Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.371
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 587(7832): 98-102, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116305

RESUMEN

Adipose tissue is usually classified on the basis of its function as white, brown or beige (brite)1. It is an important regulator of systemic metabolism, as shown by the fact that dysfunctional adipose tissue in obesity leads to a variety of secondary metabolic complications2,3. In addition, adipose tissue functions as a signalling hub that regulates systemic metabolism through paracrine and endocrine signals4. Here we use single-nucleus RNA-sequencing (snRNA-seq) analysis in mice and humans to characterize adipocyte heterogeneity. We identify a rare subpopulation of adipocytes in mice that increases in abundance at higher temperatures, and we show that this subpopulation regulates the activity of neighbouring adipocytes through acetate-mediated modulation of their thermogenic capacity. Human adipose tissue contains higher numbers of cells of this subpopulation, which could explain the lower thermogenic activity of human compared to mouse adipose tissue and suggests that targeting this pathway could be used to restore thermogenic activity.


Asunto(s)
Adipocitos/metabolismo , Núcleo Celular/genética , RNA-Seq , Análisis de la Célula Individual , Termogénesis/genética , Acetatos/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Adulto , Anciano , Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Animales , Separación Celular , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Metabolismo Energético , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Comunicación Paracrina , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Adulto Joven
2.
Proc Natl Acad Sci U S A ; 120(36): e2302342120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639589

RESUMEN

Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are "nonlethal," in that the inhibition of the enzymes' activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).


Asunto(s)
Aldehído Deshidrogenasa , Anticuerpos , Humanos , Azidas , Carcinogénesis , Química Clic , Familia de Aldehído Deshidrogenasa 1 , Retinal-Deshidrogenasa
3.
EMBO J ; 40(20): e107680, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34532864

RESUMEN

Cell plasticity is a crucial hallmark leading to cancer metastasis. Upregulation of Rho/ROCK pathway drives actomyosin contractility, protrusive forces, and contributes to the occurrence of highly invasive amoeboid cells in tumors. Cancer stem cells are similarly associated with metastasis, but how these populations arise in tumors is not fully understood. Here, we show that the novel oncogene RASSF1C drives mesenchymal-to-amoeboid transition and stem cell attributes in breast cancer cells. Mechanistically, RASSF1C activates Rho/ROCK via SRC-mediated RhoGDI inhibition, resulting in generation of actomyosin contractility. Moreover, we demonstrate that RASSF1C-induced amoeboid cells display increased expression of cancer stem-like markers such as CD133, ALDH1, and Nanog, and are accompanied by higher invasive potential in vitro and in vivo. Further, RASSF1C-induced amoeboid cells employ extracellular vesicles to transfer the invasive phenotype to target cells and tissue. Importantly, the underlying RASSF1C-driven biological processes concur to explain clinical data: namely, methylation of the RASSF1C promoter correlates with better survival in early-stage breast cancer patients. Therefore, we propose the use of RASSF1 gene promoter methylation status as a biomarker for patient stratification.


Asunto(s)
Neoplasias de la Mama/genética , Vesículas Extracelulares/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteína de Unión al GTP rhoA/genética , Familia-src Quinasas/genética , Antígeno AC133/genética , Antígeno AC133/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Islas de CpG , Metilación de ADN , Vesículas Extracelulares/química , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Ratones SCID , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Células Madre Neoplásicas/patología , Transducción de Señal , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Análisis de Supervivencia , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/metabolismo
4.
Eur J Immunol ; 54(5): e2350839, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430190

RESUMEN

The active vitamin A metabolite, all-trans-retinoic acid (RA), primes precursor dendritic cells (DCs) into a mucosal phenotype with tolerogenic properties characterized by the expression of integrin CD103. CD103+ DCs can counteract pathogenic Th1 and Th17 in inflammatory bowel disease (IBD) or celiac disease (CD). Tolerogenic manipulation of DCs using nanoparticles carrying tolerogenic adjuvants and disease-specific antigens is a valuable treatment strategy to induce antigen-specific mucosal tolerance in vivo. Here, we investigated the effects of RA-loaded liposomes on human DC phenotype and function, including DC-driven T-cell development, both during the generation of monocyte-derived DCs (moDCs) as well as by priming immature moDCs. RA liposomes drove CD103+ DC differentiation as well as ALDH1A2 expression in DCs. Neutrophil-dependent Th17 cell development was reduced by RA-liposome-differentiated and RA-liposome-primed DCs. Moreover, RA liposome treatment shifted T-cell development toward a Th2 cell profile. Importantly, RA liposomes induced the development of IL-10-producing and FoxP3+ regulatory T cells (Tregs) of various Treg subsets, including ICOS+ Tregs, that were potent inhibitors of bystander memory T-cell proliferation. Taken together, RA-loaded liposomes could be a novel treatment avenue for IBD or CD patients.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Antígenos CD , Diferenciación Celular , Células Dendríticas , Cadenas alfa de Integrinas , Liposomas , Retinal-Deshidrogenasa , Linfocitos T Reguladores , Células Th17 , Tretinoina , Humanos , Tretinoina/farmacología , Cadenas alfa de Integrinas/metabolismo , Células Th17/inmunología , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Antígenos CD/inmunología , Antígenos CD/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Retinal-Deshidrogenasa/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Células Cultivadas , Interleucina-10/metabolismo , Interleucina-10/inmunología , Factores de Transcripción Forkhead/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Enfermedad Celíaca/inmunología
5.
Immunity ; 44(2): 330-42, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26885858

RESUMEN

Lymphocyte homing to draining lymph nodes is critical for the initiation of immune responses. Secondary lymphoid organs of germ-free mice are underdeveloped. How gut commensal microbes remotely regulate cellularity and volume of secondary lymphoid organs remains unknown. We report here that, driven by commensal fungi, a wave of CD45(+)CD103(+)RALDH(+) cells migrates to the peripheral lymph nodes after birth. The arrival of these cells introduces high amounts of retinoic acid, mediates the neonatal to adult addressin switch on endothelial cells, and directs the homing of lymphocytes to both gut-associated lymphoid tissues and peripheral lymph nodes. In adult mice, a small number of these RALDH(+) cells might serve to maintain the volume of secondary lymphoid organs. Homing deficiency of these cells was associated with lymph node attrition in vitamin-A-deficient mice, suggesting a perpetual dependence on retinoic acid signaling for structural and functional maintenance of peripheral immune organs.


Asunto(s)
Células Dendríticas/inmunología , Células Endoteliales/inmunología , Isoenzimas/metabolismo , Ganglios Linfáticos/metabolismo , Retinal-Deshidrogenasa/metabolismo , Vitamina A/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Animales , Animales Recién Nacidos , Antígenos CD/metabolismo , Antígenos CD18/metabolismo , Procesos de Crecimiento Celular , Movimiento Celular , Femenino , Microbioma Gastrointestinal/inmunología , Cadenas alfa de Integrinas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Tretinoina/metabolismo , Vitamina A/genética
6.
Exp Cell Res ; 441(1): 114167, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39004202

RESUMEN

This research aims to explore the mechanism by which microRNAs may regulate the biological behavior of tumor cells in ALDH1+ fibrosarcoma. We identified differentially expressed miRNAs in ALDH + NMFH-1 cells, screened genes related to sarcoma metastasis in the TCGA database, and finally obtained key genes regulated by miRNAs that are involved in metastasis. The function and mechanism of these key genes were then validated at the cellular level. Using the ULCAN database, a significant correlation was found between hsa-mir-206 and mortality in sarcoma patients. WGCNA analysis identified 352 genes related to tumor metastasis. Through Venn diagrams, we obtained 15 metastasis-related genes regulated by hsa-mir-206. Survival analysis showed that SYNPO2 expression is significantly correlated with survival rate and is significantly underexpressed in multiple tumors. SYNPO2 showed a negative correlation with macrophages and a positive correlation with CD8+ T cells. After inhibiting the expression of hsa-mir-206 with siRNA plasmids, the mRNA expression of SYNPO2 was significantly upregulated. The results of CCK8 assay, scratch assay, and transwell assay showed that the proliferation and migration ability of NFMH-1 cells were promoted after SYNPO2 was inhibited. ALDH1+ tumor stem cells promote the proliferation and invasion of malignant fibrous histiocytoma cells by inhibiting SYNPO2 through hsa-mir-206.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs , Células Madre Neoplásicas , Retinal-Deshidrogenasa , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Proliferación Celular/genética , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Movimiento Celular/genética , Línea Celular Tumoral , Fibrosarcoma/patología , Fibrosarcoma/genética , Fibrosarcoma/metabolismo , Progresión de la Enfermedad , Ratones , Animales
7.
Dev Biol ; 493: 17-28, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279927

RESUMEN

Development of the Xenopus pronephros relies on renal precursors grouped at neurula stage into a specific region of dorso-lateral mesoderm called the kidney field. Formation of the kidney field at early neurula stage is dependent on retinoic (RA) signaling acting upstream of renal master transcriptional regulators such as pax8 or lhx1. Although lhx1 might be a direct target of RA-mediated transcriptional activation in the kidney field, how RA controls the emergence of the kidney field remains poorly understood. In order to better understand RA control of renal specification of the kidney field, we have performed a transcriptomic profiling of genes affected by RA disruption in lateral mesoderm explants isolated prior to the emergence of the kidney field and cultured at different time points until early neurula stage. Besides genes directly involved in pronephric development (pax8, lhx1, osr2, mecom), hox (hoxa1, a3, b3, b4, c5 and d1) and the hox co-factor meis3 appear as a prominent group of genes encoding transcription factors (TFs) downstream of RA. Supporting the idea of a role of meis3 in the kidney field, we have observed that meis3 depletion results in a severe inhibition of pax8 expression in the kidney field. Meis3 depletion only marginally affects expression of lhx1 and aldh1a2 suggesting that meis3 principally acts upstream of pax8. Further arguing for a role of meis3 and hox in the control of pax8, expression of a combination of meis3, hoxb4 and pbx1 in animal caps induces pax8 expression, but not that of lhx1. The same combination of TFs is also able to transactivate a previously identified pax8 enhancer, Pax8-CNS1. Mutagenesis of potential PBX-Hox binding motifs present in Pax8-CNS1 further allows to identify two of them that are necessary for transactivation. Finally, we have tested deletions of regulatory sequences in reporter assays with a previously characterized transgene encompassing 36.5 â€‹kb of the X. tropicalis pax8 gene that allows expression of a truncated pax8-GFP fusion protein recapitulating endogenous pax8 expression. This transgene includes three conserved pax8 enhancers, Pax8-CNS1, Pax8-CNS2 and Pax8-CNS3. Deletion of Pax8-CNS1 alone does not affect reporter expression, but deletion of a 3.5 â€‹kb region encompassing Pax8-CNS1 and Pax8-CNS2 results in a severe inhibition of reporter expression both in the otic placode and kidney field domains.


Asunto(s)
Pronefro , Tretinoina , Animales , Xenopus laevis/genética , Xenopus laevis/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Regulación del Desarrollo de la Expresión Génica , Pronefro/metabolismo , Riñón/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Retinal-Deshidrogenasa/metabolismo
8.
Br J Cancer ; 131(2): 325-333, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849477

RESUMEN

BACKGROUND: We examined associations of CD44, CD24 and ALDH1A1 breast stem cell markers with mammographic breast density (MBD), a well-established breast cancer (BCa) risk factor. METHODS: We included 218 cancer-free women with biopsy-confirmed benign breast disease within the Nurses' Health Study (NHS) and NHSII. The data on BCa risk factors were obtained from biennial questionnaires. Immunohistochemistry (IHC) was done on tissue microarrays. For each core, the IHC expression was assessed using a semi-automated platform and expressed as percent of positively stained cells for each marker out of the total cell count. MBD was assessed with computer-assisted techniques. Generalised linear regression was used to examine the associations of each marker with square root-transformed percent density (PD), absolute dense and non-dense areas (NDA), adjusted for BCa risk factors. RESULTS: Stromal CD44 and ALDH1A1 expression was positively associated with PD (≥ 10% vs. <10% ß = 0.56, 95% confidence interval [CI] [0.06; 1.07] and ß = 0.81 [0.27; 1.34], respectively) and inversely associated with NDA (ß per 10% increase = -0.17 [-0.34; -0.01] and ß for ≥10% vs. <10% = -1.17 [-2.07; -0.28], respectively). Epithelial CD24 expression was inversely associated with PD (ß per 10% increase = -0.14 [-0.28; -0.01]. Stromal and epithelial CD24 expression was positively associated with NDA (ß per 10% increase = 0.35 [0.2 × 10-2; 0.70] and ß per 10% increase = 0.34 [0.11; 0.57], respectively). CONCLUSION: Expression of stem cell markers is associated with MBD.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Densidad de la Mama , Antígeno CD24 , Receptores de Hialuranos , Retinal-Deshidrogenasa , Humanos , Femenino , Antígeno CD24/metabolismo , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/análisis , Familia de Aldehído Deshidrogenasa 1/metabolismo , Retinal-Deshidrogenasa/metabolismo , Persona de Mediana Edad , Adulto , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/diagnóstico por imagen , Biopsia , Mama/patología , Mama/diagnóstico por imagen , Mama/metabolismo , Mamografía/métodos , Células Madre/metabolismo , Células Madre/patología , Biomarcadores de Tumor/metabolismo , Aldehído Deshidrogenasa/metabolismo
9.
Funct Integr Genomics ; 24(3): 103, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38913281

RESUMEN

Breast cancer severely affects women health. 70% of breast cancer are estrogen receptor positive. Breast cancer stem cells are a group of tumor with plasticity, causing tumor relapse and metastasis. RUNX3 is a tumor suppressor frequently inactivated in estrogen receptor positive breast cancer. However, the mechanism of how RUNX3 is involved in the regualation of cancer stem cell traits in estrogen receptor positive breast cancer remains elusive. In this study, we utilized cut-tag assay to investigate the binding profile RUNX3 in BT474 and T47D cell, and confirmed EXOSC4 as the bona-fide target of RUNX3; RUNX3 could bind to the promoter are of EXOSC4 to suppress its expression. Furthermore, EXOSC4 could increase the colony formation, cell invasion and mammosphere formation ability of breast cancer cells and upregulate the the expression of SOX2 and ALDH1. Consistent with these findings, EXOSC4 was associated with poorer survival for Luminal B/Her2 breast cancer patiens. At last, we confirmed that EXOSC4 mediated the tumor suppressive role of RUNX3 in breast cancer cells. In conclusion, we demonstrate that RUNX3 directly binds to the promoter region of EXOSC4, leading to the suppression of EXOSC4 expression and exerting a tumor-suppressive effect in estrogen receptor postivive breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Regiones Promotoras Genéticas , Femenino , Humanos , Familia de Aldehído Deshidrogenasa 1/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Retinal-Deshidrogenasa/metabolismo , Retinal-Deshidrogenasa/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética
10.
Nat Chem Biol ; 18(10): 1065-1075, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35788181

RESUMEN

Aldehyde dehydrogenases (ALDHs) are promising cancer drug targets, as certain isoforms are required for the survival of stem-like tumor cells. We have discovered selective inhibitors of ALDH1B1, a mitochondrial enzyme that promotes colorectal and pancreatic cancer. We describe bicyclic imidazoliums and guanidines that target the ALDH1B1 active site with comparable molecular interactions and potencies. Both pharmacophores abrogate ALDH1B1 function in cells; however, the guanidines circumvent an off-target mitochondrial toxicity exhibited by the imidazoliums. Our lead isoform-selective guanidinyl antagonists of ALDHs exhibit proteome-wide target specificity, and they selectively block the growth of colon cancer spheroids and organoids. Finally, we have used genetic and chemical perturbations to elucidate the ALDH1B1-dependent transcriptome, which includes genes that regulate mitochondrial metabolism and ribosomal function. Our findings support an essential role for ALDH1B1 in colorectal cancer, provide molecular probes for studying ALDH1B1 functions and yield leads for developing ALDH1B1-targeting therapies.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Aldehído Deshidrogenasa/química , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Aldehídos , Neoplasias del Colon/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Guanidinas , Humanos , Sondas Moleculares , Proteoma/genética
11.
Int J Immunogenet ; 51(3): 157-163, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38441233

RESUMEN

Genome-wide association study identified common variants within the ALDH1A2 gene as the susceptible loci of hand osteoarthritis (HOA) in UK and Iceland populations. Located in chromosome 15, ALDH1A2 encodes aldehyde dehydrogenase family 1 member A2, which is an enzyme that catalyses the synthesis of retinoic acid from retinaldehyde. Our purposes were to replicate the association of functional variant in ALDH1A2 with the development of HOA in the Chinese population. Variant rs12915901 of ALDH1A2 was genotyped in 872 HOA patients and 1223 healthy controls. Subchondral bone samples were collected from 40 patients who had undergone a trapeziectomy, and the tissue expression of ALDH1A2 was analysed. The chi-square analysis was used to compare the frequency of genotype and risk allele between the HOA cases and controls. The Student t test was used to compare the mRNA expression of ALDH1A2 between patients with genotype AA/AG and those with genotype GG. The frequency of genotype AA was significantly higher in HOA patients than in the controls (7.6% vs. 5.1%, p = .01). The frequency of allele A was significantly higher in the patients than in the controls (28.9% vs. 24.6%, p = .005). The mRNA expression of ALDH1A2 was 1.31-folds higher in patients with genotype GG than in the patients with genotype AA/AG (0.000617 ± 0.000231 vs. 0.000471 ± 0.000198, p = .04). Variant rs12915901 of ALDH1A2 contributed to the susceptibility of HOA in the Chinese population. Allele A of rs12915901 can add to the risk of HOA possibly via down-regulation of ALDH1A2 expression.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Pueblo Asiatico , Predisposición Genética a la Enfermedad , Genotipo , Osteoartritis , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Familia de Aldehído Deshidrogenasa 1/genética , Alelos , Pueblo Asiatico/genética , Estudios de Casos y Controles , China , Pueblos del Este de Asia , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Mano/patología , Osteoartritis/genética , Osteoartritis/patología
12.
Ecotoxicol Environ Saf ; 270: 115876, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154155

RESUMEN

Early life exposure to endocrine disrupting chemicals (EDCs) has been suggested to adversely affect reproductive health in humans and wildlife. Here, we characterize endocrine and adverse effects on the reproductive system after juvenile exposure to propiconazole (PROP) or imazalil (IMZ), two common azole fungicides with complex endocrine modes of action. Using the frog Xenopus tropicalis, two short-term (2-weeks) studies were conducted. I: Juveniles (2 weeks post metamorphosis (PM)) were exposed to 0, 17 or 178 µg PROP/L. II: Juveniles (6 weeks PM) were exposed to 0, 1, 12 or 154 µg IMZ/L. Histological analysis of the gonads revealed an increase in the number of dark spermatogonial stem cells (SSCs)/testis area, and in the ratio secondary spermatogonia: dark SSCs were increased in all IMZ groups compared to control. Key genes in gametogenesis, retinoic acid and sex steroid pathways were also analysed in the gonads. Testicular levels of 3ß-hsd, ddx4 were increased and cyp19 and id4 levels were decreased in the IMZ groups. In PROP exposed males, increased testicular aldh1a2 levels were detected, but no histological effects observed. Although no effects on ovarian histology were detected, ovarian levels of esr1, rsbn1 were increased in PROP groups, and esr1 levels were decreased in IMZ groups. In conclusion, juvenile azole exposure disrupted testicular expression of key genes in retinoic acid (PROP) and sex steroid pathways and in gametogenesis (IMZ). Our results further show that exposure to environmental concentrations of IMZ disrupted spermatogenesis in the juvenile testis, which is a cause for concern as it may lead to impaired fertility. Testicular levels of id4, ddx4 and the id4:ddx4 ratio were associated with the number of dark SSCs and secondary spermatogonia suggesting that they may serve as a molecular markers for disrupted spermatogenesis.


Asunto(s)
Fungicidas Industriales , Humanos , Masculino , Femenino , Animales , Fungicidas Industriales/metabolismo , Xenopus laevis , Azoles/toxicidad , Xenopus/metabolismo , Testículo , Espermatogénesis , Hormonas Esteroides Gonadales/metabolismo , Tretinoina , Esteroides/metabolismo , Familia de Aldehído Deshidrogenasa 1/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/farmacología , Retinal-Deshidrogenasa/metabolismo
13.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791431

RESUMEN

Primary cancer cells reflect the genetic background and phenotype of a tumor. Immortalized cells with higher proliferation activity have an advantage over primary cells. The aim of the study was to immortalize the primary ovarian cancer (OvCa) cells using the plasmid-carrying human telomerase reverse transcriptase (hTERT) gene and compare their phenotype and biological activity with the primary cells. The primary OvCa3 A and OvCa7 A cells were isolated from the ascitic fluid of two high-grade serous ovarian cancer patients and were characterized using immunocytochemical methods, flow cytometry, real-time RT-PCR, Western blot, metabolic activity, and migratory potential. Both immortalized ovarian cancer cell lines mirrored the phenotype of primary cancer cells, albeit with modifications. The OvCa3 A hTERT cells kept the mesenchymal stem cell phenotype of CD73/CD90/CD105-positivity and were CD133-negative, whereas the cell population of OvCa7 A hTERT lost CD73 expression, but almost 90% of cells expressed the CD133 characteristic for the CSCs phenotype. Immortalized OvCa cells differed in gene expression level with respect to Sox2 and Oct4, which was associated with stemness properties. The OvCa7 A hTERT cells showed higher metabolic and migratory activity and ALDH1 expression than the corresponding primary OvCa cells. Both primary and immortalized cell lines were able to form spheroids. The newly established unique immortalized cell line OvCa7 A hTERT, with the characteristic of a serous ovarian cancer malignancy feature, and with the accumulation of the p53, Pax8, and overexpression of the CD133 and CD44 molecules, may be a useful tool for research on therapeutic approaches, especially those targeting CSCs in ovarian cancer and in preclinical 2D and 3D models.


Asunto(s)
Línea Celular Tumoral , Neoplasias Ováricas , Células Tumorales Cultivadas , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Femenino , Células Madre Neoplásicas/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Factor de Transcripción PAX8/análisis , Telomerasa , Movimiento Celular , Familia de Aldehído Deshidrogenasa 1
14.
J Obstet Gynaecol ; 44(1): 2361435, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39007780

RESUMEN

BACKGROUND: Prognostic factors-based nomograms have been utilised to detect the likelihood of the specific cancer events. We have focused on the roles of aldehyde dehydrogenase 1 (ALDH1) and p-AKT in predicting the prognosis of BC patients. This study was designed to establish nomograms based on the integration of aldehyde dehydrogenase 1 (ALDH1) and p-AKT in predicting the disease-free survival (DFS) and overall survival (OS) of breast cancer (BC) patients. METHODS: Demographic and clinical data were obtained from BC patients admitted to our hospital between September 2015 and August 2016. Univariate and multivariate Cox regression analyses were utilised to analyse the risk factors of recurrence and mortality. The nomograms for predicting the DFS and OS were established using the screened risk factors. Stratified analysis was performed with the cut-off value of exp (pi) of 4.0-fold in DFS and OS, respectively. RESULTS: Multivariate Cox regression analysis indicated that ALDH, p-AKT and pathological stage III were independent risk factors for the recurrence among BC patients. ALDH1, p-AKT, pathological stage III and ER-/PR-/HER2- were independent risk factors for the mortality among BC patients. The established nomograms based on these factors were effective for predicting the DFS and OS with good agreement to the calibration curve and acceptable area under the receiver operating characteristic (ROC) curve. Finally, stratified analyses showed patients with a low pi showed significant decrease in the DFS and OS compared with those of high risk. CONCLUSION: We established nomograms for predicting the DFS and OS of BC patients based on ALDH1, p-AKT and pathological stages. The ER-/PR-/HER2- may be utilised to predict the OS rather than DFS in the BC patients.


Many breast cancer patients show poor response after treatment due to recurrence and metastasis. Therefore, early prediction of the disease-free survival and overall survival is crucial to the treatment outcome and clinical decision-making. In this study, we established nomograms with the demographic and clinical data from breast cancer patients admitted to our hospital between September 2015 and August 2016. Univariate and multivariate Cox regression analyses showed that some important proteins and signalling pathways were risk factors for decreased disease-free survival and overall survival of breast cancer patients. On this basis, we established an effective nomogram for predicting the disease-free survival and overall survival of these patients based on these factors. This study offers new options in the predicting the treatment outcome of breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Nomogramas , Humanos , Femenino , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Persona de Mediana Edad , Supervivencia sin Enfermedad , Adulto , Factores de Riesgo , Familia de Aldehído Deshidrogenasa 1/metabolismo , Recurrencia Local de Neoplasia , Anciano , Estadificación de Neoplasias , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estudios Retrospectivos , Modelos de Riesgos Proporcionales , Biomarcadores de Tumor/metabolismo
15.
Biochem Biophys Res Commun ; 669: 85-94, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37267864

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the cancer with the poorest prognosis. One of the major properties reflecting its poor prognosis is high-grade heterogeneity, which leads to insensitivity to anticancer treatments. Cancer stem cells (CSCs) acquire phenotypic heterogeneity, generating abnormally differentiated cells by asymmetric cell division. However, the detailed mechanism leading to phenotypic heterogeneity is largely unknown. Here, we showed that PDAC patients with co-upregulation of PKCλ and ALDH1A3 had the poorest clinical outcome. PKCλ knockdown by DsiRNA in the ALDH1high population of PDAC MIA-PaCa-2 cells attenuated the asymmetric distribution of the ALDH1A3 protein. To monitor asymmetric cell division of ALDH1A3-positive PDAC CSCs, we established stable Panc-1 PDAC clones expressing ALDH1A3-turboGFP (Panc-1-ALDH1A3-turboGFP cells). In addition to MIA-PaCa-2-ALDH1high cells, turboGFPhigh cells sorted from Panc-1-ALDH1A3-turboGFP cells showed asymmetric cell propagation of ALDH1A3 protein. PKCλ DsiRNA in Panc-1-ALDH1A3-turboGFP cells also attenuated the asymmetric distribution of ALDH1A3 protein. These results suggest that PKCλ regulates the asymmetric cell division of ALDH1A3-positive PDAC CSCs. Furthermore, Panc-1-ALDH1A3-turboGFP cells can be useful for the visualization and monitoring of CSC properties such as asymmetric cell division of ALDH1A3-positive PDAC CSCs in time-lapse imaging.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , División Celular Asimétrica , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Familia de Aldehído Deshidrogenasa 1/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas
16.
Cell Tissue Res ; 394(3): 515-528, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37904003

RESUMEN

ALDH1A1 and ALDH1A3 paralogues of aldehyde dehydrogenase 1 (ALDH1) control myogenic differentiation of skeletal muscle satellite cells (SC) by formation of retinoic acid (RA) and subsequent cell cycle adjustments. The respective relevance of each paralogue for myogenic differentiation and the mechanistic interaction of each paralogue within RA-dependent and RA-independent pathways remain elusive.We analysed the impact of ALDH1A1 and ALDH1A3 activity on myogenesis of murine C2C12 myoblasts. Both paralogues are pivotal factors in myogenic differentiation, since CRISPR/Cas9-edited single paralogue knock-out impaired serum withdrawal-induced myogenic differentiation, while successive recombinant re-expression of ALDH1A1 or ALDH1A3, respectively, in the corresponding ALDH1 paralogue single knock-out cell lines, recovered the differentiation potential. Loss of differentiation in single knock-out cell lines was restored by treatment with RA-analogue TTNPB, while RA-receptor antagonization by AGN 193109 inhibited differentiation of wildtype cell lines, supporting the idea that RA-dependent pathway is pivotal for myogenic differentiation which is accomplished by both paralogues.However, overexpression of ALDH1-paralogues or disulfiram-mediated inhibition of ALDH1 enzymatic activity not only increased ALDH1A1 and ALDH1A3 protein levels but also induced subsequent differentiation of C2C12 myoblasts independently from serum withdrawal, indicating that ALDH1-dependent myogenic differentiation relies on different cellular conditions. Remarkably, ALDH1-paralogue knock-out impaired the autophagic flux, namely autophagosome cargo protein p62 formation and LC3B-I to LC3B-II conversion, demonstrating that ALDH1-paralogues interact with autophagy in myogenesis. Together, ALDH1 paralogues play a crucial role in myogenesis by orchestration of complex RA-dependent and RA-independent pathways.


Asunto(s)
Células Satélite del Músculo Esquelético , Tretinoina , Animales , Ratones , Familia de Aldehído Deshidrogenasa 1 , Tretinoina/farmacología , Células Satélite del Músculo Esquelético/metabolismo , Diferenciación Celular , Desarrollo de Músculos , Aldehído Deshidrogenasa/metabolismo , Músculo Esquelético/metabolismo
17.
FASEB J ; 36(4): e22224, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35218575

RESUMEN

Yes-associated protein (YAP), a central effector in the Hippo pathway, is involved in the regulation of organ size, stem cell self-renewal, and tissue regeneration. In this study, we observed YAP activation in patients with alcoholic steatosis, hepatitis, and cirrhosis. Accumulation of this protein in the nucleus was also observed in murine livers that were damaged after chronic-plus-single binge or moderate ethanol ingestion combined with carbon tetrachloride intoxication (ethanol/CCl4 ). To understand the role of this transcriptional coactivator in alcohol-related liver injury, we knocked out the Yap1 gene in hepatocytes of floxed homozygotes through adeno-associated virus (AAV8)-mediated deletion utilizing Cre recombinase. Yap1 hepatocyte-specific knockouts (KO) exhibited hemorrhage, massive hepatic necrosis, enhanced oxidative stress, elevated hypoxia, and extensive infiltration of CD11b+ inflammatory cells into hepatic microenvironments rich for connective tissue growth factor (Ctgf) during ethanol/CCl4 -induced liver damage. Analysis of whole-genome transcriptomics indicated upregulation of genes involved in hypoxia and extracellular matrix (ECM) remodeling, whereas genes related to hepatocyte proliferation, progenitor cell activation, and ethanol detoxification were downregulated in the damaged livers of Yap1 KO. Acetaldehyde dehydrogenase (Aldh)1a1, a gene that encodes a detoxification enzyme for aldehyde substrates, was identified as a potential YAP target because this gene could be transcriptionally activated by a hyperactive YAP mutant. The ectopic expression of the human ALDH1A1 gene caused increase in hepatocyte proliferation and decrease in hepatic necrosis, oxidative stress, ECM remodeling, and inflammation during ethanol/CCl4 -induced liver damage. Taken together, these observations indicated that YAP was crucial for liver repair during alcohol-associated injury. Its regulation of ALDH1A1 represents a new link in liver regeneration and detoxification.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Etanol/toxicidad , Regeneración Hepática , Retinal-Deshidrogenasa/metabolismo , Proteínas Señalizadoras YAP/fisiología , Familia de Aldehído Deshidrogenasa 1/genética , Animales , Proliferación Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Retinal-Deshidrogenasa/genética , Transducción de Señal
18.
Am J Med Genet A ; 191(1): 90-99, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36263470

RESUMEN

Aldehyde Dehydrogenase 1, Family Member A2 (ALDH1A2) is essential for the synthesis of retinoic acid from vitamin A. Studies in model organisms demonstrate a critical role for ALDH1A2 in embryonic development, yet few pathogenic variants are linked to congenital anomalies in humans. We present three siblings with multiple congenital anomaly syndrome linked to biallelic sequence variants in ALDH1A2. The major congenital malformations affecting these children include tetralogy of Fallot, absent thymus, diaphragmatic eventration, and talipes equinovarus. Upper airway anomalies, hypocalcemia, and dysmorphic features are newly reported in this manuscript. In vitro functional validation of variants indicated that substitutions reduced the expression of the enzyme. Our clinical and functional data adds to a recent report of biallelic ALDH1A2 pathogenic variants in two families with a similar constellation of congenital malformations. These findings provide further evidence for an autosomal recessive ALDH1A2-deficient recognizable malformation syndrome involving the diaphragm, cardiac and musculoskeletal systems.


Asunto(s)
Tretinoina , Niño , Humanos , Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Tretinoina/metabolismo , Retinal-Deshidrogenasa/genética
19.
J Pathol ; 256(3): 349-362, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34897678

RESUMEN

Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer with poor prognosis. Cancer stem cells (CSCs) are seeds for tumor relapse and metastasis. However, pathways that maintain stemness genes are not fully understood. Here, we report that the enzyme euchromatic histone lysine methyltransferase 1 (EHMT1) is expressed in primary and relapse ARMS tumors. EHMT1 suppression impaired motility and induced differentiation in ARMS cell lines and reduced tumor progression in a mouse xenograft model in vivo. RNA sequencing of EHMT1-depleted cells revealed downregulation of ALDH1A1 that is associated with CSCs. Consistent with this, inhibition of ALDH1A1 expression and activity mimicked EHMT1 depletion phenotypes and reduced tumorsphere formation. Mechanistically, we demonstrate that EHMT1 does not bind to the ALDH1A1 promoter but activates it by stabilizing C/EBPß, a known regulator of ALDH1A1 expression. Our findings identify a role for EHMT1 in maintenance of stemness by regulating ALDH1A1 expression and suggest that targeting ALDH+ cells is a promising strategy in ARMS. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Neoplásicas/enzimología , Retinal-Deshidrogenasa/metabolismo , Rabdomiosarcoma Alveolar/enzimología , Familia de Aldehído Deshidrogenasa 1/genética , Animales , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Ratones Desnudos , Invasividad Neoplásica , Células Madre Neoplásicas/patología , Fenotipo , Retinal-Deshidrogenasa/genética , Rabdomiosarcoma Alveolar/genética , Rabdomiosarcoma Alveolar/patología , Transducción de Señal , Carga Tumoral
20.
Int J Mol Sci ; 24(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298333

RESUMEN

The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Ratones , Animales , Oxidantes , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas , ARN , Familia de Aldehído Deshidrogenasa 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA