Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 626(8000): 792-798, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297125

RESUMEN

Crop production is a large source of atmospheric ammonia (NH3), which poses risks to air quality, human health and ecosystems1-5. However, estimating global NH3 emissions from croplands is subject to uncertainties because of data limitations, thereby limiting the accurate identification of mitigation options and efficacy4,5. Here we develop a machine learning model for generating crop-specific and spatially explicit NH3 emission factors globally (5-arcmin resolution) based on a compiled dataset of field observations. We show that global NH3 emissions from rice, wheat and maize fields in 2018 were 4.3 ± 1.0 Tg N yr-1, lower than previous estimates that did not fully consider fertilizer management practices6-9. Furthermore, spatially optimizing fertilizer management, as guided by the machine learning model, has the potential to reduce the NH3 emissions by about 38% (1.6 ± 0.4 Tg N yr-1) without altering total fertilizer nitrogen inputs. Specifically, we estimate potential NH3 emissions reductions of 47% (44-56%) for rice, 27% (24-28%) for maize and 26% (20-28%) for wheat cultivation, respectively. Under future climate change scenarios, we estimate that NH3 emissions could increase by 4.0 ± 2.7% under SSP1-2.6 and 5.5 ± 5.7% under SSP5-8.5 by 2030-2060. However, targeted fertilizer management has the potential to mitigate these increases.


Asunto(s)
Amoníaco , Producción de Cultivos , Fertilizantes , Amoníaco/análisis , Amoníaco/metabolismo , Producción de Cultivos/métodos , Producción de Cultivos/estadística & datos numéricos , Producción de Cultivos/tendencias , Conjuntos de Datos como Asunto , Ecosistema , Fertilizantes/efectos adversos , Fertilizantes/análisis , Fertilizantes/estadística & datos numéricos , Aprendizaje Automático , Nitrógeno/análisis , Nitrógeno/metabolismo , Oryza/metabolismo , Suelo/química , Triticum/metabolismo , Zea mays/metabolismo , Cambio Climático/estadística & datos numéricos
2.
Nature ; 555(7696): 363-366, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29513654

RESUMEN

Sustainably feeding a growing population is a grand challenge, and one that is particularly difficult in regions that are dominated by smallholder farming. Despite local successes, mobilizing vast smallholder communities with science- and evidence-based management practices to simultaneously address production and pollution problems has been infeasible. Here we report the outcome of concerted efforts in engaging millions of Chinese smallholder farmers to adopt enhanced management practices for greater yield and environmental performance. First, we conducted field trials across China's major agroecological zones to develop locally applicable recommendations using a comprehensive decision-support program. Engaging farmers to adopt those recommendations involved the collaboration of a core network of 1,152 researchers with numerous extension agents and agribusiness personnel. From 2005 to 2015, about 20.9 million farmers in 452 counties adopted enhanced management practices in fields with a total of 37.7 million cumulative hectares over the years. Average yields (maize, rice and wheat) increased by 10.8-11.5%, generating a net grain output of 33 million tonnes (Mt). At the same time, application of nitrogen decreased by 14.7-18.1%, saving 1.2 Mt of nitrogen fertilizers. The increased grain output and decreased nitrogen fertilizer use were equivalent to US$12.2 billion. Estimated reactive nitrogen losses averaged 4.5-4.7 kg nitrogen per Megagram (Mg) with the intervention compared to 6.0-6.4 kg nitrogen per Mg without. Greenhouse gas emissions were 328 kg, 812 kg and 434 kg CO2 equivalent per Mg of maize, rice and wheat produced, respectively, compared to 422 kg, 941 kg and 549 kg CO2 equivalent per Mg without the intervention. On the basis of a large-scale survey (8.6 million farmer participants) and scenario analyses, we further demonstrate the potential impacts of implementing the enhanced management practices on China's food security and sustainability outlook.


Asunto(s)
Agricultura/métodos , Conservación de los Recursos Naturales , Productos Agrícolas/crecimiento & desarrollo , Eficiencia Organizacional , Agricultores , China , Técnicas de Apoyo para la Decisión , Grano Comestible/crecimiento & desarrollo , Política Ambiental , Fertilizantes/estadística & datos numéricos , Abastecimiento de Alimentos/métodos , Efecto Invernadero , Nitrógeno/metabolismo , Oryza/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
3.
Nature ; 528(7580): 51-9, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26595273

RESUMEN

Improvements in nitrogen use efficiency in crop production are critical for addressing the triple challenges of food security, environmental degradation and climate change. Such improvements are conditional not only on technological innovation, but also on socio-economic factors that are at present poorly understood. Here we examine historical patterns of agricultural nitrogen-use efficiency and find a broad range of national approaches to agricultural development and related pollution. We analyse examples of nitrogen use and propose targets, by geographic region and crop type, to meet the 2050 global food demand projected by the Food and Agriculture Organization while also meeting the Sustainable Development Goals pertaining to agriculture recently adopted by the United Nations General Assembly. Furthermore, we discuss socio-economic policies and technological innovations that may help achieve them.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Productos Agrícolas/metabolismo , Nitrógeno/metabolismo , Agricultura/economía , Agricultura/normas , Agricultura/estadística & datos numéricos , Agricultura/tendencias , Cambio Climático , Conservación de los Recursos Naturales/tendencias , Productos Agrícolas/economía , Productos Agrícolas/provisión & distribución , Ecología , Contaminación Ambiental/estadística & datos numéricos , Fertilizantes/economía , Fertilizantes/estadística & datos numéricos , Fertilizantes/provisión & distribución , Abastecimiento de Alimentos , Producto Interno Bruto , Humanos , Internacionalidad , Nitrógeno/química
4.
Nature ; 514(7523): 486-9, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25186728

RESUMEN

Agriculture faces great challenges to ensure global food security by increasing yields while reducing environmental costs. Here we address this challenge by conducting a total of 153 site-year field experiments covering the main agro-ecological areas for rice, wheat and maize production in China. A set of integrated soil-crop system management practices based on a modern understanding of crop ecophysiology and soil biogeochemistry increases average yields for rice, wheat and maize from 7.2 million grams per hectare (Mg ha(-1)), 7.2 Mg ha(-1) and 10.5 Mg ha(-1) to 8.5 Mg ha(-1), 8.9 Mg ha(-1) and 14.2 Mg ha(-1), respectively, without any increase in nitrogen fertilizer. Model simulation and life-cycle assessment show that reactive nitrogen losses and greenhouse gas emissions are reduced substantially by integrated soil-crop system management. If farmers in China could achieve average grain yields equivalent to 80% of this treatment by 2030, over the same planting area as in 2012, total production of rice, wheat and maize in China would be more than enough to meet the demand for direct human consumption and a substantially increased demand for animal feed, while decreasing the environmental costs of intensive agriculture.


Asunto(s)
Agricultura/métodos , Grano Comestible/crecimiento & desarrollo , Grano Comestible/provisión & distribución , Ambiente , Alimentación Animal , China , Fertilizantes/estadística & datos numéricos , Efecto Invernadero/estadística & datos numéricos , Nitrógeno/metabolismo
5.
Molecules ; 24(14)2019 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-31337070

RESUMEN

In the era of climate change, global agricultural systems are facing numerous, unprecedented challenges. In order to achieve food security, advanced nano-engineering is a handy tool for boosting crop production and assuring sustainability. Nanotechnology helps to improve agricultural production by increasing the efficiency of inputs and minimizing relevant losses. Nanomaterials offer a wider specific surface area to fertilizers and pesticides. In addition, nanomaterials as unique carriers of agrochemicals facilitate the site-targeted controlled delivery of nutrients with increased crop protection. Due to their direct and intended applications in the precise management and control of inputs (fertilizers, pesticides, herbicides), nanotools, such as nanobiosensors, support the development of high-tech agricultural farms. The integration of biology and nanotechnology into nonosensors has greatly increased their potential to sense and identify the environmental conditions or impairments. In this review, we summarize recent attempts at innovative uses of nanotechnologies in agriculture that may help to meet the rising demand for food and environmental sustainability.


Asunto(s)
Protección de Cultivos , Nanotecnología , Desarrollo de la Planta , Técnicas Biosensibles , Productos Agrícolas/crecimiento & desarrollo , Fertilizantes/análisis , Fertilizantes/estadística & datos numéricos , Inocuidad de los Alimentos , Germinación , Nanoestructuras , Plaguicidas
7.
Appl Microbiol Biotechnol ; 102(4): 1969-1982, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29274058

RESUMEN

Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community and functional genes to long-term integrated fertilization (chemical combined with organic fertilization) remain unclear. Here, we used pyrosequencing and a microarray-based GeoChip to explore the shifts of microbial community and functional genes in a paddy soil which received over 21-year fertilization with various regimes, including control (no fertilizer), rice straw (R), rice straw plus chemical fertilizer nitrogen (NR), N and phosphorus (NPR), NP and potassium (NPKR), and reduced rice straw plus reduced NPK (L-NPKR). Significant shifts of the overall soil bacterial composition only occurred in the NPKR and L-NPKR treatments, with enrichment of certain groups including Bradyrhizobiaceae and Rhodospirillaceae families that benefit higher productivity. All fertilization treatments significantly altered the soil microbial functional structure with increased diversity and abundances of genes for carbon and nitrogen cycling, in which NPKR and L-NPKR exhibited the strongest effect, while R exhibited the least. Functional gene structure and abundance were significantly correlated with corresponding soil enzymatic activities and rice yield, respectively, suggesting that the structural shift of the microbial functional community under fertilization might promote soil nutrient turnover and thereby affect yield. Overall, this study indicates that the combined application of rice straw and balanced chemical fertilizers was more pronounced in shifting the bacterial composition and improving the functional diversity toward higher productivity, providing a microbial point of view on applying a cost-effective integrated fertilization regime with rice straw plus reduced chemical fertilizers for sustainable nutrient management.


Asunto(s)
Agricultura/métodos , Biota , Fertilizantes/estadística & datos numéricos , Oryza/crecimiento & desarrollo , Microbiología del Suelo
8.
Int J Mol Sci ; 19(7)2018 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-29937514

RESUMEN

Boron (B) is an essential trace element required for the physiological functioning of higher plants. B deficiency is considered as a nutritional disorder that adversely affects the metabolism and growth of plants. B is involved in the structural and functional integrity of the cell wall and membranes, ion fluxes (H⁺, K⁺, PO43−, Rb⁺, Ca2+) across the membranes, cell division and elongation, nitrogen and carbohydrate metabolism, sugar transport, cytoskeletal proteins, and plasmalemma-bound enzymes, nucleic acid, indoleacetic acid, polyamines, ascorbic acid, and phenol metabolism and transport. This review critically examines the functions of B in plants, deficiency symptoms, and the mechanism of B uptake and transport under limited B conditions. B deficiency can be mitigated by inorganic fertilizer supplementation, but the deleterious impact of frequent fertilizer application disrupts soil fertility and creates environmental pollution. Considering this, we have summarized the available information regarding alternative approaches, such as root structural modification, grafting, application of biostimulators (mycorrhizal fungi (MF) and rhizobacteria), and nanotechnology, that can be effectively utilized for B acquisition, leading to resource conservation. Additionally, we have discussed several new aspects, such as the combination of grafting or MF with nanotechnology, combined inoculation of arbuscular MF and rhizobacteria, melatonin application, and the use of natural and synthetic chelators, that possibly play a role in B uptake and translocation under B stress conditions.


Asunto(s)
Agricultura/métodos , Boro/metabolismo , Productos Agrícolas/efectos de los fármacos , Nanotecnología/métodos , Transporte Biológico/efectos de los fármacos , Boro/farmacología , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Fertilizantes/análisis , Fertilizantes/estadística & datos numéricos , Humanos , Melatonina/farmacología , Micorrizas/fisiología , Nanopartículas/administración & dosificación , Rhizobiaceae/fisiología
9.
Nature ; 476(7359): 194-7, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21833086

RESUMEN

Atmospheric methane (CH(4)) increased through much of the twentieth century, but this trend gradually weakened until a stable state was temporarily reached around the turn of the millennium, after which levels increased once more. The reasons for the slowdown are incompletely understood, with past work identifying changes in fossil fuel, wetland and agricultural sources and hydroxyl (OH) sinks as important causal factors. Here we show that the late-twentieth-century changes in the CH(4) growth rates are best explained by reduced microbial sources in the Northern Hemisphere. Our results, based on synchronous time series of atmospheric CH(4) mixing and (13)C/(12)C ratios and a two-box atmospheric model, indicate that the evolution of the mixing ratio requires no significant change in Southern Hemisphere sources between 1984 and 2005. Observed changes in the interhemispheric difference of (13)C effectively exclude reduced fossil fuel emissions as the primary cause of the slowdown. The (13)C observations are consistent with long-term reductions in agricultural emissions or another microbial source within the Northern Hemisphere. Approximately half (51 ± 18%) of the decrease in Northern Hemisphere CH(4) emissions can be explained by reduced emissions from rice agriculture in Asia over the past three decades associated with increases in fertilizer application and reductions in water use.


Asunto(s)
Atmósfera/química , Geografía , Metano/análisis , Consorcios Microbianos/fisiología , Agricultura/estadística & datos numéricos , Animales , Asia , Biomasa , Fertilizantes/estadística & datos numéricos , Incendios , Combustibles Fósiles/estadística & datos numéricos , Radical Hidroxilo/química , Metano/metabolismo , Oryza/metabolismo , Factores de Tiempo , Abastecimiento de Agua/estadística & datos numéricos , Humedales
11.
Environ Monit Assess ; 188(2): 79, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26739009

RESUMEN

Reducing the carbon footprint and increasing energy use efficiency of crop rotations are the two most important sustainability issues of the modern agriculture. Present study was undertaken to assess economics, energy, and environmental parameters of common diversified crop rotations (maize-tomato, and maize-toria-wheat) vis-a-vis traditional crop rotations like maize-wheat, maize + ginger and rice-wheat of the north-western Himalayan region of India. Results revealed that maize-tomato and maize + ginger crop rotations being on par with each other produced significantly higher system productivity in terms of maize equivalent yield (30.2-36.2 t/ha) than other crop rotations (5.04-7.68 t/ha). But interestingly in terms of energy efficiencies, traditional maize-wheat system (energy efficiency 7.9, human energy profitability of 177.8 and energy profitability of 6.9 MJ/ha) was significantly superior over other systems. Maize + ginger rotation showed greater competitive advantage over other rotations because of less consumption of non-renewable energy resources. Similarly, maize-tomato rotation had ability of the production process to exploit natural resources due to 14-38% less use of commercial or purchased energy sources over other crop rotations. Vegetable-based crop rotations (maize + ginger and maize-tomato) maintained significantly the least carbon footprint (0.008 and 0.019 kg CO2 eq./kg grain, respectively) and the highest profitability (154,322 and 274,161 Rs./ha net return, respectively) over other crop rotations. As the greatest inputs of energy and carbon across the five crop rotations were nitrogen fertilizer (15-29% and 17-28%, respectively), diesel (14-24% and 8-19%, respectively) and irrigation (10-27% and 11-44%, respectively), therefore, alternative sources like organic farming, conservation agriculture practices, soil and water conservation measures, rain water harvesting etc. should be encouraged to reduce dependency of direct energy and external carbon inputs particularly in sub-Himalayas of India.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Monitoreo del Ambiente , Agricultura/economía , Agricultura/estadística & datos numéricos , Carbono/análisis , Huella de Carbono , Productos Agrícolas/clasificación , Grano Comestible/química , Fertilizantes/estadística & datos numéricos , India , Nitrógeno , Oryza , Suelo/química , Triticum , Zea mays
12.
J Environ Sci (China) ; 45: 60-75, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27372119

RESUMEN

Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. In order to: (a) understand pollutant exchange between surface water and groundwater, (b) quantify nutrient loadings, and (c) identify major nutrient removal pathways by using qualitative and quantitative methods, including the geochemical model PHREEQC) a one-year study at a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system in the Baiyang Lake area in Hebei Province, China, was undertaken. The study showed a high influence of low-quality surface water on the shallow aquifer. Major inflowing pollutants into the aquifer were ammonium and nitrate via inflow from the adjacent Fu River (up to 29.8mg/L NH4-N and 6.8mg/L NO3-N), as well as nitrate via vertical transport from the field surface (up to 134.8mg/L NO3-N in soil water). Results from a conceptual model show an excess nitrogen input of about 320kg/ha/a. Nevertheless, both nitrogen species were only detected at low concentrations in shallow groundwater, averaging at 3.6mg/L NH4-N and 1.8mg/L NO3-N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite the current removal capacity, the excessive nitrogen fertilization may pose a future threat to groundwater quality. Surface water quality improvements are therefore recommended in conjunction with simultaneous monitoring of nitrate in the aquifer, and reduced agricultural N-inputs should be considered.


Asunto(s)
Agua Subterránea/química , Lagos/química , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Agricultura/estadística & datos numéricos , China , Monitoreo del Ambiente , Fertilizantes/estadística & datos numéricos , Nitratos/análisis
13.
Proc Natl Acad Sci U S A ; 109(4): 1074-9, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22232684

RESUMEN

Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N · ha(-1)) and irrigation water inputs (272 mm or 2,720 m(3) ha(-1)). Although energy inputs (30 GJ · ha(-1)) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg · ha(-1) and 159 GJ · ha(-1), respectively) and lower GHG-emission intensity (231 kg of CO(2)e · Mg(-1) of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N(2)O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals.


Asunto(s)
Agricultura/métodos , Contaminación del Aire/prevención & control , Efecto Invernadero , Óxido Nitroso/análisis , Suelo/análisis , Zea mays/crecimiento & desarrollo , Riego Agrícola/métodos , Riego Agrícola/estadística & datos numéricos , Agricultura/estadística & datos numéricos , Contaminación del Aire/estadística & datos numéricos , Bases de Datos Factuales , Fertilizantes/estadística & datos numéricos , Nebraska , Óxido Nitroso/metabolismo
14.
J Environ Manage ; 151: 233-42, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25585139

RESUMEN

Nitrous oxide (N2O) emissions are an important component of the greenhouse gas (GHG) budget for urban turfgrasses. A biogeochemical model DNDC successfully captured the magnitudes and patterns of N2O emissions observed at an urban turfgrass system at the Richland Creek Watershed in Nashville, TN. The model was then used to study the long-term (i.e. 75 years) impacts of lawn management practice (LMP) on soil organic carbon sequestration rate (dSOC), soil N2O emissions, and net Global Warming Potentials (net GWPs). The model simulated N2O emissions and net GWP from the three management intensity levels over 75 years ranged from 0.75 to 3.57 kg N ha(-1)yr(-1) and 697 to 2443 kg CO2-eq ha(-1)yr(-1), respectively, which suggested that turfgrasses act as a net carbon emitter. Reduction of fertilization is most effective to mitigate the global warming potentials of turfgrasses. Compared to the baseline scenario, halving fertilization rate and clipping recycle as an alternative to synthetic fertilizer can reduce net GWPs by 17% and 12%, respectively. In addition, reducing irrigation and mowing are also effective in lowering net GWPs. The minimum-maintenance LMP without irrigation and fertilization can reduce annual N2O emissions and net GWPs by approximately 53% and 70%, respectively, with the price of gradual depletion of soil organic carbon, when compared to the intensive-maintenance LMP. A lawn age-dependent best management practice is recommended: a high dose fertilizer input at the initial stage of lawn establishment to enhance SOC sequestration, followed by decreasing fertilization rate when the lawn ages to minimize N2O emissions. A minimum-maintained LMP with clipping recycling, and minimum irrigation and mowing, is recommended to mitigate global warming effects from urban turfgrass systems. Among all practices, clipping recycle may be a relatively malleable behavior and, therefore, a good target for interventions seeking to reduce the environmental impacts of lawn management through public education. Our results suggest that a long-term or a chronosequence study of turfgrasses with varying ages is warranted to capture the complete dynamics of contribution of turfgrasses to global warming.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Calentamiento Global , Óxido Nitroso/metabolismo , Poaceae/metabolismo , Contaminantes Atmosféricos/química , Contaminación del Aire/prevención & control , Composición Familiar , Fertilizantes/estadística & datos numéricos , Humanos , Modelos Teóricos , Óxido Nitroso/química , Estaciones del Año , Encuestas y Cuestionarios , Tennessee , Población Urbana
17.
Appl Microbiol Biotechnol ; 98(13): 6137-46, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24687747

RESUMEN

An Escherichia coli arsRp::luc-based biosensor was constructed to measure the bioavailability of arsenic (As) in soil. In previous induction experiments, it produced a linear response (R (2) = 0.96, P < 0.01) to As from 0.05 to 5 µmol/L after a 2-h incubation. Then, both chemical sequential extraction, Community Bureau of Reference recommended sequential extraction procedures (BCR-SEPs) and E. coli biosensor, were employed to assess the impact of different long-term fertilization regimes containing N, NP, NPK, M (manure), and NPK + M treatments on the bioavailability of arsenic (As) in soil. Per the BCR-SEPs analysis, the application of M and M + NPK led to a significant (P < 0.01) increase of exchangeable As (2-7 times and 2-5 times, respectively) and reducible As (1.5-2.5 times and 1.5-2.3 times, respectively) compared with the no fertilization treated soil (CK). In addition, direct contact assay of E. coli biosensor with soil particles also supported that bioavailable As in manure-fertilized (M and M + NPK) soil was significantly higher (P < 0.01) than that in CK soil (7 and 9 times, respectively). Organic carbon may be the major factor governing the increase of bioavailable As. More significantly, E. coli biosensor-determined As was only 18.46-85.17 % of exchangeable As and 20.68-90.1 % of reducible As based on BCR-SEPs. In conclusion, NKP fertilization was recommended as a more suitable regime in As-polluted soil especially with high As concentration, and this E. coli arsRp::luc-based biosensor was a more realistic approach in assessing the bioavailability of As in soil since it would not overrate the risk of As to the environment.


Asunto(s)
Arsénico/análisis , Técnicas Biosensibles/métodos , Técnicas de Química Analítica , Escherichia coli/efectos de los fármacos , Fertilizantes/estadística & datos numéricos , Contaminantes del Suelo/análisis , Suelo/química , Agricultura/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Luciferasas/análisis , Luciferasas/genética , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Transactivadores/efectos de los fármacos , Transactivadores/genética
18.
Ecotoxicology ; 23(10): 2035-40, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25134677

RESUMEN

The effects of the long-term inorganic (nitrogen, N; phosphate, P) and organic (manure, M; straw, S) fertilizers/managemenet individually and in combinations (N, NP, SNP, M, and MNP) on soil microbial activity were investigated in a wheat field on the Loess Plateau, China. Microcalorimetry was used to determine microbial activity under different treatments. Nearly 30 years of consecutive fertilization has altered the culturable population of soil bacteria and fungi, the highest ones were detected in the treatments of manure and MNP, followed by the NP and SNP treatments. The microbial growth rate constant (µ/h(-1)) was significantly greater in the MNP treatment than all the other treatments. The total heat exchange values (Q/J) were the highest in the MNP and NP treatments, which were significantly different from the N and M treatments. The peak height (P(t)/µW) were significantly higher in MNP and NP treatments than in the remaining treatments. The peak time values (t(p)/h) among the MNP, NP, SNP and M, N and CK treatments were significantly different. In general, comparing with control, soil microbial activity was much higher in MNP, NP and SNP treatments, all including the phosphate fertilizer. Our results showed that the application of inorganic fertilizer and organic manure have positive effects on multiple soil chemical parameters, soil microorganism abundance and activity, and hence crop yield.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Monitoreo del Ambiente , Fertilizantes/estadística & datos numéricos , Microbiología del Suelo , Triticum/crecimiento & desarrollo , China , Fertilizantes/análisis , Suelo/química
19.
Ecotoxicology ; 23(10): 2069-80, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25134679

RESUMEN

The effects of long-term (29 years) fertilization on local agro-ecosystems in the Loess Plateau of northwest China, containing a single or combinations of inorganic (Nitrogen, N; Phosphate, P) and organic (Mature, M Straw, S) fertilizer, including N, NP, SNP, M, MNP, and a control. The soil enzymes, including dehydrogenase, urease, alkaline phosphatase, invertase and glomalin, were investigated in three physiological stages (Jointing, Dough, and Maturity) of wheat growth at three depths of the soil profile (0-15, 16-30, 31-45 cm). We found that the application of farmyard manure and straw produced the highest values of soil enzymatic activity, especially a balanced applied treatment of MNP. Enzymatic activity was lowest in the control. Values were generally highest at dough, followed by the jointing and maturity stages, and declined with soil profile depth. The activities of the enzymes investigated here are significantly correlated with each other and are correlated with soil nutrients, in particular with soil organic carbon. Our results suggest that a balanced application of fertilizer nutrients and organic manure (especially those containing P) has positive effects on multiple soil chemical parameters, which in turn enhances enzyme activity. We emphasize the role of organic manure in maintaining soil organic matter and promoting biological activity, as its application can result in a substantial increase in agricultural production and can be sustainable for many years.


Asunto(s)
Enzimas/análisis , Fertilizantes/estadística & datos numéricos , Microbiología del Suelo , Triticum/crecimiento & desarrollo , Agricultura/métodos , China , Productos Agrícolas/crecimiento & desarrollo , Oxidorreductasas/análisis , Suelo , Ureasa/análisis , beta-Fructofuranosidasa/análisis
20.
World J Microbiol Biotechnol ; 30(1): 99-107, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23842756

RESUMEN

The effect of nitrogen (N) and phosphorus (P) fertilization on composition of rhizobacterial communities of volcanic soils (Andisols) from southern Chile at molecular level is poorly understood. This paper investigates the composition of rhizobacterial communities of two Andisols under pasture after 1- and 6-year applications of N (urea) and P (triple superphosphate). Soil samples were collected from two previously established sites and the composition of rhizobacterial communities was determined by denaturing gradient gel electrophoresis (PCR-DGGE). The difference in the composition and diversity between rhizobacterial communities was assessed by nonmetric multidimensional scaling (MDS) analysis and the Shannon-Wiener index. In Site 1 (fertilized for 1 year), PCR-DGGE targeting 16S rRNA genes and MDS analysis showed that moderate N application (270 kg N ha(-1) year(-1)) without P significantly changed the composition of rhizobacterial communities. However, no significant community changes were observed with P (240 kg P ha(-1) year(-1)) and N-P application (270 kg N ha(-1) year(-1) plus 240 kg P ha(-1) year(-1)). In Site 2 (fertilized for 6 years with P; 400 kg P ha(-1) year(-1)), PCR-DGGE targeting rpoB, nifH, amoA and alkaline phosphatase genes and MDS analysis showed changes in rhizobacterial communities only at the highest rate of N application (600 kg N ha(-1) year(-1)). Quantitative PCR targeting 16S rRNA genes also showed higher abundance of bacteria at higher N application. In samples from both sites, the Shannon-Wiener index did not show significant difference in the diversity of rhizobacterial communities. The changes observed in rhizobacterial communities coincide in N fertilized pastures with lower soil pH and higher pasture yields. This study indicates that N-P application affects the soil bacterial populations at molecular level and needs to be considered when developing fertilizer practices for Chilean pastoral Andisols.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biota , Fertilizantes/estadística & datos numéricos , Microbiología del Suelo , Chile , Electroforesis en Gel de Gradiente Desnaturalizante , Nitrógeno/metabolismo , Fósforo/metabolismo , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA