to ESAT-6, its major secreted protein. Here, we show that the integrity of the unstructured ESAT-6 C terminus is required for macrophage phagosomal damage, granuloma formation, and virulence.
Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Mycobacterium marinum , Mycobacterium tuberculosis , Fagosomas , Tuberculoma , Sistemas de Secreción Tipo VII , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Mycobacterium marinum/metabolismo , Mycobacterium marinum/patogenicidad , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Fagosomas/metabolismo , Fagosomas/microbiología , Conformación Proteica , Tuberculoma/microbiología , Sistemas de Secreción Tipo VII/metabolismo , VirulenciaRESUMEN
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that survives and grows in macrophages. A mechanism used by Mtb to achieve intracellular survival is to secrete effector molecules that arrest the normal process of phagosome maturation. Through phagosome maturation arrest (PMA), Mtb remains in an early phagosome and avoids delivery to degradative phagolysosomes. One PMA effector of Mtb is the secreted SapM phosphatase. Because the host target of SapM, phosphatidylinositol-3-phosphate (PI3P), is located on the cytosolic face of the phagosome, SapM needs to not only be released by the mycobacteria but also travel out of the phagosome to carry out its function. To date, the only mechanism known for Mtb molecules to leave the phagosome is phagosome permeabilization by the ESX-1 secretion system. To understand this step of SapM function in PMA, we generated identical in-frame sapM mutants in both the attenuated Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine strain, which lacks the ESX-1 system, and Mtb. Characterization of these mutants demonstrated that SapM is required for PMA in BCG and Mtb. Further, by establishing a role for SapM in PMA in BCG, and subsequently in a Mtb mutant lacking the ESX-1 system, we demonstrated that the role of SapM does not require ESX-1. We further determined that ESX-2 or ESX-4 is also not required for SapM to function in PMA. These results indicate that SapM is a secreted effector of PMA in both BCG and Mtb, and that it can function independent of the known mechanism for Mtb molecules to leave the phagosome.
Asunto(s)
Proteínas Bacterianas , Mycobacterium bovis , Mycobacterium tuberculosis , Fagosomas , Fagosomas/microbiología , Fagosomas/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Macrófagos/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Humanos , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Animales , RatonesRESUMEN
The human-specific bacterial pathogen group A Streptococcus (GAS) is a significant cause of morbidity and mortality. Macrophages are important to control GAS infection, but previous data indicate that GAS can persist in macrophages. In this study, we detail the molecular mechanisms by which GAS survives in THP-1 macrophages. Our fluorescence microscopy studies demonstrate that GAS is readily phagocytosed by macrophages, but persists within phagolysosomes. These phagolysosomes are not acidified, which is in agreement with our findings that GAS cannot survive in low pH environments. We find that the secreted pore-forming toxin Streptolysin O (SLO) perforates the phagolysosomal membrane, allowing leakage of not only protons but also large proteins including the lysosomal protease cathepsin B. Additionally, GAS recruits CD63/LAMP-3, which may contribute to lysosomal permeabilization, especially in the absence of SLO. Thus, although GAS does not inhibit fusion of the lysosome with the phagosome, it has multiple mechanisms to prevent proper phagolysosome function, allowing for persistence of the bacteria within the macrophage. This has important implications for not only the initial response but also the overall functionality of the macrophages, which may lead to the resulting pathologies in GAS infection. Our data suggest that therapies aimed at improving macrophage function may positively impact patient outcomes in GAS infection.
Asunto(s)
Proteínas Bacterianas , Lisosomas , Macrófagos , Streptococcus pyogenes , Estreptolisinas , Streptococcus pyogenes/inmunología , Humanos , Macrófagos/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Lisosomas/metabolismo , Lisosomas/microbiología , Estreptolisinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fagosomas/microbiología , Fagosomas/metabolismo , Células THP-1 , Fagocitosis , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/metabolismo , Catepsina B/metabolismo , Concentración de Iones de HidrógenoRESUMEN
The fungus Cryptococcus neoformans is a major human pathogen with a remarkable intracellular survival strategy that includes exiting macrophages through non-lytic exocytosis (Vomocytosis) and transferring between macrophages (Dragotcytosis) by a mechanism that involves sequential events of non-lytic exocytosis and phagocytosis. Vomocytosis and Dragotcytosis are fungal driven processes, but their triggers are not understood. We hypothesized that the dynamics of Dragotcytosis could inherit the stochasticity of phagolysosome acidification and that Dragotcytosis was triggered by fungal cell stress. Consistent with this view, fungal cells involved in Dragotcytosis reside in phagolysosomes characterized by low pH and/or high oxidative stress. Using fluorescent microscopy, qPCR, live cell video microscopy, and fungal growth assays we found that the that mitigating pH or oxidative stress reduced Dragotcytosis frequency, whereas ROS susceptible mutants of C. neoformans underwent Dragotcytosis more frequently. Dragotcytosis initiation was linked to phagolysosomal pH, oxidative stresses, and macrophage polarization state. Dragotcytosis manifested stochastic dynamics thus paralleling the dynamics of phagosomal acidification, which correlated with the inhospitality of phagolysosomes in differently polarized macrophages. Hence, randomness in phagosomal acidification randomly created a population of inhospitable phagosomes where fungal cell stress triggered stochastic C. neoformans non-lytic exocytosis dynamics to escape a non-permissive intracellular macrophage environment.
Asunto(s)
Antiinfecciosos , Criptococosis , Cryptococcus neoformans , Criptococosis/microbiología , Humanos , Concentración de Iones de Hidrógeno , Macrófagos/microbiología , Fagocitosis , Fagosomas/microbiologíaRESUMEN
Histoplasma capsulatum yeasts reside and proliferate within the macrophage phagosome during infection. This nutrient-depleted phagosomal environment imposes challenges to Histoplasma yeasts for nutrition acquisition. Histoplasma yeasts require all 20 amino acids, which can be formed by de novo biosynthesis and/or acquired directly from the phagosomal environment. We investigated how Histoplasma obtains aromatic amino acids (i.e., phenylalanine, tyrosine, and tryptophan) within the phagosome during infection of macrophages. Depletion of key enzymes of the phenylalanine or tyrosine biosynthetic pathway neither impaired Histoplasma's ability to proliferate within macrophages nor resulted in attenuated virulence in vivo. However, loss of tryptophan biosynthesis resulted in reduced growth within macrophages and severely attenuated virulence in vivo. Together, these results indicate that phenylalanine and tyrosine, but not tryptophan, are available to Histoplasma within the macrophage phagosome. The herbicide glyphosate, which targets 5-enolpyruvylshikimate-3-phosphate synthase of the aromatic amino acid biosynthetic pathway, inhibited Histoplasma yeast growth, and this growth inhibition was partially reversed by aromatic amino acid supplementation or overexpression of ARO1. These results suggest that the aromatic amino acid biosynthetic pathway is a candidate drug target to develop novel antifungal therapeutics.
Asunto(s)
Histoplasma , Histoplasmosis , Macrófagos/microbiología , Fagosomas/microbiología , Tirosina/metabolismo , Aminoácidos Aromáticos/metabolismo , Histoplasmosis/metabolismoRESUMEN
The high mortality rate associated with Listeria monocytogenes can be attributed to its ability to invade the body systemically and to activate inflammasomes. Both of these processes are facilitated by expressing a major virulence factor known as listeriolysin O, a 56 kDa pore-forming protein encoded by the hly gene. Listeriolysin O plays a crucial role in the pathogenesis of the bacterium by facilitating the escape of the pathogen from the phagosome into the cytosol. This process is essential for the successful establishment of infection. In addition, listeriolysin O is known as an immunomodulator that activates host signal transduction. In addition to listeriolysin O, Listeria expresses a variety of bacterial ligands, such as lipoteichoic acid, nucleotide, and flagellin, that are recognized by host intracellular pattern-recognition receptors including Nod-like receptors, AIM2-like receptors, and RIG-I-like receptors. This review introduces intracellular recognition of Listeria monocytogenes since recent studies have revealed that the activation of inflammasome exacerbates Gram-positive bacteria infection.
Asunto(s)
Listeria monocytogenes , Listeriosis , Humanos , Inflamasomas/metabolismo , Proteínas Hemolisinas/genética , Fagosomas/metabolismo , Fagosomas/microbiología , Fagosomas/patología , Citosol , Factores de Virulencia/metabolismoRESUMEN
Polyphosphate is a linear chain of phosphate residues and is present in organisms ranging from bacteria to humans. Pathogens such as Mycobacterium tuberculosis accumulate polyphosphate, and reduced expression of the polyphosphate kinase that synthesizes polyphosphate decreases their survival. How polyphosphate potentiates pathogenicity is poorly understood. Escherichia coli K-12 do not accumulate detectable levels of extracellular polyphosphate and have poor survival after phagocytosis by Dictyostelium discoideum or human macrophages. In contrast, Mycobacterium smegmatis and Mycobacterium tuberculosis accumulate detectable levels of extracellular polyphosphate, and have relatively better survival after phagocytosis by D. discoideum or macrophages. Adding extracellular polyphosphate increased E. coli survival after phagocytosis by D. discoideum and macrophages. Reducing expression of polyphosphate kinase 1 in M. smegmatis reduced extracellular polyphosphate and reduced survival in D. discoideum and macrophages, and this was reversed by the addition of extracellular polyphosphate. Conversely, treatment of D. discoideum and macrophages with recombinant yeast exopolyphosphatase reduced the survival of phagocytosed M. smegmatis or M. tuberculosisD. discoideum cells lacking the putative polyphosphate receptor GrlD had reduced sensitivity to polyphosphate and, compared to wild-type cells, showed increased killing of phagocytosed E. coli and M. smegmatis Polyphosphate inhibited phagosome acidification and lysosome activity in D. discoideum and macrophages and reduced early endosomal markers in macrophages. Together, these results suggest that bacterial polyphosphate potentiates pathogenicity by acting as an extracellular signal that inhibits phagosome maturation.
Asunto(s)
Bacterias/patogenicidad , Dictyostelium/microbiología , Macrófagos/microbiología , Fagocitosis , Polifosfatos/metabolismo , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Bacterias/metabolismo , Células Cultivadas , Dictyostelium/citología , Dictyostelium/metabolismo , Voluntarios Sanos , Humanos , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Fagosomas/química , Fagosomas/metabolismo , Fagosomas/microbiología , Cultivo Primario de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Immune cells degrade internalized pathogens in vesicle compartments called phagosomes. Many intracellular bacteria induce homotypic phagosome fusion to survive in host cells, but the fusion interaction between phagosomes and its consequence for phagosome function have scarcely been studied. Here, we characterize homotypic fusion between phagosomes in macrophages and identify how such interactions impact the degradative capacity of phagosomes. By developing a series of particle sensors for measuring biochemical changes of single phagosomes, we show that phagosomes undergo stable fusion, transient "kiss-and-run" fusion, or both in succession. Super-resolution three-dimensional fluorescence microscopy revealed that stably fused phagosomes are connected by membrane "necks" with submicron-sized fusion pores. Furthermore, we demonstrate that, after stable fusion, phagosomes have leaky membranes and thereby impaired degradative functions. Our findings, based on phagosomes that contain synthetic particles, illustrate that homotypic fusion is not exclusive to phagosomes that encapsulate pathogens, as previously believed. The physical process of homotypic fusion is alone sufficient to perturb the degradative functions of phagosomes.
Asunto(s)
Fagocitosis , Fagosomas , Lisosomas/metabolismo , Macrófagos/metabolismo , Fusión de Membrana , Fagosomas/metabolismo , Fagosomas/microbiologíaRESUMEN
Phagocytes ingest, kill and degrade invading microbes in a process called phagocytosis. LC3-associated phagocytosis (LAP) combines the molecular machinery of phagocytosis with that of autophagy, the cellular pathway for ingestion of cytoplasmic components, resulting in the eponymous association of 'microtubule-associated proteins 1 A/1B light chain 3' (LC3) with the phagosomal membrane. The LC3-decorated phagosomes, or LAPosomes, show enhanced fusion with lysosomes resulting in enhanced killing and degradation of contained pathogens. Thus, LAP is a particularly microbicidal pathway. In this review, we discuss the molecular mechanisms involved in induction and execution of LAP and its crucial role in antimicrobial immunity against bacteria, fungi and parasites. As LAP has only recently been defined, we also point out the key open questions that remain to be answered.
Asunto(s)
Proteínas Asociadas a Microtúbulos/inmunología , Fagocitosis/inmunología , Fagosomas/inmunología , Animales , Humanos , Lisosomas/inmunología , Fagosomas/microbiologíaRESUMEN
Francisella tularensis is a zoonotic, facultative intracellular bacterial pathogen that replicates in a variety of cell types during infection. Following entry into the cell and phagosome escape, the bacterium replicates rapidly in the cytoplasm. F. tularensis intracellular growth depends on the availability of metabolizable essential nutrients to support replication. However, the mechanism by which metabolizable nutrients become available to the bacterium in the intracellular environment is not fully understood. We found that F. tularensis-infected cells had significantly smaller and fewer lipid droplets than uninfected cells. Inhibition of triacylglycerol degradation significantly reduced bacterial growth, whereas inhibition of triacylglycerol formation did not reduce bacterial growth, suggesting that triacylglycerols sequestered within lipid droplets are important nutrient sources for F. tularensis. We found that F. tularensis-infected cells had increased activation of lipolysis and the upstream regulatory protein AMP protein kinase (AMPK). These data suggest that F. tularensis exploits AMPK activation and lipid metabolism to use host-derived nutrients. Finally, we found that AMPK activation is correlated with an increased bacterial burden, which suggests that it is a host-mediated response to nutrient starvation that results from increased bacterial replication. Altogether, we conclude that F. tularensis exploits AMPK activation to access nutrients sequestered in lipid droplets, specifically glycerol and fatty acids, to undergo efficient bacterial replication and cause successful infection.
Asunto(s)
Francisella tularensis , Tularemia , Proteínas Quinasas Activadas por AMP/metabolismo , Humanos , Lipólisis , Nutrientes , Fagosomas/microbiología , Triglicéridos/metabolismo , Tularemia/microbiologíaRESUMEN
The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane-oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations.